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Motivation

We take the following perspective on geometry

“Geometry = Algebra+ Topology”

For example,

“Schemes = Affine Schemes+glueing Zariski Topology”

We have the following equivalence of categories

Aff ≃ CRingop

The idea behind relative algebraic geometry, first introduced by
Toën and Vaquié, is to replace the category of commutative rings
with an appropriate notion of a ‘commutative algebra object’ in
some symmetric monoidal category C. We can then define
topologies on our new category of ‘affines’.

This categorical approach will allow us to construct and compare
lots of different types of geometries.
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Toën and Vaquié, is to replace the category of commutative rings
with an appropriate notion of a ‘commutative algebra object’ in
some symmetric monoidal category C. We can then define
topologies on our new category of ‘affines’.

This categorical approach will allow us to construct and compare
lots of different types of geometries.

Rhiannon Savage Derived Geometry Relative to Monoidal Quasi-abelian Categories 2



Motivation

We take the following perspective on geometry

“Geometry = Algebra+ Topology”

For example,

“Schemes = Affine Schemes+glueing Zariski Topology”

We have the following equivalence of categories

Aff ≃ CRingop

The idea behind relative algebraic geometry, first introduced by
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Monoidal Categories

A monoidal category (C,⊗, I ) is a category C equipped with a
bifunctor ⊗ : C × C → C and a unit I ∈ C,

along with associativity
and identity conditions.

Definition

A monoid (algebra object) (A, µ, η) in C is an object A ∈ C
equipped with a multiplication µ : A⊗ A → A and a unit
η : I → A, along with associativity and identity conditions.

Our category C is symmetric if, for all X ,Y ∈ C, there is a natural
isomorphism sX ,Y : X ⊗ Y → Y ⊗ X compatible with the
monoidal structure. If C is symmetric then we can consider the
category of commutative monoids, Comm(C).

Example

The category of abelian groups, ModZ, is symmetric monoidal.The
category Comm(ModZ) is equivalent to CRing.
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Relative Algebraic Geometry

Fix a symmetric monoidal category C.

Definition

The category of affines, AffC , relative to C is AffC := Comm(C)op.
Let Spec(A) be the image of A ∈ Comm(C) in AffC .

A topology on a category is called a Grothendieck topology. The
covers in the Zariski topology on Aff are open immersions.

Theorem (Grothendieck)

A map Spec(S) → Spec(R) in Aff is an open immersion if and
only if R → S is a flat epimorphism of finite presentation in CRing.

Definition

A map Spec(B) → Spec(A) in AffC is an open immersion if and
only if A → B is a flat epimorphism of finite presentation in
Comm(C).
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Analytic Geometry

We want to use our theory of relative algebraic geometry to look
at analytic geometry.

In complex analytic geometry, our objects of interest are Stein
spaces which can be considered as commutative Fréchet
algebras,

In rigid analytic geometry, our objects of interest are affinoid
algebras which are commutative Banach algebras.

This suggests that we should do analytic geometry relative to the
symmetric monoidal category of Banach spaces or the category of
Fréchet spaces. These are not abelian categories but are instead

quasi-abelian categories

Quasi-abelian categories have a well-developed theory of
homological algebra with notions of exact sequences, derived
categories etc. Moreover, any quasi-abelian category admits a fully
faithful embedding into an abelian category.
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Rigid Analytic Geometry

Consider a non-Archimedean valued field k , e.g. Qp.

In rigid
analytic geometry

“Rigid Analytic Spaces = Affinoid Algebras+glueing G-topology”

The morphism Qp⟨x⟩ → Qp⟨3x⟩ is a cover in the G -topology but
is not flat so we can’t use the Zariski topology from earlier.

Definition

Suppose that f : A → B is a morphism of affinoid algebras. Then,
f is a homotopy epimorphism if B ⊗L

A B ≃ B in D(ModB).

For example, Qp⟨x⟩ → Qp⟨3x⟩ is a homotopy epimorphism. The
formal homotopy Zariski topology has homotopy epimorphisms as
covers. It can be extended to certain quasi-abelian categories.

Proposition (Ben-Bassat, Kremnizer, 2015)

The formal homotopy Zariski topology lines up with the G
-topology on affinoid algebras.
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Analytic Geometry

The categories Bank and Frk , for k a valued-field, are not
bicomplete so aren’t suitable for other geometries.

However, we
can create another symmetric monoidal quasi-abelian category
which is bicomplete and contains these categories as full
subcategories.

Definition

The category of IndBanach spaces, IndBank , has as its objects
functors X : I → Bank where I is a small filtered category.
Morphisms are given by

HomIndBank (X ,Y ) := lim
i∈I

colim
j∈J

HomBank (X (i),Y (j))

We note that the category CBornk of complete bornological
spaces is a full concrete subcategory of IndBank and there is an
equivalence of derived categories

D(CBornk) ≃ D(IndBank)
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Homotopical Algebraic Geometry

Classical Algebraic Geometry

ModZ

Relative Algebraic Geometry

Symmetric monoidal category C

Homotopical Algebraic Geometry

Symmetric monoidal model or (∞, 1) category C

Derived Algebraic Geometry

C= sModR

Derived Analytic Geometry

C=?
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Derived Analytic Geometry

A series of papers by Bambozzi, Ben-Bassat, Kelly, Kremnizer,
Mukherjee (and hopefully me soon...) backs up the following claim.

Conjecture

Derived analytic geometry is geometry relative to the category
C = sModA with A ∈ Comm(IndBank) (or A ∈ Comm(CBornk))

The missing piece I am providing is a representability theorem for
higher stacks in this context.
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Geometric Stacks

Suppose we have some (∞, 1)-category C, a topology τ on the
ordinary category Ho(C), and a well-defined class of maps P in C.

Consider some F in the category Stk(C, τ) of higher stacks.
F is (−1)-geometric if it is representable, i.e. is equivalent to
MapC(−,X ) for some X ∈ C,
F is 0-geometric if

The diagonal morphism F → F ×F is representable,
F has an atlas {Ui → F}i∈I with each Ui representable,each
morphism Ui → F a representable epimorphism , and, for each
representable X and morphism X → F , the induced morphism
Ui ×F X → X is in P.

. . .

Example

Take C = Aff considered as an (∞, 1)-category. When τ is the
Zariski topology and P is the collection of open immersions,
0-geometric stacks are schemes. When we have the étale topology,
and smooth maps, we obtain our usual notion of algebraic stacks.
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F is (−1)-geometric if it is representable, i.e. is equivalent to
MapC(−,X ) for some X ∈ C,
F is 0-geometric if

The diagonal morphism F → F ×F is representable,
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representable X and morphism X → F , the induced morphism
Ui ×F X → X is in P.

. . .

Example
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Representability

We consider the (∞, 1)-category D−AffA := Comm(sModA)
op

for A ∈ Comm(IndBank). Define some topology τ on it and a
class P of maps in D−AffA.

Suppose that F ∈ Stk(D−AffA, τ).

When is F n-geometric for some n?

Do we have nice examples of derived analytic moduli stacks
which are n-geometric?
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Thanks for listening!
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