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Abstract

The ability of wire meshes to block electromag-
netic waves (the “Faraday cage” effect) is well
known to physicists and engineers. We consider
the scattering of electromagnetic waves (gov-
erned by the time-harmonic Maxwell equations)
by a thin periodic layer of perfectly conduct-
ing obstacles. The size of the obstacles and
the distance between neighbouring obstacles are
both small compared to the wavelength. We de-
rive homogenized interface conditions for three
model configurations, namely (i) discrete obsta-
cles, (ii) parallel wires, (iii) a wire mesh, and ob-
serve that the leading order behaviour depends
strongly on the topology of the periodic layer,
with shielding of incident waves of all polariza-
tions occurring only in the case of a wire mesh.
Keywords: Homogenized interface conditions,
Maxwell equations, Faraday cage

Our aim is to derive homogenized interface con-
ditions for electromagnetic scattering by a thin
periodic layer of perfectly-conducting obstacles

L δ = int

 ⋃
(i,j)∈Z2

δ
{

Ω̂ + ie1 + je2

} ,

where δ > 0 is small and Ω̂ ⊂ [0, 1]2 × R ⊂ R3

is the canonical obstacle in the period cell. In
particular we consider three model cases:

(i) Ω̂ = (3
8 ,

5
8)2 × (−1

8 ,
1
8), i.e. a cube;

(ii) Ω̂ = [0, 1]× (3
8 ,

5
8)× (−1

8 ,
1
8), i.e. a wire (of

square section) parallel to the direction e1.

(iii) Ω̂ = {[0, 1]× (3
8 ,

5
8)× (−1

8 ,
1
8)} ∪ {(3

8 ,
5
8)×

[0, 1]×(−1
8 ,

1
8)}, i.e. a cross-shaped domain

with branches parallel to e1 and e2.

We seek a solution uδ of the Maxwell equations

curl curl uδ − ω2εuδ = f in Ωδ := R3 \L δ,

subject to the PEC boundary condition

uδ × n = 0 on Γδ := ∂Ωδ.

(i) (ii) (iii)

Figure 1: The domain Ωδ in cases (i)-(iii).

It is well-known that, under appropriate assump-
tions on f , ω and ε and the far-field behaviour,
this problem is well-posed. Our aim is to iden-
tify the limit u0 of uδ as δ tends to 0. This
limit solution is defined in the union of two dis-
tinct domains Ω± = {x ∈ R3 : ±x3 > 0}, whose
common interface is Γ = {x ∈ R3 : x3 = 0}.

Theorem 1 The limit solution u0 satisfies

curl curl u0 − ω2εu0 = f in Ω+ ∪ Ω−,

and the following interface conditions on Γ (where
[·]Γ denotes the jump across Γ):
Case (i): [u0×e3]Γ = 0 and [curl u0×e3]Γ = 0,
so the interface is transparent to leading order.
Case (ii): u0 · e1 = 0 on Γ, [u0 · e2]Γ = 0, and
[(curl u0×e3)·e2]Γ = 0, so the interface reflects
waves polarized parallel to the wires.
Case (iii): u0 × e3 = 0 on Γ, so the interface
reflects waves of all polarizations.

To prove Theorem 1 we approximate uδ using
matched asymptotic expansions, as in [1–7] where
closely related problems are studied. It is con-
venient to work with the first-order formulation

− iωhδ + curl uδ = 0 in Ωδ,

− iωuδ − curl hδ = − 1

iω
f in Ωδ,

uδ × n = 0 and hδ · n = 0 on Γδ.

Far from the periodic layer L δ we expand

hδ = h0(x) + δh1(x) + · · · ,
uδ = u0(x) + δu1(x) + · · · ,
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and, in the vicinity of L δ,

hδ = H0(x1, x2,
x

δ
) + δH1(x1, x2,

x

δ
) + · · · ,

uδ = U0(x1, x2,
x

δ
) + δU1(x1, x2,

x

δ
) + · · · ,

where, for i ∈ {0, 1}, Hi(x1, x2, y1, y2, y3) and
Ui(x1, x2, y1, y2, y3) are 1-periodic in both y1

and y2. The near and far field expansions satisfy
matching conditions, the O(1) one being

lim
x3→0±

h0 = lim
y3→±∞

H0, lim
x3→0±

u0 = lim
y3→±∞

U0.

(1)

The near fields U0 and H0 satisfy

curlU0 = curlH0 = 0 in B∞,

divU0 = divH0 = 0 in B∞,

U0 × n = 0 and H0 · n = 0 on ∂B∞,

where B∞ = R3 \
⋃

(i,j)∈Z2

{
Ω̂ + ie1 + je2

}
. A

key step in our analysis is to prove that U0

and H0 are uniquely defined respectively as ele-
ments of the normal and tangential cohomology
spaces KN and KT [8, 9], which are subspaces
of Hloc(curl; B∞) ∩Hloc(div; B∞) with a peri-
odicity condition in y1 and y2 and appropriate
decay conditions at y3 = ±∞. In the following
theorem let Ui,± := limy3→±∞U · ei.

Theorem 2 For each of the three cases (i)-(iii),
KN and KT are spanned by gradients of certain
scalar potentials satisfying the Laplace equation
with appropriate boundary/decay conditions.
Case (i): KN and KT have dimension 4 and
3 respectively. If U ∈ KN and H ∈ KT then
Ui,+ = Ui,− and Hi,+ = Hi,− for i ∈ {1, 2}.
Case (ii): KN and KT have dimension 3 and
4 respectively. If U ∈ KN and H ∈ KT then
U1,± = 0, U2,+ = U2,−, and H1,+ = H1,−.
Case (iii): KN and KT have dimension 2 and 5

respectively. If U ∈ KN then U1,± = U2,± = 0.

Theorem 1 then follows by combining The-
orem 2 with the matching conditions (1). For
details see [9]. We note that a study of case
(iii), using a different approach to that outlined
above, appeared recently in [4], where the first
order correction terms were also considered.

The convergence of uδ to u0 in the limit
δ → 0 can be made rigorous by justifying the
asymptotic expansions considered above. This
can be done a posteriori by constructing an ap-
proximation of uδ on Ωδ (based on truncated

expansions) and using a δ-explicit stability es-
timate, cf. [10]. This is the subject of ongoing
work by the authors of the talk.
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