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Information limit on the spatial integration
of local orientation signals
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Channel-based models of human spatial vision require that the output of spatial filters be pooled across space.
This pooling yields global estimates of local feature attributes such as orientation that are useful in situations
in which that attribute may be locally variable, as is the case for visual texture. The spatial characteristics of
orientation summation are considered in the study. By assessing the effect of orientation variability on ob-
servers’ ability to estimate the mean orientation of spatially unstructured textures, one can determine both the
internal noise on each orientation sample and the number of samples being pooled. By a combination of fixing
and covarying the size of textured regions and the number of elements constituting them, one can then assess
the effects of the texture’s size, density, and numerosity (the number of elements present) on the internal noise
and the sampling density. Results indicate that internal noise shows a primary dependence on texture den-
sity but that, counterintuitively, subjects rely on a sample size approximately equal to a fixed power of the
number of samples present, regardless of their spatial arrangement. Orientation pooling is entirely flexible
with respect to the position of input features. © 2001 Optical Society of America

OCIS codes: 330.5000, 330.5510, 330.6110.
1. INTRODUCTION
A. Background

Cells in primary visual cortex respond selectively to the
presence of image attributes such as orientation, spatial
frequency, and direction.1 The cornerstone of computa-
tional theories of spatial vision is that one can model this
selectivity using spatial filtering. Filter kernels are con-
structed to reflect the known structure of cortical-cell re-
ceptive fields2 and are then convolved with a stimulus to
produce a response image. The response image is the
output of a matrix of overlapping receptive fields where
every pixel reflects the response of an independent
mechanism centered at that location. To make use of
such information, computational models of early spa-
tiotemporal vision pool values from the response image
within a locale. For example, so-called ‘‘back-pocket’’
models of visual texture segregation employ banks of Ga-
bor filters whose (squared) outputs are integrated over
space by some second-stage mechanism.3–6 Although a
great deal of psychophysical evidence pertains to the fil-
ters, less is known of the nature of the spatial integration
process that follows it. Probably the most intensively
studied issue is how filters near their threshold are com-
bined to predict contrast sensitivity. Observers’ contrast
sensitivity improves with the area of the target. Initial
improvements at small stimulus areas are attributed to
improved summation by a single filter, but continued im-
provement can be modeled by assuming a probabilistic
combination of the outputs of multiple filters.7–10 Such
models are generally able to successfully predict subjects’
detection of stimuli composed of multiple targets11 (al-
though there may be exceptions12). Recently it has also
been suggested that the spatial extent of this pooling is
anisotropic and dependent on the shape of the filters be-
ing combined.13
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The functional significance of pooling is to increase
sensitivity to near-threshold, spatially distributed signals
and to confer resistance to local noise. With respect to
other image attributes, such as orientation and direction,
it would seem likely on similar grounds that some form
of integration across space takes place. In the motion
domain, subjects can detect extended motion trajectories,
which implicates the pooling of local motion detectors
across space.14 Orientation integration has been
observed by using several paradigms; observers are
capable of detecting extended visual contours that are in-
visible to the outputs of single linear spatial filters.15,16

It is also known that estimates of orientation can be com-
bined in the absence of contour structure. Specifically,
observers confronted with a spatially unstructured tex-
ture composed of oriented elements are able to makes
estimates of the mean orientation and orientation vari-
ance with great accuracy.17 For example, orientation
thresholds for textures composed of elements with consid-
erable orientation variability are comparable to thresh-
olds measured with sinusoidal gratings17 [on the order
of 1–2°; Fig. 1(a)], even though the latter is entirely free
of extrinsic orientation variation. This suggests that
internal noise limits performance on all orientation
judgments. Dakin and Watt17 showed that observers
overcome this noise by relying on the average orientation
pooled over a series of local estimates and that observers
also had access to second-order (i.e., variance) but
not third-order (i.e., skew) orientation statistics. This
paper addresses the issue of how the visual system deter-
mines the sample it uses to compute such orientation sta-
tistics.

Does the extent of spatial pooling depend on the size of
an object or on the density of features covering it? With
respect to texture processing there is some indication that
subjects’ performance exhibits scale invariance; that is, it
2001 Optical Society of America
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Fig. 1. (a) Texture composed of 16 Gabor micropatterns with orientations drawn from a Gaussian random distribution with a mean of
92° (2° clockwise from vertical) and a standard deviation of 4°. Observers’ ability to accurately discriminate mean orientation in the
presence of considerable orientation variance necessitates pooling of multiple orientation estimates. (b) A ‘‘pop-out’’ stimulus. A single
element, tilted 15° from vertical, is embedded in a field of vertical distractors. The presence of the discrepant element could be signaled
by a simple local orientation statistic (such as the mean). (c–e) Examples of the stimuli used in the experiments (contrast enhanced for
the purpose of reproduction). Each is composed of 64 Gabor elements randomly distributed within a circular region with orientations
drawn from a Gaussian distribution with a mean of 90° and a standard deviation equal to (c) 0.5°, (d) 4°, and (e) 23°. Subjects’ ability
to estimate mean orientation deteriorates with increasing orientation variance, allowing one to estimate the effective internal noise and
the number of orientation samples being employed. The textures shown in (c–e) fall in the midrange of the patch sizes, densities, and
numerosities tested.
does not vary greatly with viewing distance. Kingdom
and Keeble18 measured sensitivity to sinusoidal modula-
tions of orientation across space and found that element
spatial frequency could interfere significantly with scale
invariance but that local element density did not. Den-
sity has generally been viewed as important only insofar
as it yields information about local orientation
gradients.19–21 Notably, the detectability of an oriented
target amidst a field of oriented distractors [e.g., Fig. 1(b)]
exhibits a nonmonotonic dependency on stimulus
density.24 Performance is poor at very low distractor
densities, improves with small increases in distractor
number, but then deteriorates again at high distractor
densities. Although such results have been interpreted
as evidence for local-orientation contrast detectors, this
result is also consistent with targets being signaled by the
change that they produce in simple statistics, such as the
mean orientation. Small numbers of distractors lead to a
noisy estimate of the mean, but as the number increases
this improves, making the target orientation more con-
spicuous, until eventually the distractors swamp the tar-
get’s contribution to the statistic.17 In the same vein,
Morgan et al.22 have proposed that crowding in visual
search displays can be accounted for by a texture analyzer
that computes mean orientation.

While the work of Sagi and Julesz21 suggests that den-
sity is the critical parameter for pop-out tasks, these au-
thors considered its effect only for a single region size; i.e.,
they systematically confounded density with numerosity.
The response of neurons in cat striate cortex that are re-
sponsive to texture boundaries is known to be strongest
for densely spaced elements.23 Observers’ psychophysi-
cal texture segregation shows a similar dependence.
Furthermore, the maximum tolerable separation of ele-
ments depends on the orientation difference at the tex-
ture boundary; elements with large orientation differ-
ences can be more widely separated than elements with
smaller orientation differences.19 These data suggested
that it is change in orientation in space (the structure
gradient) that determines strength of segregation. How-
ever, because the number of elements has generally been
kept constant in these experiments, increasing spacing
necessarily decreases sampling density so that one cannot
be sure which parameter determines performance.20 In
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summary, according to Gorea and Papathomas, ‘‘the na-
ture and significance of the density parameter in global
orientation processing remain unclear.’’ 24

B. Logic of the Experiments
The goal of the experiments described below is to illumi-
nate observers’ sampling strategy for local orientation
and specifically to determine whether texture size, tex-
ture density, or texture numerosity determine the density
and precision of orientation sampling. This presents two
problems: how to estimate sampling precision and den-
sity and how to separate out the effects of size, density,
and numerosity. I deal with these points in turn.

The idea of understanding a complex system by exam-
Fig. 2. Examples of the stimuli; the orientation of elements is Gaussian distributed with a mean of 90° and a standard deviation of 4°.
(a, b) Examples from the fixed radius condition. Textures are composed of (a) 16 elements and (b) 256 elements falling within a circular
region with a radius of 3.5°. (c, d) Examples from the fixed density condition. Textures are composed of (c) 16 elements with a 1.7°
radius and (d) 256 elements with a 7.0° radius. Thus density is fixed at 5.1 elements per degree squared. (e, f) Examples from the fixed
number condition. Textures are composed of 256 elements falling in a region of radius (e) 1.7° and (f ) 7.0°.
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ining how its behavior deteriorates with the addition of
noise is an engineering technique introduced to vision sci
ence by Barlow.25,26 The equivalent-noise approach has
been applied to various visual acuities that require inte-
gration, including luminance offset detection,26 coding of
spatial position,27,28 discrimination of edge blur29 spatial
frequency acuity,30 contrast detection,31,32 contour
integration,33 orientation discrimination,34,35 and the
characterization of attentional strategies.36 In words,
the approach is as follows: Given that thresholds are es-
timates of response variance, observers’ nonideal behav-
ior when presented with noiseless stimuli can be ex-
pressed as additive, internal noise. The simplest way to
measure the amount of internal noise is to add increasing
levels of external noise to a stimulus and determine the
point at which subjects’ performance begins to deterio-
rate. If the task requires integration, subjects’ resistance
to increasing levels of external noise will depend decreas-
ingly on internal noise and increasingly on how many
samples they are averaging over. This system view is
usually expressed in the form of a variance-summation
model,

sobs 5 ~s int
2 1 sext

2 /n!1/2, (1)

where sobs is the observed threshold, sext is the external
noise, s int is the equivalent intrinsic or internal noise,
and n is the number of samples being employed. In
terms of an orientation discrimination task, sobs corre-
sponds to the threshold orientation offset, sext corre-
sponds to the orientation bandwidth of the stimulus, s int
corresponds to the noise associated with the measure-
ment of each orientation sample and their combination,
and n corresponds to the number of orientation samples
being combined. Note that s int

2 is the total internal noise
for a given condition. It is likely that this value is actu-
ally the sum of noise resulting from the decision process
as well as sampling uncertainty. The experiments de-
scribed are unable to separate the effects of these mul-
tiple sources of uncertainty, so later I treat them as a
single noise source whose value is fitted for each condi-
tion. It is usual to assess these parameters by measur-
ing the threshold orientation offset for a mean orientation
judgment ( sobs) as a function of the orientation band-
width of the texture ( sext) and then to fit these data with
the variance-summation model giving estimates of s int
and n. Heeley et al.35 used exactly this approach to de-
termine whether the oblique effect (meridional anisotro-
pies for various psychophysical tasks) is due to undersam-
pling or to increased intrinsic uncertainty. They showed
that subjects’ average intrinsic uncertainty was higher
and that their average sample size was smaller for ob-
lique stimuli (s int 5 3.26°, n 5 18.9) compared with ver-
tical stimuli (s int 5 2.08°, n 5 28.8), so that the oblique
effect could be wholly attributed to neither.

Given that the equivalent-noise paradigm may be used
to determine the sampling characteristics of an orienta-
tion judgment, consider the second problem: how to de-
termine which stimulus factors determine these values.
The first departure from the technique used by Heeley
et al.35 is in the type of stimulus used. Dense, filtered
noise patterns do not give one control over the local den-
sity of the patterns. Watt34 used line patterns that allow
one to control density but are spatially broadband. I
chose to use stimuli composed of a field of discrete
narrow-band Gabor micropatterns [for examples, see Fig.
1(c) and 1(d)]. Both the spatial bandwidth and the den-
sity of these patterns may be controlled, and, because
overlapping elements are summed, these textures are in-
distinguishable from filtered noise textures at sufficiently
high texture element densities.

I consider three spatial attributes of a visual texture
that are likely to influence orientation integration: a tex-
tured region size, density, and numerosity (the number of
elements constituting it). These parameters cannot be
varied independently; a change in one is always accompa-
nied by a change in at least one other. For example, if
one fixes the size of the textured region and alters the
number of elements falling in it, both numerosity and
density change. Consequently, it is not possible to deter-
mine from any one manipulation which is the parameter
of importance. For example, if the number of samples
the observer uses to compute mean orientation is ob-
served to depend strongly on density in one condition, it is
necessary to ascertain that it does not depend on numer-
osity in another condition, since one must have covaried
the two parameters in the first condition. To allow for
this, the design that I used investigates all three possible
manipulations: fixed radius (numerosity and density co-
vary), fixed density (radius and numerosity covary) and
fixed numerosity (radius and density covary). Examples
of these manipulations are shown in Fig. 2. If one fits
the variance-summation model to the data derived from
each condition, one may estimate the internal noise and
the number of samples used to perform the task. If one
of the three spatial parameters determines the observers’
integration strategy, then one should observe a strong ef-
fect (on the best-fitting variance model parameters) of the
independent variable in the two conditions where the
critical parameter varied but none in the condition where
it was fixed.

2. METHODS
A. Equipment
An Apple Macintosh G3 computer controlled stimulus
presentation and recorded subjects’ responses. The pro-
grams for running the experiment were written in the
Matlab environment (Mathworks, Ltd.) with code from
the Psychophysics Toolbox37 and the VideoToolbox38

packages. Stimuli were displayed on a 19-in. Sony Mul-
tiscan 400PS color monitor driven by a Mac Picasso 850
graphics card (Villagetronic Ltd). The screen had a reso-
lution of 1280 3 1024 pixels and operated at a frame re-
fresh rate of 85 Hz. Pseudo-12-bit contrast accuracy was
achieved by electronically combining the red–green–blue
outputs from the graphics card by using a video
attenuator.39 A monochrome signal was generated by
amplifying and sending the same attenuated signal to all
three guns of the CRT. The display output was cali-
brated using a Minolta CS100 photometer and output lu-
minances that were linearized with a lookup table. The
screen was viewed binocularly at a distance of 36 cm, so
that 1 pixel on the screen subtended 2.4 arc min of visual
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angle. The display had a background luminance of 48
cd/m2.

B. Stimuli
Stimuli were 256-pixel (10.2°) square images containing a
spatially unstructured patch of texture. Textures were
generated by distributing a number of Gabor micropat-
terns, each with 10% Michelson contrast, throughout the
image. For the experiments reported, the peak spatial
frequency of the carrier was 4 cycles per degree (l
5 15 arc min), and the standard deviation of the Gauss-
ian envelope was 10.56 arc min. This spatial frequency
was chosen because it falls well within the range of spa-
tial frequencies that produce optimal orientation
discrimination.40,41

Overlapping patches were added. Gray levels falling
outside the permissible range were clipped at the maxi-
mum or minimum gray level accordingly. Depending on
the condition, 4–1024 elements were used. Two position-
ing strategies were used in two separate conditions. In
the first, Gabors were positioned using a Gaussian ran-
dom distribution with a mean at the center of the image
and a standard deviation of 0.5–8.0°. The second posi-
tioning strategy was similar except that a uniform ran-
dom distribution was used with ranges of 60.9 to 613.8°
(chosen so that spatial standard deviations were matched
to the Gaussian condition). Elements falling outside of a
circular window (with a radius equal to the positional
range) were repositioned within the circular region.
There are several reasons for having two positioning
strategies. First, the problem with uniform random dis-
tributions is that, assuming the integration processes op-
erate outwardly from fixation, some patterns may be
sparse at their centers, producing poor performance.
Second, although Gaussian distributions alleviate this
problem at low densities, at high densities the nonuni-
form distribution leads to outliers which subjects could
rely on. Finally, by comparing the estimates for sam-
pling precision and density for one subject across the two
positioning conditions, one may be able to infer the under-
lying spatial distribution of the local mechanisms; the
sampling strategy closer to this spatial distribution
should lead to greater efficiency.

The orientation of elements was selected from a Gauss-
ian distribution with a mean equal to the cued orientation
[i.e., 90°6 the cue generated by the adaptive probit esti-
mation (APE) procedure] and a standard deviation equal
to 0.5°, 1.0°, 2.0°, 4.0°, 8.0°, 16.0° or 23.0°. As described
above, the logic of the experiments is to examine the ef-
fects of density, size, and numerosity by fixing each pa-
rameter in three separate conditions and by allowing the
other two parameters to vary. Figure 3 gives the specific
spatial parameters of the textures used. If one considers
the effects of fixing the texture radius, for example, notice
that this design yields not only the five subconditions as-
sociated with the fixed-radius experiment (the horizontal
row of five boxes), but also the four pairwise estimates of
the effect of fixing the radius at four different values.
For example, data measured with a patch radius of 0.9°
from the fixed-density experiment can be compared with
data measured with a similar patch radius in the fixed-
numerosity condition. The results of these pairwise com-
parisons are given in Fig. 7.
C. Procedure
The subjects’ task was a single-interval, binary forced
choice. An oriented texture was presented in the center
of the display for 100 ms, and the observer judged
whether the overall orientation of the texture was tilted
clockwise or counterclockwise, compared with their inter-
nal standard for vertical. Subjects signaled their re-
sponses on the computer keyboard. APE, an adaptive
method of constant stimuli42 was used to sample a range
of orientations around vertical. A session consisted of
seven interleaved runs of 64 trials, corresponding to the
seven levels of orientation variability tested. At least
three runs were undertaken for each data point plotted.
Data were pooled across all runs performed with a par-
ticular stimulus configuration, and a bootstrapping proce-
dure was used to fit a cumulative Gaussian function to
the results.43 This procedure yields estimates of the
standard deviation (the reciprocal of slope) and bias pa-
rameters of the fitting function as well as estimates of
their associated confidence intervals. The term ‘‘orienta-
tion threshold’’ will be used throughout to refer to the
standard deviation of the best-fitting psychometric func-
tion. Generally, subjects showed little systematic bias on
this task, and data reported are the standard deviation of
the best-fitting cumulative Gaussian function. Error
bars show the associated 95% confidence intervals.

D. Subjects
The author (SCD) and two naı̈ve observers (ACM and JS)
served as subjects in the experiments. All wore optical
correction as required.

3. EXPERIMENTS
A. Experiment 1: Effect of Numerosity and Density on
Orientation Estimation of a Texture of Fixed Size
The first experiment considered the effect of covarying
the numerosity and density of a fixed-size texture patch
on observers’ ability to combine local orientation esti-
mates across space. Approximately circular patches of
texture were used. For subjects AM and SCD, elements
were uniformly randomly distributed throughout a circu-
lar region with a radius of 5.1°. For subject JS, a two-

Fig. 3. Texture density (measured in elements per square de-
gree of visual angle) as a function of the patch radius and the
number of elements. The boxed cells give the spatial param-
eters of the textures used in the 13 subconditions tested.
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dimensional Gaussian spatial distribution of elements
was used, with a standard deviation of 2.0°. The number
of texture elements varied between 4 and 1024 so that, for
the uniformly distributed textures, density varied be-
tween 0.32 and 81.4 elements per square degree. (The
Gaussian distribution always leads to nonuniform den-
sity). Examples of the uniform spatially distributed
stimuli from this experiment are shown in Figs. 2(a) and
2(b).

Results. Data from this experiment are graphed in
Fig. 4. Consider data from the 256-element condition
(,), which are typical. Low levels of orientation variabil-
ity ( s , 8°) produce little discernable effect on orienta-
tion thresholds that remain low (1–2°) and comparable
with thresholds that are estimated with gratings. Be-
yond this level of variability, performance deteriorates
steadily. The variance-summation model (Eq. 1) has
been fitted to these data, and its predictions are shown as
thin curves in Fig. 4. The model captures this trend well,
and subjects’ performance is generally consistent across
runs. The parameters derived from the variance sum-
mation fit are shown in the legend for each plot. Results
Fig. 4. Data from the fixed-size experiment (experiment 1). Each graph shows the effect of orientation variability (bandwidth) on one
subject’s judgment of the mean orientation of a texture patch as a function of the number of Gabor microelements constituting the tex-
ture. For subjects AM and SCD, Gabor elements were uniformly randomly distributed within a circular window with a radius of 3.5°.
For subject JS, Gabors were distributed with a two-dimensional Gaussian spatial distribution. Density covaried with numerosity in this
condition. The fits shown are for the variance model described by Eq. 1. Notice that the parameters derived from the fit (shown in the
legend) indicate that both the number of orientation samples used and the internal noise increase with the numerosity and density,
although efficiency drops.
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Fig. 5. Data from the fixed-density experiment (experiment 2). Each graph shows the effect of orientation variability on an observer’s
orientation thresholds measured with textures composed of various numbers of elements. In this condition the size of patches was
covaried with numerosity so that the densities of all patches tested were similar. Note that texture density was uniform for subjects AM
and SCD but that subject JS was tested with Gaussian-distributed elements. Parameters derived from the variance-summation model
are given in the legend to each graph and indicate that, as for the fixed patch-radius condition, progressively more samples are employed
as the numerosity and patch size increase. However, there appears to be much less variation in the estimated internal noise across
subconditions, compared with experiment 1.
indicate that both the estimated internal noise ( s int) and
the number of samples (n) show a strong dependence on
the changes in patch density and numerosity.

B. Experiment 2: Effect of Numerosity and Size on
Orientation stimation of Textures of Fixed Density
The goal of this experiment was to determine the effect of
fixing texture density, while covarying texture patch size
and numerosity, on observers’ integration of local orienta-
tion. Texture density was fixed at 5.1 elements per
square degree. The number of elements varied between
4 and 1024, and the patch size varied: The radius fell be-
tween 0.32° and 81.4° (in the case of uniformly distrib-
uted elements) or the standard deviation fell between 0.5°
and 8.0° (in the case of Gaussian element distribution).
Examples of the stimuli are shown in Figs. 2(c) and 2(d).
Data from this experiment, along with fits from the
variance-summation model, are shown in Fig. 5. Curves
now appear to be roughly parallel to one another, being
shifted with respect to one another on the ordinate axis.
This pattern of results indicates a change in the number
of samples being used, accompanied by little change in
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the internal noise parameter. The number of samples
used by subjects depends largely on the sample and re-
gion size presented. Internal noise seems to be deter-
mined largely by the texture density.

C. Experiment 3: Effect of Density and Size on
Orientation Estimation of Textures of Fixed Numerosity
The final experiment determined the effect of covarying
patch size and density (such that numerosity was kept
constant) on observers’ ability to integrate texture orien-
tation information. The number of elements was fixed at
64, and the patch radius and standard deviation varied in
a range similar to that of experiment 2. Figures 2(e) and
2(f ) show examples of the stimuli from this condition.
Results, shown in Fig. 6, show that for low levels of ori-
entation variability, curves are shifted on the ordinate
axis with respect to one another (indicating a change in
the internal noise parameter). However, subjects’ perfor-
mance tends to converge across the various sizes and den-
sities tested at higher levels of orientation variability.
The similar slopes of the fits indicate that similar sample
Fig. 6. Data from the fixed-numerosity experiment (experiment 3). Graphs show the effect of orientation variability on a mean ori-
entation judgment as a function of the size of the texture patch. Because the number of texture elements was fixed, patch density
covaried with patch size. Unlike previous conditions, parameters derived from fitting the variance model indicate that subjects are now
employing a broadly similar number of orientation samples over approximately eight octaves of densities and patch sizes. This suggests
that it is the number of samples presented to subjects that determines their sampling strategy regardless of size or density.
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Fig. 7. Summary of parameters derived from the model fits. The top row shows estimates of the number of samples employed by
observer, and the bottom row shows the associated internal noise parameter. (a) and (d) fixed size condition, (b) and (e) fixed density-
condition, and (c) and (f ) the fixed-numerosity condition. Notice in (c) that there is little change in the number of samples employed for
a fixed number of elements, and in (e) that there is little change in estimated internal noise for a fixed texture density.
sizes are being employed across all subconditions. The
number of texture elements presented determines the
number of samples used by the observer.

4. DISCUSSION
Figure 7 summarizes the parameters derived from the
variance-summation model. All estimates were made
with stimuli generated through the use of uniform ran-
dom distributions of element positions, apart from the
‘‘bow-tie’’ symbols that show results from subject JS ob-
tained with Gaussian spatial distributions. Results are
similar for the two types of distributions, and for this rea-
son I have not presented the additional four subcondi-
tions per graph for subject JS.

Consider first Figs. 7(d)–7(f ), which show the effect of
fixing each of the three spatial parameters on the esti-
mated internal noise on the orientation combination pro-
cess. Internal noise shows some dependency on all of the
texture parameters tested, although there appears to be
the least amount of change in estimated noise under con-
ditions of fixed density. There are a number of features
of the task-stimulus combination that could be interact-
ing to determine this pattern of results. First, a primary
dependence on density is to be expected if the main con-
tribution to internal noise comes from constraints on local
sampling. Specifically, as density increases, the increas-
ing number of overlaps between elements leads to an in-
crease in the local orientational bandwidth of the textures
that could in turn inflate any estimate of effective local
noise. To test this directly I measured the orientational
bandwidth of textures (generated in the same manner as
in the experiments) as a function of the number of ele-
ments constituting the textures and those elements’ ori-
entation standard deviation. Results are graphed in Fig.
8 and show that bandwidth is constant across a wide
range of numerosities. Any reduction in bandwidth is
likely to be significant only at combinations of the lowest
numerosities (,8 elements) and highest orientation stan-
dard deviations tested (s > 8°). Changes in bandwidth
therefore cannot wholly account for a primary dependence
on texture density. A second, more likely explanation is
visual crowding. As density increases, elements will
tend to have increasing numbers of elements located near
them that could corrupt a local orientation estimate.22

The mechanisms underlying such disruptions of feature
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processing are unclear, but it has been suggested that
crowding is due to limitations of the spatial resolution of
visual attention,44 which is known to be required for ori-
entation judgments.45

Figures 7(a)–7(c) show the effects of the estimated
number of orientation samples used by subjects for the
various spatial configurations tested. It is evident from
these data that sampling density is almost entirely inde-
pendent of the density and size of a texture patch and is
determined by the texture’s numerosity. This is a coun-
terintuitive result: The spatial configuration of a texture
cannot disrupt performance, provided that the texture’s
density and radius conspire to maintain the number of
samples present. The finding that local density has little
effect on the task is contrary to the accepted interpreta-
tion of previous findings21 measured using ‘‘pop-out’’
stimuli [e.g., Fig. 1(b)], but is consistent with recent find-
ings on the effect of density on other texture tasks (such
as symmetry detection)46 and with the general notion of a
visual attentive processor limited by a low data
capacity.47 As for this capacity, the curves shown in Fig.
6(a) suggest that the number of samples used is a linear
function of the number of samples present, on log–log
axes, indicating a simple power-law relationship. As-
sumption of a zero offset on the fit (i.e., that subjects use
one sample when only one sample is presented) produces
a one-parameter fit, giving powers of 0.61 and 0.52 for
subjects SCD and ACM, respectively. Clearly this rela-
tionship breaks down at higher signal densities and nu-
merosities. This could have two explanations: first,
that there is a genuine upper limit on the number of
samples that can be processed; second, that only so many
oriented elements can be presented within a limited area
before overlaps begin to reduce the number of samples
that are effectively available. The present study is un-
able to distinguish between these two explanations.

Fig. 8. Orientation bandwidth of the textures used (standard
deviation of best-fitting Gaussian fit to Fourier power spectra) as
a function of the orientation standard deviation and the number
of elements (2–2048) constituting each texture. Note that band-
width is largely constant as a function of the number of elements,
except for the lowest density/highest orientation standard devia-
tion combinations.
That observers’ sampling is contingent only on the
sample size presented means that the spatial pooling of
orientation detectors across the visual field is flexible.
This flexibility seems to incur a low attentional load; sub-
jects are quite capable of performing these tasks with a
100-ms presentation time (although stimuli in this study
were unmasked, which may have increased the effective
exposure duration somewhat). It is interesting to con-
sider these results in the context of filter-rectify-filter
models of second-order and texture processing.48,49 Such
systems propose that the second-stage pooling mecha-
nisms are themselves filters operating on the rectified
output of banks of first-stage filters. Observers are
known to be sensitive to the orientation structure of typi-
cal second-order stimuli (e.g., contrast-modulated
noise50), suggesting that the notional first-stage filters are
oriented. There is physiological evidence for responsive-
ness of cells in primary visual cortex to contrast-defined
structure,51 and it has been further suggested that re-
sponsiveness to second-order structure could be achieved
by using center–surround selectivity to orientation, which
is found in area V1 of the macaque monkey.52 The re-
sults reported here suggest that our ability to integrate
the output of local first-order detectors is independent of
the spatial distribution of their activation. It is difficult
to envision how later filtering mechanisms could be orga-
nized in such a manner as to confer this degree of flexibil-
ity. That is not to say that filter-rectify-filter mecha-
nisms might not be implicated in other tasks (involving
boundary localization, for example) but rather that per-
formance on the task described here suggests the exis-
tence of a pooling process operating on a description of im-
age structure that almost completely disregards spatial
position.
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