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Research history

• PhD: Combinatorics/Commutative algebra
• Postdocs: Moving towards algebraic geometry
• Tenure track: Work in algebraic geometry. Start hearing

about tropical geometry . . .
• Summer after first year at Warwick: teach 4 week summer

school on tropical geometry. Over next 7 (!) years turn notes
into first text book on the subject.
• Currently: Tropical geometry, with sidelines in other parts of

combinatorial algebraic geometry.



EDI work

1. LMS Committee for Women and Diversity in Mathematics
2016–2022.

2. Currently Convenor for European Women in Mathematics
(EWM)



EWM

• Founded in 1986
• Members in 34 countries in Europe
• Over 400 individual members and 36 institutional members
• Activities:

• General meeting (every two years)
• EWM/EMS summer schools at Institut Mittag Leffler
• Network of country coordinators
• Mentoring programme
• Job ads
• Travel grants
• Activism

https://www.europeanwomeninmaths.org



Tropical Geometry



The tropical semiring

R = (R ∪ {∞},⊕, ◦· ),

where ⊕= min and ◦· = +.

Examples: 5 ⊕ 8 = 5
3◦· 8 = 11
(6◦· 5) ⊕ 10 =?
3◦· (5 ⊕ 8) = 8 = 3◦· 5 ⊕ 3◦· 8.

This is commutative, associative,∞ is the additive identity, and 0
is the multiplicative identity.

Warning: No subtraction (so we have a semiring).



Why?

Algebraic geometry “over” the tropical semiring R is a
combinatorial shadow of usual algebraic geometry*

Goal: Use combinatorial shadow to solve the original problem
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Tropical polynomials
Tropical polynomials are piecewise linear functions:
Example:

F = x3 ⊕ x2 ⊕ 1◦· x ⊕ 4
= min(3x ,2x , x + 1,4)

y = 2x

y = 4
y = x + 1

y = 3x



Tropical polynomials

Problem: What are the roots of 3◦· x ⊕ −2?

Answer: “Roots” of such equations are points where the graph of
F is not differentiable.
Example: 0, 1, and 3 are roots of F = x3 ⊕ x2 ⊕ 1◦· x ⊕ 4

y = 2x

y = 4
y = x + 1

y = 3x
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The tropical quadratic formula
F = a◦· x2 ⊕ b◦· x ⊕ c = min(2x + a, x + b, c).

(1/2(c − a), c)

(c − b, c)

y = 2x + a

y = c

y = x + b

(b − a,2b − a)

“Roots”:

x =

{
b − a, c − b if 2b ≤ a + c
1/2(c − a) if 2b > a + c



Connection to usual polynomials

K ∗ = K \ {0}
Consider coefficients in a field K with a nontrivial valuation

val : K ∗ → R

val(ab) = val(a) + val(b),
val(a + b) ≥ min(val(a), val(b)).

Example: K = Q. val(pna/b) = n.
val2(20/3) = val2(225/3) = 2,
val3(5/12) = val3(3−15/4) = −1.

Example: K = C((t)) (Laurent series).
a = 3t−2 + 7t3 + 8t9 + . . . val(a) = −2.



Proposition Given a polynomial f =
∑d

i=0 aix i ∈ K [x ], set

trop(f ) =⊕d
i=0 val(ai)◦· x i = min(val(ai) + ix).

If f (b) = 0 then val(b) is a root of trop(f ).
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i=0 val(ai)◦· x i = min(val(ai) + ix).

If f (b) = 0 then val(b) is a root of trop(f ).

Example: f = x2 + tx + t3 ∈ C((t))[x ]. f (b) = 0 for b =

−t ±
√

t2 − 4t3

2
= {−t + t2 + t3 + t4 + · · · ,−t2 − t3 − 2t4 + . . . }.

trop(f ) = x2 ⊕ 1◦·x ⊕ 3.

1 2



Proposition Given a polynomial f =
∑d

i=0 aix i ∈ K [x ], set

trop(f ) =⊕d
i=0 val(ai)◦· x i = min(val(ai) + ix).

If f (b) = 0 then val(b) is a root of trop(f ).

So we can’t solve a general quintic, but we can determine the
valuations of its roots!



Tropical hypersurfaces
Definition: The tropical hypersurface V (F ) defined by the
tropical polynomial F is the locus where the graph of F is not
differentiable.
Example: F = x ⊕ y ⊕ 0 F (x , y) = min(x , y ,0).

y = 0 ≤ x
0

y

x

x = 0 ≤ y

x = y ≤ 0

w ∈ V (F ) if and only if the minimum is achieved at least twice in
F (w).



Tropical hypersurfaces
Example:

f = x3 ⊕ y3 ⊕ x2z ⊕ y2z ⊕ z2 ⊕ x ⊕ y ⊕ 0
= min(3x ,3y ,2x + z,2y + z,2z, x , y ,0).

Then V (f ) is



Tropical hypersurfaces

Notation: For u ∈ Zn, xu = xu1
1 xu2

2 . . . xun
n .

Definition: If f =
∑

u∈Zn cuxu ∈ K [x1, . . . , xn] is a polynomial,
then

F = trop(f ) :=
⊕

val(cu)◦· xu = min(val(cu) + x · u)

The tropical hypersurface trop(V (f )) is the tropical hypersurface
of F .

Example: Let f = x + y + 1. Then trop(f ) = x ⊕ y ⊕ 0 =
min(x , y ,0).



trop(f )(w) = min(val(cu) + w · u).
Example:
f = 7t4x3 + 5t2x2y + 2txy2 − t4y3 + 2tx2 − xy + ty2

+3x + 8y + t ∈ C((t))[x , y ].

trop(f ) = 4◦· x3 ⊕ 2◦· x2y ⊕ 2◦· xy2 ⊕ 4◦· y3 ⊕ 1◦· x2 ⊕ xy ⊕ 1◦· y2

⊕ x ⊕ y ⊕ 1
= min(3x + 4,2x + y + 2, x + 2y + 2,3y + 4,2x + 1,

x + y ,2y + 1, x , y ,1)

(−2,−2)

(0,0)
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Example:
f = 12x2 + 20y2 + 8z2 + 7xy + 22xz + 3yz + 5x + 9y + 6z + 4
with the 2-adic valuation.
trop(f ) = min(2x +2, 2y +2, 2z +3, x +y , x +z +1, y +z, x , y , z +1, 2)
trop(V (f )):
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Tropical Varieties
X = V (f1, . . . , fr ) = {x ∈ K n : f1(x) = · · · = fr (x) = 0}.

Definition: The tropical variety of X is

trop(X ) =
⋂

f=
∑

gi fi

V (trop(f ))

Theorem [Bieri/Groves, Kapranov, Speyer, Sturmfels ... ] The
tropical variety of X is the support of a balanced polyhedral
complex of the same dimension as X . It equals val(X (L)) for any
algebraically closed L ⊃ K with a nontrivial valuation.
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Why?

Tropical varieties are combinatorial shadows of
classical varieties.

Many invariants of the variety can be determined from the
combinatorics of the tropical variety.

Turns Algebraic Geometry (hard) into
Polyhedral Geometry/Combinatorics (somewhat easier)



Enumerative Geometry

A curve of degree d is a set {[x : y : z] ∈ P2 : f (x , y , z) = 0}
where f a homogeneous polynomial of degree d .

Question: How many rational curves of degree d pass through
3d − 1 general points in the plane?

Answers:

d 3d − 1 Nd = number of curves
1 2 1
2 5 1
3 8 12 (Steiner, 1848)
4 11 620 (Zeuthen, 1873)



Enumerative Geometry

A curve of degree d is a set {[x : y : z] ∈ P2 : f (x , y , z) = 0}
where f a homogeneous polynomial of degree d .

Question: How many rational curves of degree d pass through
3d − 1 general points in the plane?

Answers:

d 3d − 1 Nd = number of curves
1 2 1
2 5 1
3 8 12 (Steiner, 1848)
4 11 620 (Zeuthen, 1873)



Enumerative Geometry

Question: How many rational curves of degree d pass through
3d − 1 general points in the plane?

Answers:

d 3d − 1 Nd
1 2 1
2 5 1
3 8 12 (Steiner, 1848)
4 11 620 (Zeuthen, 1873)

General d (Kontsevich 1994)

Nd =
∑

dA+dB=d,
dA≥1,dB≥1

((
3d − 4
3dA − 1

)
d2

A −
(

3d − 4
3dA − 2

)
dAdB

)
NdANdB dAdB

(involves integrating on the moduli space of stable maps)



Answers:
(Mikhalkin 2002) You can just count (with multiplicity) the number
of tropical rational curves of degree d passing with through
3d − 1 general points in R2.
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(Gathmann, Markwig 2007) This can be done with tropical
intersection theory on the tropical moduli space of stable maps.
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Tropical schemes
Story so far is all about varieties. . .
What about more modern algebraic geometry?

Start with (affine) schemes.

Problem: The semiring of tropical polynomials R[x1, . . . , xn] is
more complicated than the standard polynomial ring.

• Multiplication is not cancellative.
(x2 ⊕ 0)◦· (x2 ⊕ x ⊕ 0) = (x2 ⊕ x ⊕ 0)2

• Ideals do not have to be finitely generated.
〈x ⊕ y , x2 ⊕ y2, x3 ⊕ y3, x4 ⊕ y4, . . . 〉 ⊂ R[x , y ].
• Varieties can be complicated.
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Tropical schemes

Fix: Consider only ideals with extra structure.

(M-Rincón) A tropical ideal is a homogeneous ideal in the semir-
ing of tropical polynomials with the property that each graded
piece determines a valuated matroid.

Based on work of Giansiracusa-Giansiracusa on tropicalizing
subschemes of F1 varieties. Gives a definition of a subscheme
of a tropical toric variety.



Other applications

• Mirror symmetry (Gross-Siebert program, . . . )
• Geometry of curves (Brill Noether theory, . . . )
• Analytic geometry (Berkovich spaces, . . . )
• Rational points (Chabauty method, . . . )
• Real algebraic geometry (Enumeration, Welschinger

invariants, . . . )
• Integrable systems (Ultradiscrete KdV, . . . )
• Optimization (max-plus optimization, complexity of LP, . . . )
• Economics (Product-Mix auctions, . . . )
• Celestial mechanics (three body problem,. . . )
• Machine learning (ReLU networks, . . . )
• . . .


