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Abstract

The ability of wire meshes to block electromag-
netic waves (the “Faraday cage” effect) is well
known to physicists and engineers. We consider
the scattering of electromagnetic waves (gov-
erned by the time-harmonic Maxwell equations)
by a thin periodic layer of perfectly conduct-
ing obstacles. The size of the obstacles and
the distance between neighbouring obstacles are
both small compared to the wavelength. We de-
rive homogenized interface conditions for three
model configurations, namely (i) discrete obsta-
cles, (ii) parallel wires, (iii) a wire mesh, and ob-
serve that the leading order behaviour depends
strongly on the topology of the periodic layer,
with shielding of incident waves of all polariza-
tions occurring only in the case of a wire mesh.
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Our aim is to derive homogenized interface con-
ditions for electromagnetic scattering by a thin
periodic layer of perfectly-conducting obstacles

f‘szint U (5{64—1'614-]'82} ,
(i.4) €22

where § > 0 is small and Q € [0,1]> x R ¢ R?
is the canonical obstacle in the period cell. In

particular we consider three model cases:

(i) Q= (%, 5)% x (—%, %), i.e. a cube;

(i) Q=10,1] x (3,3) x (%, %), ie. a wire (of
square section) parallel to the direction e;.

(i) €= {[0,1] x (§,§) x (—g )} U{(§,§) x

[0, 1] x (—%, %)}, i.e. a cross-shaped domain

with branches parallel to e; and es.

We seek a solution u’ of the Maxwell equations
curlcurlu’ —w?eu’ = f in Q° :=R3\ 9,
subject to the PEC boundary condition

wWxn=0 on I?Y:=00°

(1) (i) (iii)

Figure 1: The domain Q9 in cases (i)-(ii).

It is well-known that, under appropriate assump-
tions on f, w and e and the far-field behaviour,
this problem is well-posed. Our aim is to iden-
tify the limit ug of u® as ¢ tends to 0. This
limit solution is defined in the union of two dis-
tinct domains QF = {x € R3 : 423 > 0}, whose
common interface is I' = {x € R? : 23 = 0}.

Theorem 1 The limit solution u® satisfies
curlcurlu’ — w2’ =f QT UQ,

and the following interface conditions on T (where
[]r denotes the jump across T'):

Case (i): [ugxes|r = 0 and [curlugxes]r =0,
so the interface is transparent to leading order.
Case (ii): up-e;1 =0 on T, [ug - e2]p =0, and
[(curlug x es)-e2]r = 0, so the interface reflects
waves polarized parallel to the wires.

Case (iii): ug X e = 0 on I', so the interface
reflects waves of all polarizations.

To prove Theorem 1 we approximate u’ using

matched asymptotic expansions, as in [1-7] where
closely related problems are studied. It is con-
venient to work with the first-order formulation

—iwh?® 4+ curlu’ =0 in Q°,
1

—iwu’ — curlh® = ——f in 957
iw

W xn=0and h® n=0 on IY.

Far from the periodic layer 2% we expand

h® = hy(x) + dhy(x) + -,

u’ = ug(x) + dug (x) + -,
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and, in the vicinity of .Z?,
X X
h6 = HO(xlny; g) + 5H1($1,-’E2, 7) +

o
uw = Ug(z1, x2, %) + 06U (21, 22, %) +o

where, for i € {0,1}, H;(z1, 22,91, y2,y3) and
U;(z1,z2,y1,Y2,y3) are l-periodic in both
and y2. The near and far field expansions satisfy
matching conditions, the O(1) one being

lim hyg= lim Hy,
Igﬁoi y3—>:|200 933.~)0i y3—>:t00

(1)
The near fields Uy and Hy satisfy

curlUjg =curlHy =0 in $eo,
divUg=divHy =0 in Beo,
Uypxn=0and Hy-n=0 on 0%Bxo,

where %o, = R3\ Ugij)ez2 {Q + ie; +je2}. A
key step in our analysis is to prove that Uy
and Hy are uniquely defined respectively as ele-
ments of the normal and tangential cohomology
spaces Ky and Krp [8,9], which are subspaces
of Hioc(curl; Bo) N Hipe(div; Boo) with a peri-
odicity condition in y; and y2 and appropriate
decay conditions at y3 = £oo. In the following
theorem let Ub* = limy, +45 U - e;.

Theorem 2 For each of the three cases (i)-(iii),
Ky and Kr are spanned by gradients of certain
scalar potentials satisfying the Laplace equation
with appropriate boundary/decay conditions.
Case (i): Ky and Kr have dimension 4 and
3 respectively. If U € Ky and H € Krp then
Uit = Ub~ and H*t = HY~ fori € {1,2}.
Case (ii): Kn and Kr have dimension 3 and
4 respectively. If U € Ky and H € Krp then
ULt =0, U2t =U%", and HYt = HL.
Case (iii): Ky and K1 have dimension 2 and 5
respectively. If U € Ky then UL = U2+ = 0.

Theorem 1 then follows by combining The-
orem 2 with the matching conditions (1). For
details see [9]. We note that a study of case
(iil), using a different approach to that outlined
above, appeared recently in [4], where the first
order correction terms were also considered.

The convergence of u’ to ug in the limit
0 — 0 can be made rigorous by justifying the
asymptotic expansions considered above. This
can be done a posteriori by constructing an ap-
proximation of u® on Q% (based on truncated

lim ug = lim UD.

expansions) and using a d-explicit stability es-
timate, cf. [10]. This is the subject of ongoing
work by the authors of the talk.
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