Jeffery G; Sharp C; Malitschek B; Salt TE; Kuhn R; Knopfel T; (1996) Cellular localisation of metabotropic glutamate receptors in the mammalian optic nerve: A mechanism for axon-glia communication. Brain Research, 741: 75-81.

It has been proposed that neurotransmitter signalling can occur between axons and glia in the mammalian optic nerve in the absence of synaptic specialisations, and that this may be glutamate mediated. Here, the cellular distribution of five metabotropic glutamate receptors (mGluR's la, Ib, Ic, 2/3 and 5) have been assessed in the rat optic pathway using specific antibodies. Positive immunoreactivity is found for mGluR2/3 and 5. Both are found in axons, although only mGluR5 is present in the majority of these. Strong immunoreactivity for mGluR2/3 is found in cells in the optic pathway and thalamus. The cellular morphology and distribution is consistent with their being astrocytes. Examination of brain sections stained for mGluR2/3 is consistent with this notion, with many cells having end-feet processes terminating on blood vessels or the pial surface. The axonal immunoreactivity could represent the presence of these receptors on axons, but it is more probable that the receptor protein synthesised in the ganglion cell soma is being transported to the cell terminal in sufficient concentration to be revealed by immunohistochemistry. The reason for the axon- astrocyte signalling is unclear, and may be associated with metabolic coupling, In development, communication between axons and glia mediates a range of functions including pathway selection and myelination. It is probable that in the adult this form of signalling underpins a range of functions that have yet to be described.


Feedback Tom Salt ioo home page *UCL* More about Glutamate Receptors


Last Updated January 27, 1997.