GROUP ALGEBRAS.

ANDREI YAFAEV

We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn’s theory to its study.

Definition 0.1. Let G be a finite group. We define $F[G]$ as a set of formal sums

$$u = \sum_{g \in G} \lambda_g g, \lambda_g \in F$$

endowed with two operations: addition and multiplication defined as follows.

$$\sum_{g \in G} \lambda_g g + \sum_{g \in G} \mu_g g = \sum_{g \in G} (\lambda_g + \mu_g)g$$

and

$$\sum_{g \in G} \lambda_g g \times \sum_{g \in G} \mu_h h = \sum_{g \in G, h \in G} (\lambda_h \mu_{h^{-1}g})g$$

Note that the multiplication is induced by multiplication in G, F and linearity.

The following proposition is left to the reader.

Proposition 0.1. The set $(F[G], +, \times)$ is a ring and is an F-vector space of dimension $|G|$ with scalar multiplication compatible with group operation. Hence $F[G]$ is an F-algebra.

The algebra $F[G]$ is non-commutative unless the group G is commutative.

It is clear that the basis elements (elements of G) are invertible in $F[G]$.

Lemma 0.2. The algebra $F[G]$ is a **not** a division algebra.

Proof. It is easy to find zero divisors. Let $g \in G$ and let m be the order of G (the group G is finite, every element has finite order). Then

$$(1 - g)(1 + g + g^2 + \cdots + g^{m-1}) = 0$$

□

In this course we will study $F[G]$-modules, modules over the algebra $F[G]$. An important example of a $F[G]$-module is $F[G]$ itself viewed as a $F[G]$-module. We leave the verifications to the reader. This module is called a regular $F[G]$-module and the associated representation a regular representation.

Definition 0.2. Let V and W be two $F[G]$-modules. A function $\phi: V \rightarrow W$ is called a $F[G]$-homomorphism if it is a homomorphism from V to W viewed as modules over $F[G]$.

That means that ϕ is F-linear and satisfies $\phi(gv) = g\phi(v)$ for all $g \in G$ and $v \in V$.

We obviously have the following.

Proposition 0.3. Let $\phi: V \rightarrow W$ be a $F[G]$-homomorphism. Then $\ker(\phi)$ and $\operatorname{im}(\phi)$ are $F[G]$-submodules of V and W respectively.

Definition 0.3. Let G be a finite group, F a field and V a finite dimensional vector space over F. A representation ρ of G on V is a group homomorphism $\rho: G \rightarrow \operatorname{GL}(V)$.

A representation is called **faithful** if $\ker(\rho) = \{1\}$.

A representation is called **irreducible** if the only subspaces W of V such that $\rho(G)W \subset W$ are $W = \{0\}$ and $W = V$.

The following theorem tells us that a representation of G and an $F[G]$-module are same things.

Theorem 0.4. Let G be a finite group and F a field. There is a one-to-one correspondence between representations of G over F and finitely generated left $F[G]$-modules.

Proof. Let V be a (finitely generated) $F[G]$-module. Then V is a finite dimensional vector space. Let g be in G, then, by axioms satisfied by a module, the action of g on V defines an invertible linear map which gives an element $\rho(g)$ of $\operatorname{GL}(V)$. It is trivial to check that $\rho: G \rightarrow \operatorname{GL}(V)$ is a group homomorphism i.e. a representation $G \rightarrow \operatorname{GL}(V)$.

Let $\rho: G \rightarrow \operatorname{GL}(V)$ be a representation. Let $x = \sum_{g \in G} \lambda_g g$ be an element of $F[G]$ and let $v \in V$. Define $xv = \sum_{g \in G} \lambda_g \rho(g)v.$
It is easy to check that this defines a structure of an $F[G]$-module on V. □

By definition, a morphism between two representation is a morphism of the corresponding $F[G]$-modules. Two representations are isomorphic (or equivalent) if the corresponding $F[G]$-modules are isomorphic.

Given an $F[G]$-module V and a basis B of V as F-vector space, for $g \in G$, we will denote by $[g]_B$ the matrix of the linear transformation defined by g with respect to the basis B.

For example:

Let $D_8 = \{a, b : a^4 = b^2 = 1, b^{-1}ab = a^{-1}\}$ and define a representation by

$$\rho(a) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } \rho(b) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Choose B to be the canonical basis $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ of $V = F^2$.

We have:

$$av_1 = -v_2 \quad av_2 = v_1 \quad bv_1 = v_1 \quad bv_2 = -v_2$$

This completely determines the structure of V as a $F[D_8]$-module. Conversely, by taking the matrices $[a]_B$ and $[b]_B$, we recover our representation ρ.

Another example:

Let G be the group S_n, group of permutations of the set $\{1, \ldots, n\}$. Let V be a vector space of dimension n over F (the n here is the same as the one in S_n). Let $\{v_1, \ldots, v_n\}$ be a basis of V. We define

$$gv_i = v_{g(i)}$$

The reader will verify that the conditions of the above proposition are verified and hence we construct a $F[G]$-module called the permutation module.

Let $n = 4$ and let $B = \{v_1, \ldots, v_n\}$ be a basis of F^4. Let g be the permutation $(1, 2)$. Then

$$gv_1 = v_2, gv_2 = v_1, gv_3 = v_3, gv_4 = v_4$$

The matrix $[g]_B$ is

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
Lemma 0.5. A representation \(\rho : G \rightarrow \text{GL}_n(F) \) is irreducible (or simple) if and only if the corresponding \(F[G] \)-module is simple.

Proof. A non-trivial invariant subspace \(W \subset V \) is a non-trivial \(F[G] \)-submodule, and conversely. \(\square \)

Note that \(\rho \) being irreducible means that the only \(\rho(G) \)-invariant subspaces of \(V \) are \(\{0\} \) and \(V \) itself.

If a representation is reducible i.e. there is a \(F[G] \)-submodule \(W \) of \(V \), then we can choose a basis \(B \) of \(V \) (choose a basis \(B_1 \) of \(B \) and complete it to a basis of \(B \)) in such a way that the matrix \([g]_B \) for all \(g \) is of the form

\[
\left(\begin{array}{cc}
X_g & Y_g \\
0 & Z_g
\end{array} \right)
\]

where \(X_g \) is a \(\dim W \times \dim W \) matrix. Clearly, the functions \(g \mapsto X_g \) and \(g \mapsto Z_g \) are representations of \(G \).

Let’s look at an example. Take \(G = C_3 = \{a : a^3 = 1\} \) and consider the \(F[G] \)-module \(V \) (dim \(V = 3 \)) such that

\[
av_1 = v_2, av_2 = v_3, av_3 = v_1
\]

(Easy exercise : check that this indeed defines an \(F[G] \)-module)

This is a reducible \(F[G] \)-module. Indeed, let \(W = Fw \) with \(w = v_1 + v_2 + v_3 \). Clearly this is a \(F[G] \)-submodule. Consider the basis \(B = \{w, v_2, v_3\} \) of \(V \). Then

\[
[I_3]_B = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

\[
[a]_B = \begin{pmatrix}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{pmatrix}
\]

(For the last matrix, note that: \(aw = w, av_2 = v_3, av_3 = v_1 = w - v_2 - v_3 \))

Given two \(F[G] \)-modules, a homomorphism \(\phi : V \rightarrow W \) of \(F[G] \)-modules is what you think it is. It has a kernel and an image that are \(F[G] \)-submonules of \(V \) and \(W \).

Example.

Let \(G \) be the group \(S_n \) of permutations. Let \(V \) be the permutation module for \(S_n \) and \(\{v_1, \ldots, v_n\} \) a basis for \(V \). Let \(w = \sum_i v_i \) and \(W = Fw \). This is a \(F[G] \)-module. Define a homomorphism

\[
\phi : \sum_i \lambda_i v_i \mapsto (\sum_i \lambda_i)w
\]

This is a \(F[G] \)-homomorphism (check !). Clearly,

\[
\ker(\phi) = \{\sum \lambda_i v_i, \lambda_i = 0\} \text{ and } \text{im}(\phi) = W
\]
We now get to the first very important result of this chapter. It says that $F[G]$-modules are semisimple.

Theorem 0.6 (Maschke’s theorem). Let G be a finite group and F a field such that $\text{Char} F$ does not divide $|G|$ (ex. $\text{Char} F = 0$). Let V be a $F[G]$-module and U an $F[G]$-submodule. Then there is an $F[G]$-submodule W of V such that

$$V = U \oplus W$$

In other words, $F[G]$ is a semisimple algebra.

Proof. Choose any subspace W_0 of V such that $V = U \oplus W_0$. For any $v = u + w$, define $\pi : V \rightarrow V$ by $\pi(v) = u$ (i.e. π is a projection onto U). We will modify π into an $F[G]$-homomorphism. Define

$$\phi(v) = \frac{1}{|G|} \sum_{g \in G} g \pi g^{-1}(v)$$

This clearly is an F-linear morphism $V \rightarrow V$. Furthermore, $\text{im}(\phi) \subseteq U$ (notice that $\pi(g^{-1}v) \in U$ and as U is an $F[G]$-module, we have $g \pi(g^{-1}v) \in U$).

Claim 1. : ϕ is a $F[G]$-homomorphism.

Let $x \in G$, we need to show that $\pi(xv) = x \pi(v)$. Let, for $g \in G$, $h := x^{-1} g$ (hence $h^{-1} = g^{-1} x$). Then

$$\phi(xv) = \frac{1}{|G|} \sum_{h \in G} x(h \pi h^{-1})(v) = x \frac{1}{|G|} \sum_{h \in G} (h \pi h^{-1})(v) = x \phi(v)$$

This proves the claim.

Claim 2. : $\phi^2 = \phi$.

For $u \in U$ and $g \in G$, we have $gu \in U$, therefore $\phi(gu) = gu$. Now

$$\phi(u) = \frac{1}{|G|} \sum (g \pi g^{-1})u = \frac{1}{|G|} \sum (g \pi g^{-1}u) = \frac{1}{|G|} \sum g g^{-1}u = \frac{1}{|G|} \sum u = u$$

Let $v \in V$, then $\phi(u) \in U$ and it follows that $\phi^2(v) = \phi(v)$, this proves the claim. We let $W := \ker(\phi)$. Then, as ϕ is a $F[G]$-homomorphism, W is a $F[G]$-module. Now, the minimal polynomial of ϕ is $x^2 - x = x(x - 1)$. Hence

$$V = \ker(\phi) \oplus \ker(\phi - I) = W \oplus U$$

This finishes the proof.

□
Note that without the assumption that $\text{Char}(F)$ does not divide $|G|$, the conclusion of Mashke’s theorem is wrong. For example let $G = C_p = \{a : a^p = 1\}$ over $F = \mathbb{F}_p$. Then the function
\[
a^j \mapsto \begin{pmatrix} 1 & 0 \\ j & 1 \end{pmatrix}
\]
for $j = 0, \ldots, p - 1$ is a representation of G of dimension 2. We have
\[
a^j v_1 = v_2 a^j v_2 = jv_1 + v_2
\]
Then $U = \text{Span}(v_1)$ is a $F[G]$-submodule of V. But there is no $F[G]$-submodule W such that $V = U \oplus V$ as (easy) U is the only 1-dimensional $F[G]$-submodule of V.

Similarly, the conclusion of Maschke’s theorem fails for infinite groups. Take $G = \mathbb{Z}$ and the representation
\[
n \mapsto \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}
\]
The proof of Maschke’s theorem gives a procedure to find the complementary subspace. Let $G = S_3$ and $V = \{e_1, e_2, e_3\}$ be the permutation module. Clearly, the submodule $U = \text{Span}(v_1 + v_2 + v_3)$ is an $F[G]$-submodule. Let $W_0 = \text{Span}(v_1, v_2)$.

Then $V = U \oplus W_0$ as \mathbb{C}-vector spaces. The projection ϕ onto U is given by
\[
\phi(v_1) = 0, \ \phi(v_2) = 0, \ \phi(v_3) = v_1 + v_2 + v_3
\]
The $F[G]$-homomorphism as in the proof of Maschke’s theorem is given by
\[
\Phi(v_i) = \frac{1}{3}(v_1 + v_2 + v_3)
\]
Clearly $\ker(\Phi) = \text{Span}(v_1 - v_2, v_2 - v_3)$. The $F[G]$-submodule is then
\[
W = \text{Span}(v_1 - v_2, v_2 - v_3)
\]
This is the $F[G]$-submodule such that $V = U \oplus W$. Actually, you may notice that is submodule is
\[
W = \{\sum \lambda_i v_i : \sum \lambda_i = 0\}
\]

By applying a theorem from the previous chapter.

Corollary 0.7. Let G be a finite group and V a $F[G]$ module where $F = \mathbb{R}$ or \mathbb{C}. There exist simple $F[G]$-modules U_1, \ldots, U_r such that
\[
V = U_1 \oplus \cdots \oplus U_r
\]
In other words, $F[G]$ modules are semisimple.

Another corollary:

Proof. By Mascke’s theorem there is an $F[G]$-submodule W such that $V = U \oplus W$. Consider $\pi: u + w \mapsto u$. □

We can now state Shur’s lemma for $F[G]$-modules:

Theorem 0.9 (Schur’s lemma). Suppose that F is algebraically closed.

1. If $\phi: V \rightarrow W$ is a $F[G]$-homomorphism, then either ϕ is a $F[G]$-isomorphism or $\phi(v) = 0$ for all $v \in V$.
2. If $\phi: V \rightarrow W$ is a $F[G]$-isomorphism, then ϕ is a scalar multiple of the identity endomorphism I_V.

This gives a characterisation of simple $F[G]$-modules and it is also a partial converse to Shur’s lemma.

Proposition 0.10. Suppose $\text{Char} F$ does not divide $|G|$ Let V be a non-zero $F[G]$-module and suppose that every $F[G]$-homomorphism from V to V is a scalar multiple of I_V. Then V is simple.

Proof. Suppose that V is reducible, then by Maschke’s theorem, we have

$$V = U \oplus W$$

where U and W are $F[G]$-submodules. The projection onto U is a $F[G]$-homomorphism which is not a scalar multiple of I_V (it has a non-trivial kernel !). This contradicts the assumption. □

We now apply Shur’s lemma to classifying representations of abelian groups.

In what follows, the field F is \mathbb{C}.

Let G be a finite abelian group and V a simple $\mathbb{C}[G]$-module. As G is abelian, we have

$$xgv = g(xv), x, g \in G$$

Therefore, $v \mapsto xv$ is a $\mathbb{C}[G]$-homomorphism $V \rightarrow V$. As V is irreducible, Shur’s lemma imples that there exists $\lambda_x \in \mathbb{C}$ such that $xv = \lambda_x v$ for all V. In particular, this implies that every subspace of V is a $\mathbb{C}[G]$-module. The fact that V is simple implies that $\dim(V) = 1$. We have proved the following:

Proposition 0.11. If G is a finite abelian group, then every simple $\mathbb{C}[G]$-module is of dimension one.
The basic structure theorem for finite abelian groups is the following:

Theorem 0.12 (Structure of finite abelian groups). *Every finite abelian group G is a direct product of cyclic groups.*

Let

$$G = C_{n_1} \times \cdots \times C_{n_r}$$

and let c_i be a generator for C_{n_i} and we write

$$g_i = (1, \ldots, 1, c_i, 1, \ldots, 1)$$

Then

$$G = \langle g_1, \ldots, g_r \rangle, g_i^n = 1, g_ig_j = g_jg_i$$

Let $\rho: G \rightarrow \text{GL}_n(\mathbb{C})$ be an irreducible representation of G. We know that $n = 1$, hence $\text{GL}_n(\mathbb{C}) = \mathbb{C}^*$. There exist $\lambda_i \in \mathbb{C}$ such that

$$\rho(g_i) = \lambda_i$$

The fact that g_i has order n_i implies that $\lambda_i^{n_i} = 1$.

This completely determines ρ. Indeed, let $g = g_1^{n_1} \cdots g_r^{n_r}$, we get

$$\rho(g) = \lambda_1^{n_1} \cdots \lambda_r^{n_r}$$

As ρ is completely determined by the λ_i, we write

$$\rho = \rho_{\lambda_1,\ldots,\lambda_r}$$

We have shown:

Theorem 0.13. Let $G = C_{n_1} \times \cdots \times C_{n_r}$. The representations $\rho_{\lambda_1,\ldots,\lambda_r}$ constructed above are irreducible and have degree one. There are exactly $|G|$ of these representations.

Let us look at a few examples. Let $G = C_n = \{a : a^n = 1\}$ and let $\zeta_n = e^{2\pi i/n}$. The n irreducible representations of G are the

$$\rho_{\zeta_n}(a^k) = \zeta_n^k$$

where $0 \leq k \leq n - 1$.

Let us classify all irreducible representations of $G = C_2 \times C_2 = \langle a_1, a_2 \rangle$. There are four of them, call them V_1, V_2, V_3, V_4 where V_i is a one dimensional vector space with basis v_i. We have

$$
\begin{align*}
 a_1v_1 &= v_1 & a_2v_1 &= v_1 \\
 a_1v_2 &= v_2 & a_2v_2 &= -v_2 \\
 a_1v_3 &= -v_3 & a_2v_3 &= v_3 \\
 a_1v_4 &= -v_4 & a_2v_4 &= -v_4
\end{align*}
$$
Let us now turn to not necessarily irreducible representations. Let $G = \langle g \rangle$ be a cyclic group of order n and V a $\mathbb{C}[G]$-module. Then V decomposes as

$$V = U_1 \oplus \cdots \oplus U_r$$

into a direct sum of irreducible $\mathbb{C}[G]$-modules. We know that every U_i has dimension one and we let u_i be a vector spanning U_i. As before we let $\zeta_n = e^{2\pi i/n}$. Then for each i there exists an integer m_i such that

$$gu_i = \zeta_n^{m_i}u_i$$

Let $B = \{u_1, \ldots, u_r\}$ be the basis of V consisting of the u_i. Then the matrix $[g]_B$ is diagonal with coefficients $\zeta_n^{m_i}$.

As an exercise, the reader will classify representations of arbitrary finite abelian groups (i.e. products of cyclic groups).

The statement that all irreducible representations of abelian groups have degree one has a converse.

Theorem 0.14. Let G be a finite group such that all irreducible representations of G are of degree one. Then G is abelian.

Proof. We can write

$$\mathbb{C}[G] = U_1 \oplus \cdots \oplus U_n$$

where each U_i is simple and hence is of degree one by assumption. Let u_i be a generator of U_i, then $\{u_1, \ldots, u_n\}$ is a basis of $\mathbb{C}[G]$ as a \mathbb{C}-vector space.

Let g be in $\mathbb{C}[G]$, then the matrix of the action of g on $\mathbb{C}[G]$ in this basis is diagonal (because U_is are $\mathbb{C}[G]$-modules!). The regular representation of G (action of G on $\mathbb{C}[G]$ given by multiplication in G) is faithful.

Indeed, suppose $g \sum (\lambda_i h_i) = \sum \lambda_i h_i$ for all $\sum \lambda_i h_i \in \mathbb{C}[G]$. Then, in particular $g \cdot 1 = 1$ hence $g = 1$.

It follows that the group G is realised as a group of diagonal matrices. Diagonal matrices commute, hence G is abelian. \[\Box\]

1. $\mathbb{C}[G]$ as a module over itself.

In this section we study the structure of $\mathbb{C}[G]$ viewed as a module over itself. We know that $\mathbb{C}[G]$ decomposes as

$$\mathbb{C}[G] = U_1 \oplus \cdots \oplus U_r$$

where the U_is are irreducible $\mathbb{C}[G]$-submodules.

As by Mashke’s theorem $\mathbb{C}[G]$ is a semisimple algebra, U_is are the only simple $\mathbb{C}[G]$-modules.
Then we have seen that every irreducible \(\mathbb{C}[G] \)-module is isomorphic to one of the \(U_i \) s. In particular there are only finitely many of them.

Let’s look at examples.

Take \(G = C_3 = \{ a : a^3 = 1 \} \) and let \(\omega = e^{2i\pi/3} \). Define

\[
\begin{align*}
 v_0 &= 1 + a + a^2 \\
 v_1 &= 1 + \omega^2 a + \omega a^2 \\
 v_3 &= 1 + \omega a + \omega^2 a^2
\end{align*}
\]

Let \(U_i = \text{Span}(v_i) \). One checks that

\[
av_i = \omega^i v_i
\]

and \(U_i \) s are \(\mathbb{C}[G] \)-submodules. It is not hard to see that \(v_1, v_2, v_3 \) form a basis of \(\mathbb{C}[G] \) and hence

\[
\mathbb{C}[G] = U_0 \oplus U_1 \oplus U_2
\]

direct sum of irreducible \(\mathbb{C}[G] \)-modules.

Look at \(D_6 \). It contains \(C_3 = \langle a \rangle \). Define:

\[
\begin{align*}
 v_0 &= 1 + a + a^2, \quad w_0 = v_0b \\
 v_1 &= 1 + \omega^2 a + \omega a^2, \quad w_1 = v_1b \\
 v_3 &= 1 + \omega a + \omega^2 a^2, \quad w_2 = v_2b
\end{align*}
\]

As before, \(\langle v_i \rangle \) are \(\langle a \rangle \)-invariant and

\[
\begin{align*}
 av_0 &= v_0, \quad aw_0 = v_0 \\
 bv_0 &= w_0, \quad bw_0 = v_0
\end{align*}
\]

It follows that \(\text{Span}(u_0, w_0) \) is a \(\mathbb{C}[G] \) modules. It is not simple, indeed, it is the direct sum \(U_0 \oplus U_1 \) where \(U_0 = \text{Span}(u_0 + w_0) \) and \(U_1 = \text{Span}(u_0 - w_1) \) and they are simple submodules.

Notice that the irreducible representation of degree one corresponding to \(U_0 \) is the trivial one : sends \(a \) and \(b \) to 1. The one corresponding to \(U_1 \) sends \(a \) to 1 and \(b \) to \(-1 \).

Next we get :

\[
\begin{align*}
 av_1 &= \omega w_2, \quad aw_2 = \omega^2 w_2 \\
 bv_1 &= w_2, \quad bw_2 = v_1
\end{align*}
\]

Therefore \(U_2 = \text{Span}(v_1, w_2) \) is \(\mathbb{C}[G] \)-module. It is an easy exercise to show that it is irreducible.

The corresponding two-dimensional representation is

\[
a \mapsto \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}
\]
and
\[
 b \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

Lastly
\[
 av_2 = \omega^2 w_1, \ aw_1 = \omega w_1 \\
 bv_2 = w_1, \ bw_1 = v_2
\]

Hence \(U_3 = \text{Span}(v_2, w_1) \) is a \(\mathbb{C}[G] \)-module and one shows that it is irreducible. In fact the morphism \(\phi \) that sends \(v_1 \mapsto w_1 \) and \(w_2 \mapsto v_2 \) is \(\mathbb{C}[G] \)-isomorphism (you need to check that \(\phi(av) = a\phi(v) \) and \(\phi(bv) = b\phi(v) \) for all \(v \in \mathbb{C}[G] \)).

Therefore the representations \(U_2 \) and \(U_3 \) are isomorphic. We have
\[
 \mathbb{C}[G] = U_0 \oplus U_1 \oplus U_2 \oplus U_3
\]
with \(\dim U_0 = \dim U_2 = 1 \) and corresponding representations are non-isomorphic. And \(\dim U_2 \cong \dim U_3 = 2 \) and the corresponding representations are isomorphic.

We have completely classified all irreducible representations of \(\mathbb{C}[D_6] \) and realised them explicitly as submodules of \(\mathbb{C}[D_6] \).

1.1. **Wedderburn decomposition revisited.** We now apply the results we proved for semisimple modules to the group algebra \(\mathbb{C}[G] \).

View \(\mathbb{C}[G] \) as a module over itself (regular module). By Maschke’s theorem, this module is semisimple. There exist \(r \) distinct simple modules \(S_i \) and integers \(n_i \) such that
\[
 \mathbb{C}[G] = S_1^{n_1} \oplus \cdots \oplus S_r^{n_r}
\]

We have
\[
 \mathbb{C}[G]^{\text{op}} = \text{End}_{\mathbb{C}[G]}(\mathbb{C}[G]) = M_{n_1}(\text{End}(S_1)) \oplus \cdots \oplus M_{n_r}(\text{End}(S_r))
\]

As \(S_i \) is simple and \(\mathbb{C} \) is algebraically closed, \(\text{End}(S_i) = \mathbb{C} \). By taking the opposite algebra, we get
\[
 \mathbb{C}[G] = M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_r}(\mathbb{C})
\]
(note that \(\mathbb{C}^{\text{op}} = \mathbb{C} \) because \(\mathbb{C} \) is commutative.)

Each \(S_i \) becomes a \(M_{n_i}(\mathbb{C}) \)-module. Indeed, \(S_i \) is a \(\mathbb{C}[G] = M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_r}(\mathbb{C}) \)-module and \(M_{n_i}(\mathbb{C}) \) is a subalgebra of \(\mathbb{C}[G] \). As a \(M_{n_i}(\mathbb{C}) \)-module, \(S_i \) is also simple. Indeed, suppose that \(S_i' \) is a non-trivial \(M_{n_i}(\mathbb{C}) \)-submodule of \(S_i \). Then, \(0 \oplus \cdots \oplus S_i' \oplus \cdots \oplus 0 \) is a non-trivial \(\mathbb{C}[G] \)-submodule of \(S_i \).
We have seen in the previous chapter that simple $M_{n_i}(\mathbb{C})$-modules are isomorphic to \mathbb{C}^{n_i} (column vector modules). It follows that $\dim_{\mathbb{C}}(S_i) = n_i$ and as $\dim_{\mathbb{C}} \mathbb{C}[G] = |G|$, we get the following very important relation

$$|G| = \sum_{i=1}^{r} n_i^2$$

The integers n_is are precisely the degrees of all possible irreducible representations of G.

In addition, for any finite group there is always an irreducible one dimensional representation : the trivial one. Therefore we always have $n_1 = 1$.

Using this relation we already can determine the degrees of all irreducible representations of certain groups. For abelian groups they are always one.

For D_6 : $6 = 1 + 1 + 2^2$. We recover what we proved above.

For D_8 we have $8 = 1 + 1 + 1 + 1 + 2^2$ hence four one-dimensional ones (exercise : determine them) and one two dimensional (determine it!).

Same for Q_8.

We will now determine the integer r : the number of isomorphism classes of irreducible representations.

Definition 1.1. Let G be a finite group. The centre $Z(\mathbb{C}[G])$ of the group algebra $\mathbb{C}[G]$ is defined by

$$Z(\mathbb{C}[G]) = \{ z \in \mathbb{C}[G] : zr = rz \text{ for all } r \in \mathbb{C}[G] \}$$

The centre $Z(G)$ of the group G is defined similarly:

$$Z(G) = \{ g \in G : gr = rg \text{ for all } r \in G \}$$

We have:

Lemma 1.1.

$$\dim Z(\mathbb{C}[G]) = r$$

Proof. Write $\mathbb{C}[G] = M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_r}(\mathbb{C})$. Now, the centre of each $M_{n_i}(\mathbb{C})$ is \mathbb{C} and there are r factors, hence $Z(\mathbb{C}[G]) = \mathbb{C}^r$.

Recall that a conjugacy class of $g \in G$ is the set

$$\{ x^{-1}gx : x \in G \}$$

and G is a disjoint union of conjugacy classes.

We show:

Theorem 1.2. The number r of irreducible representations is equal to the number of conjugacy classes.
Proof. We calculate the dimension of \(Z(\mathbb{C}[G]) \) in a different way. Let \(\sum_{g \in G} \lambda_g g \) be an element of \(Z(\mathbb{C}[G]) \). By definition, for any \(h \in G \) we have

\[
h(\sum_{g \in G} \lambda_g g)h^{-1} = \sum_{g \in G} \lambda_g g
\]

We have

\[
h(\sum_{g \in G} \lambda_g g)h^{-1} = \sum_{g \in G} \lambda_{hgh^{-1}} g
\]

Therefore \(\lambda_g = \lambda_{hgh^{-1}} \) and therefore the function \(\lambda_g \) is constant on conjugacy classes. Hence the centre is generated by the

\[
\{ \sum_{g \in K} g : K \text{ conjugacy class} \}
\]

But this family is also free because conjugacy classes are disjoint hence it is a basis for \(Z(\mathbb{C}[G]) \). This finishes the proof.

For example we recover the fact that irreducible representations of abelian groups are one dimensional: each conjugacy class consists of one element.

By what we have seen before, we know that \(D_6 \) has three conjugacy classes, \(D_8 \) has five.

1.2. Conjugacy classes in dihedral groups. We can in fact determine completely conjugacy classes in dihedral groups.

Let \(G \) be a finite group and for \(x \in G \), let us denote by \(x^G \) the conjugacy class of \(x \). Let

\[
C_G(x) = \{ g \in G : gx = xg \}
\]

This is a subgroup of \(G \) called the centraliser of \(x \). We have

\[
|x^G| = |G : C_G(x)| = \frac{|G|}{|C_G(x)|}
\]

We have the following relation (standard result in group theory). Let \(x_1, \ldots, x_m \) be representatives of conjugacy classes in \(G \).

\[
|G| = |Z(G)| + \sum_{x_i \notin Z(G)} |x_i^G|
\]

Let us now turn to the dihedral group

\[
G = D_{2n} = \{ a, b : a^n = b^2 = 1, b^{-1}ab = a^{-1} \}
\]

Suppose that \(n \) is odd.

Consider \(a^i \) for \(1 \leq i \leq n - 1 \). Then \(C(a^i) \) contains the group generated by \(a \): obviously \(aa^i a^{-1} = a^i \). It follows that

\[
|a^G| = |G : C_G(a)| \leq 2 = |G : \langle a \rangle|
\]
On the other hand $b^{-1}a'b = a^{-i}$ so $\{a^i, a^{-i}\} \subset a^iG$. As n is odd $a^i \neq a^{-i}$ ($a^{2i} = 1$ implies that $n = 2i$ but n is odd).

It follows that $|a^iG| \geq 2$ hence

$$|a^iG| = 2 \quad C_G(a^i) = \langle a \rangle \quad a^iG = \{a^i, a^{-i}\}$$

Next $C_G(b)$ contains 1 and b. As $b^{-1}a'b = a^{-i}$ and $a^i \neq a^{-i}$, therefore a^i and $a^i b$ do not commute with b. Therefore $C_G(b) = \{1, b\}$. It follows that $|bG| = n$ and we have

$$bG = \{b, ab, \ldots, a^{n-1}b\}$$

(figure that all elements of G are $\{1, a, a^2, \ldots, a^{n-1}, b, ab, \ldots, a^{n-1}b\}$)

We have determined all conjugacy classes in the case n is odd.

Proposition 1.3. The dihedral group D_{2n} with n odd has exactly $\frac{n+3}{2}$ conjugacy classes and they are

$$\{1\}, \{a, a^{-1}\}, \ldots, \{a^{(n-1)/2}, a^{-(n-1)/2}\}, \{b, ab, \ldots, a^{n-1}b\}$$

Suppose $n = 2m$ is even.

We have $a^m = a^{-m}$ such that $b^{-1}a^mb = a^{-m} = a^m$ and the centraliser of a^m contains both a and b, hence

$$C_G(a^m) = G$$

The conjugacy class of a^m is just a^m.

As before $a^iG = \{a^i, a^{-i}\}$ for $1 \leq i \leq m - 1$.

We have

$$a^i ba^j = a^{2j}b, \quad a^i ba^{-j} = a^{2j+1}b$$

It follows that

$$bG = \{a^{2j}b : 0 \leq j \leq m - 1\} \quad \text{and} \quad (ab)G = \{a^{2j+1}b : 0 \leq j \leq m - 1\}$$

We proved:

Proposition 1.4. In D_{2n} for $n = 2m$ even, there are exactly $m + 3$ conjugacy classes, they are

$$\{1\}, \{a^m\}, \{a^i, a^{-i}\} \quad \text{for} \quad 1 \leq i \leq m - 1,$$

$$\{a^{2j}b : 0 \leq j \leq m - 1\} \quad \text{and} \quad (ab)G = \{a^{2j+1}b : 0 \leq j \leq m - 1\}$$

In particular, we know the number of all irreducible representations of D_{2n}.