Q-Rational torsion of generalized modular Jacobians

Mar Curcó Iranzo
Utrecht University

April 18, 2023

The modular curve $X_{0}(N)$

Given a positive integer N, let

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0(\bmod N)\right\}
$$

and $X_{0}(N) / \mathbb{Q}$ the projective non-singular modular curve associated to $\Gamma_{0}(N)$.

$$
\begin{array}{cccc}
X_{0}(N) / \mathbb{C} \simeq \mathcal{H} / \Gamma_{0}(N) & \cup & \mathbb{P}^{1}(\mathbb{Q}) / \Gamma_{0}(N) \\
\downarrow & \downarrow \\
& Y_{0}(N) & & \operatorname{Cusps}\left(X_{0}(N)\right)
\end{array}
$$

$X_{0}(N)$ is the moduli space of $\{(E, C): E / \mathbb{C}$ elliptic curve, $\mathbb{Z} / N \mathbb{Z} \simeq C \subset E\} / \simeq$.

The modular curve $X_{0}(N)$
The setup

The Jacobian $J_{0}(N)$

Let $J_{0}(N):=\operatorname{Jac}\left(X_{0}(N)\right)=\operatorname{Pic}^{0}\left(X_{0}(N)\right)=\operatorname{Div}^{0}\left(X_{0}(N)\right) / \sim$. By considering the (Abel-Jacobi) injection

$$
\iota: X_{0}(N) \rightarrow J_{0}(N)
$$

we can study questions about elliptic curve by studying $J_{0}(N)$ and its properties as an abelian variety.
By Mordell-Weil, we have

$$
J_{0}(N)(\mathbb{Q}) \simeq \mathbb{Z}^{r} \oplus J_{0}(N)(\mathbb{Q})_{\text {tor }}
$$

Ogg's Conjecture

Andrew Ogg: All the torsion in $J_{0}(p)$ comes from the cusps.
For $N=p$ prime, $\operatorname{Cusps}\left(X_{0}(N)\right)=\{0, \infty\} \subseteq J_{0}(N)(\mathbb{Q})$.

Ogg's Conjecture

Let N be a prime number. Then, the group

$$
J_{0}(N)(\mathbb{Q})_{\text {tor }}=\langle[0-\infty]\rangle \simeq \mathbb{Z} / \text { num }\left(\frac{N-1}{12}\right) \mathbb{Z}
$$

Proofs of Ogg's conjecture: Mazur (1977); Ribet, Wake (2022).

Rational divisor class subgroup

Taking $C_{N}:=\operatorname{im}\left(\operatorname{Div}_{\text {cusp }}^{0}\left(X_{0}(N)\right)\right.$ in $\left.J_{0}(N)\right)$), then any $[D] \in C_{N}$ is torsion! (Manin-Drinfeld). However, in general Cusps $\left(X_{0}(N)\right) \nsubseteq J_{0}(N)(\mathbb{Q})$.
Taking $C_{N}(\mathbb{Q}):=C_{N} \cap J_{0}(N)(\mathbb{Q})$, a natural generalization of Ogg's Conjecture is

Generalized Ogg's Conjecture

For any positive integer N we have

$$
J_{0}(N)(\mathbb{Q})_{\text {tor }}=C_{N}(\mathbb{Q})
$$

Large evidence in favour of the conjecture! (Go to Elvira's talk :))

Rational divisor class subgroup

Theorem. (Yoo)

For any positive integer N and any odd prime I such that I^{2} does not divide $3 N$ we have

$$
J_{0}(N)(\mathbb{Q})_{\operatorname{tor}}\left[I^{\infty}\right] \simeq\left(\bigoplus_{d \in D_{1}(N)}\left\langle\left[Z_{I}(d)\right]\right\rangle\right)\left[I^{\infty}\right]
$$

for certain divisors $\left\{\left[Z_{l}(d)\right] \in C_{N}(\mathbb{Q}): d \in D_{1}(N)\right\}$, where $D_{1}(N):=\{$ divisors of $N\} \backslash\{1\}$.

The divisors $Z(d)$ and their orders can be explicitly computed.

Example

Example. Take $N=p q$ and $/$ s.t. $\operatorname{val}_{/}(p-1) \leq \operatorname{val}_{/}(q-1)$, then $D_{1}(N)=\{p, q, p q\}$ and

- $Z_{l}(p)=(q-p) 0-(q-1) P_{p}+(p-1) P_{q}$ has order num $\left(\frac{(p-1)\left(q^{2}-1\right)}{24}\right)$.
- $Z_{l}(q)=0-P_{q}$ has order num $\left(\frac{\left(p^{2}-1\right)(q-1)}{24}\right)$.
- $Z_{l}(p q)=q 0-q P_{p}+P_{q}-\infty$ has order num $\left(\frac{(p-1)(q-1) \operatorname{gcd}(p+1, q+1)}{24 \operatorname{cdd}(p-1, q-1)}\right)$.

Generalized Jacobians

Jacobians help us explore smooth curves.

Generalized Jacobians

Generalised Jacobians help us explore certain singular curves
Let $\mathbf{m} \in \operatorname{Div}\left(X_{0}(N)\right)$ an effective rational divisor (call it a modulus).
Construct $X_{0}(N)_{\mathfrak{m}}$, the singular curve obtained from $X_{0}(N)$ by "glueing" the points in \mathbf{m} into a single point Q.

Example (Graphic)

$$
X_{0}(N) \quad x_{0}(N) m
$$

Generalized Jacobians

Definition

The generalised Jacobian $J_{0}(N)_{\mathbf{m}}$ is the group of isomorphism classes of degree zero line bundles on $X_{0}(N)_{\mathbf{m}}$.

Generalized Jacobians

Definition

The generalised Jacobian $J_{0}(N)_{\mathbf{m}}$ is the group of isomorphism classes of degree zero line bundles on $X_{0}(N)_{\mathbf{m}}$.

Example (Analogies with the "usual" Jacobian)

It has universal property, it can be used to study ramified covers of $X_{0}(N)$, it can be described in terms of divisors...

Given M a set of points in $X_{0}(N)$, there exists a modulus \mathbf{m} with $M=\operatorname{Supp}(\mathbf{m})$, and a map

$$
\iota_{\mathbf{m}}: X_{0}(N) \backslash M \rightarrow J_{0}(N)_{\mathbf{m}}
$$

with universal property.

Generalized Jacobians

Definition

The generalised Jacobian $J_{0}(N)_{\mathbf{m}}$ is the group of isomorphism classes of degree zero line bundles on $X_{0}(N)_{\mathbf{m}}$.

Example (Analogies with the "usual" Jacobian)

It has universal property, it can be used to study ramified covers of $X_{0}(N)$, it can be described in terms of divisors...

Covers of $X_{0}(N)$ ramified at $\operatorname{Supp}(\mathbf{m})$ are in 1-to-1 correspondence with maps onto the generalised Jacobian $J\left(X_{0}(N)\right)_{\mathbf{m}}$

Generalized Jacobians

Definition

The generalised Jacobian $J_{0}(N)_{\mathbf{m}}$ is the group of isomorphism classes of degree zero line bundles on $X_{0}(N)_{\mathbf{m}}$.

Example (Analogies with the "usual" Jacobian)

It can be used to study ramified covers of $X_{0}(N)$, it has universal property, it can be described in terms of divisors, ...

Let $\operatorname{Div}_{\mathbf{m}}^{0}\left(X_{0}(N)\right)$ be the set of divisors coprime to \mathbf{m}. Then the generalized Jacobian $J_{0}(N)_{\mathbf{m}}$ is

$$
J(X)_{\mathbf{m}}=\operatorname{Div}_{\mathbf{m}}^{0}(X) / \sim_{\mathbf{m}}
$$

where $\sim_{\boldsymbol{m}}$ denotes the linear equivalence
$D_{1} \sim_{\mathbf{m}} D_{2}$ iff there is $f \in k(X)$ with $\operatorname{div}(f)=D_{1}-D_{2}$ and $f \equiv 1(\bmod \mathbf{m})$.

Cuspidal modulus

This gives

$$
\begin{equation*}
0 \rightarrow L_{\mathbf{m}} \rightarrow J_{0}(N)_{\mathbf{m}} \rightarrow J_{0}(N) \rightarrow 0 \tag{*}
\end{equation*}
$$

The linear group L_{m} is copies of \mathbb{G}_{m} 's' and \mathbb{G}_{a} 's.

$$
J_{0}(N)_{\mathfrak{m}}(\mathbb{Q})_{\text {tor }} \text { is not an Abelian variety! }
$$

We work with $\mathbf{m}=\sum_{P \in \operatorname{Cusps}\left(X_{0}(N)\right)} P$.

Motivation

If $\mathbf{m} \subset \operatorname{Div}_{\text {cusp }}\left(X_{0}(N)\right),(*)$ becomes explicit and $J_{0}(N)_{\mathbf{m}}$ seems to be related to (weakly) modular forms!

What can we say about $J_{0}(N)_{\mathfrak{m}}(\mathbb{Q})_{\text {tor }}$?

Main result

Extend results of Yamazaki-Yang (2016) and Wei-Yamazaki (2019).

Theorem. (C.I.)

Let N be an odd positive integer. For any odd prime $/$ with I^{2} not dividing $3 N$ we can construct divisors $E_{l}(d) \in \operatorname{Div}_{\text {cusp }}^{0}\left(X_{0}(N)\right)$ such that

$$
J_{0}(N)_{\mathbf{m}}(\mathbb{Q})_{\mathrm{tor}}\left[I^{\infty}\right] \simeq\left(\bigoplus_{d \in D_{2}(N)}\left\langle\left[E_{l}(d)\right]\right\rangle,\right)\left[I^{\infty}\right]
$$

where $D_{2}(N)=\{d \mid N$, divisible by at least 2 primes $\}$.

Example

Let $N=p^{2} q$. Then $D_{2}(N)=\left\{p q, p^{2} q\right\}$ and

- $E(p q)=(q+1) Z(p)-Z(p q)$ and its order is num $\left(\frac{(p-1)(q-1)}{24}\right)$;
- $E\left(p^{2} q\right)=(q+1) Z\left(p^{2}\right)-Z\left(p^{2} q\right)$ and its order is num $\left(\frac{\left(p^{2}-1\right)(q-1)}{24}\right)$.

Main result

Extend results of Yamazaki-Yang (2016) and Wei-Yamazaki (2019).

Theorem. (C.I.)

Let N be an odd positive integer. For any odd prime $/$ with I^{2} not dividing $3 N$ we can construct divisors $E_{l}(d) \in \operatorname{Div}_{\text {cusp }}^{0}\left(X_{0}(N)\right)$ such that

$$
J_{0}(N)_{\mathbf{m}}(\mathbb{Q})_{\mathrm{tor}}\left[I^{\infty}\right] \simeq\left(\bigoplus_{d \in D_{2}(N)}\left\langle\left[E_{l}(d)\right]\right\rangle,\right)\left[I^{\infty}\right]
$$

where $D_{2}(N)=\{d \mid N$, divisible by at least 2 primes $\}$.

$$
0 \rightarrow L_{\mathbf{m}} \rightarrow J_{0}(N)_{\mathbf{m}} \rightarrow J_{0}(N) \rightarrow 0
$$

Main result

Extend results of Yamazaki-Yang (2016) and Wei-Yamazaki (2019).

Theorem. (C.I.)

Let N be an odd positive integer. For any odd prime $/$ with I^{2} not dividing $3 N$ we can construct divisors $E_{l}(d) \in \operatorname{Div}_{\text {cusp }}^{0}\left(X_{0}(N)\right)$ such that

$$
J_{0}(N)_{\mathbf{m}}(\mathbb{Q})_{\mathrm{tor}}\left[I^{\infty}\right] \simeq\left(\bigoplus_{d \in D_{2}(N)}\left\langle\left[E_{l}(d)\right]\right\rangle,\right)\left[I^{\infty}\right]
$$

where $D_{2}(N)=\{d \mid N$, divisible by at least 2 primes $\}$.

$$
0 \rightarrow \bigoplus_{d^{\prime} \mid N}\left(\mathbb{Q}\left(\zeta_{\left(N, d^{\prime}\right)}\right)^{\times}\right)_{\text {tor }} \rightarrow J_{0}(N)_{\mathbf{m}}(\mathbb{Q})_{\text {tor }} \rightarrow J_{0}(N)(\mathbb{Q})_{\text {tor }} \xrightarrow{\delta} \bigoplus_{d^{\prime} \mid N} \mathbb{Q}\left(\zeta_{\left(N, d^{\prime}\right)}\right)^{\times} \otimes \mathbb{Q} / \mathbb{Z}
$$

Use Yamazaki-Yang, Yoo's generators and modular units.

Thank you!

