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How big is a Gabor patch, and why should
we care?
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We propose a two-parameter model for the perceived size (spatial extent) of a Gaussian-windowed, drifting
sinusoidal luminance pattern (a Gabor patch) based on the simple assumption that perceived size is deter-
mined by detection threshold for the sinusoidal carrier. Psychophysical measures of perceived size vary with
peak contrast, Gaussian standard deviation, and carrier spatial frequency in a manner predicted by the model.
At suprathreshold peak contrasts Gabor perceived size is relatively unaffected by systemic noise but varies in
a manner that is consistent with the influence of local contrast gain control. However, at and near threshold,
systemic noise plays a major role in determining perceived size. The data and the model indicate that mea-
sures of contrast threshold using Gaussian-windowed stimuli (or any other nonflat contrast window) are de-
termined not just by contrast response of the neurons activated by the stimulus but also by integration of that
activation over a noisy, contrast-dependent extent of the stimulus in space and time. Thus, when we wish to
measure precisely the influence of spatial and temporal integration on threshold, we cannot do so by combining
contrast threshold measures with Gaussian-windowed stimuli. © 1997 Optical Society of America.
[S0740-3232(97)02201-1]
1. INTRODUCTION
Gaussian-windowed sinusoidal gratings have been used
for a dizzying array of different experimental investiga-
tions, including measurements of our ability to combine
motion information over visual space1,2 and specification
of a motion stimulus to which our visual systems are most
sensitive.3 These stimuli are often referred to as Gabor
patches (or simply as a Gabor) after the mathematician
who expounded particular theoretical advantages of the
mathematical form.4 Gabor showed that this stimulus
form minimized a certain measure of uncertainty of
stimulus localization simultaneously in two domains:
spatial frequency and (visual) space. This mathematical
property has provided one theoretical motivation for the
stimulus’s use. Other advantageous properties include
simple analytic expressions for the Gabor representation
both in space and in spatial frequency. The general ex-
pression for a one-dimensional sinusoidal luminance grat-
ing that is Gaussian windowed in space is

L~x, y, t ! 5 LmH 1 1 Cp cos@2pxfc 1 uc~t !#
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where Lm is the mean luminance of the display, Cp is the
peak contrast of the Gabor, fc is the grating spatial fre-
quency (the carrier), and sx and sy are the standard de-
0740-3232/97/010001-12$10.00 ©
viations of the spatial Gaussian window. The parameter
uc(t) controls the change of position over time of the car-
rier. The spatiotemporally pointwise deviation of the
stimulus luminance from the mean luminance is just
C(x, y, t) 5 L(x, y, t)/Lm 2 1. The stimulus allows in-
dependent control of the carrier spatial frequency, fc , as
well as the spatial size and frequency bandwidth deter-
mined by sx and sy . Moreover, a case has been made
that the spatial profile of the stimulus is a good represen-
tation of simple cell receptive field profiles,5,6 although it
may be that other mathematical forms are equally justi-
fiable (cf. Refs. 7 and 8; also see Ref. 9).
These theoretical and physiological observations pro-

vide sufficient justification for many researchers who are
interested in investigating the effects of stimulus spatial
frequency and bandwidth and of spatial and temporal ex-
tent on visual phenomena. However, it is not clear which
metric is appropriate for specifying the visual size (per-
ceived spatial extent) of a Gabor. Often, Gaussian stan-
dard deviation is used as a metric, but to our knowledge
there has been no direct measure of the correspondence
between Gaussian standard deviation and the perceived
visual extent of a Gabor patch. This lack of interest in
the correspondence between standard deviation and per-
ceived Gabor size is somewhat surprising because it is
commonly known that the perceived size of a Gabor with
a fixed standard deviation changes with its peak contrast
[Cp in Eq. (1)]. This phenomenon is demonstrated in
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Fig. 1; Gaussian standard deviation decreases from top
to bottom, and peak contrast decreases from left to right.
It is therefore surprising that experiments employing

Gabors to measure the influence of stimulus spatial ex-
tent on motion perception have used peak contrast as a
threshold variable.1–3 In general, if we wish to measure
the influence of a stimulus parameter on some percept,
then that parameter should be manipulated indepen-
dently from other parameters. If the parameter of inter-
est and the threshold parameter—in this case stimulus
spatial extent and peak contrast—are not independent,
then we must be certain how the two parameters are re-
lated in order to reach any conclusions.
It is clear that we need to understand how a stimulus’s

spatial area affects perception, but stimuli that are sharp
edged and stimuli that are mathematically unlimited in
size (e.g., a Gaussian window) have not been treated with
the same size metric. However, we can move toward a
single metric by considering how stimuli are processed by
the visual system. Specifically, we will start with the as-
sumption that perceived spatial extent and corresponding
percepts are directly related to the cortical area activated
by the stimulus. Figure 2 indicates how we might con-
sider this situation with an abstract representation of
how visual space is mapped to area V1 in primates.10,11

The figure shows a half-bull’s-eye with logarithmically
spaced concentric rings. Assuming fixation at the small
circle at the center of the half-bull’s-eye, Fig. 2(b) shows
how the bull’s-eye maps to V1 as indicated by
2-deoxyglucose experiments.11 The paths in visual space
represented by the arrows in Fig. 2(a) follow cortical
paths as indicated in Fig. 2(b). The numbers in Fig. 2(b)
provide a key to those paths, while their sizes indicate

Fig. 1. Demonstration of the phenomenon of perceived Gabor
size dependence on contrast. Gaussian standard deviation de-
creases from top to bottom, and peak contrast decreases from left
to right. Contrast values (85%, 21%, 6%) were selected to pro-
duce approximately equal steps in perceived radius. Note that
patches on rightward diagonals (e.g., bottom left to top right)
have approximately equal apparent sizes.
schematically how visual area away from fixation is rela-
tively expanded or compressed in the cortical representa-
tion.
Shapes in visual space are altered in the cortical map-

ping, but that mapping can be shown to be approximately
conformal.12 For example, a disk in visual space [Fig.
2(a)] maps to a nondisk in V1 [Fig. 2(b)] but remains con-
tiguous because of the retinotopy that produces the con-
formal mapping. Conformal mapping properties should
be all that is required for simple assumptions of object-
shape processing because the processing machinery (the
neurons) can be cortically arranged in the same coordi-
nate system. For example, if we activate the same corti-
cal region (position and extent) with two different stimuli,
then the simplest expectation is that the stimuli are per-
ceived to have the same visual spatial extent. Con-
versely, stimuli with different perceived spatial extents
can be assumed to activate differing cortical extents.
This provides the necessary context for asking the ques-
tion, How much cortical area is activated by a stimulus?
Specifically, we want a model of how a Gaussian-
windowed stimulus activates neurons in cortex, with the
assumption that perceived spatial extent is directly re-
lated to that activated cortical extent.
The stimulus specification provided by Eq. (1) is our

starting point for such a model. Figure 3 shows a static

Fig. 2. Abstract representation of how visual space is mapped to
area V1 in primates. (a) Half-bull’s-eye with logarithmically
spaced concentric rings. Assuming fixation at the small black
circle at the center of the half-bull’s-eye, (b) shows how the bull’s-
eye is mapped to V1 as indicated by 2-deoxyglucose experiments.
The paths in visual space represented by the arrows in (a) follow
cortical paths as indicated in (b). The numbers provide a key to
those paths, while digit size indicates schematically how visual
area away from fixation is relatively expanded or compressed in
the cortical representation.
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profile for C(x, y, t), the pointwise deviation of stimulus
luminance from the mean. We point out that with static
gratings there are stimulus parameter combinations in
which the phase of the static carrier can significantly
change the size and the shape of the perceived patch (e.g.,
low carrier frequency relative to window size). Use of a
drifting grating allows us to bypass questions concerning
the perceived locations of the edges of the grating and of
how that might alter the perceived size and shape. The
drifting carrier sweeps past the region of the contrast-
modulated window, activating neurons in the correspond-
ing cortical area. In other words, the perceived spatial
extent of the Gabor path is defined not by the positions of
the edges of the carrier but by the locations at which they
appear and disappear as determined by the Gaussian
window.
Cortical neurons will respond to the drifting grating

with a magnitude that is a function of C(x, y, t). Neu-
ronal response to a stimulus is often modeled with the use
of a function that first accelerates, then saturates; for
example, a Naka–Rushton function such as R(C)
5 MCn/(Kn 1 Cn), where M is the saturated response
magnitude and n is positive. Note that any such trans-
formation of the Gaussian window in Fig. 3 will perturb
the window but not topographically alter it: The cortical
response profile remains convex (in a noiseless system).
When we quantify the mathematical size of a Gaussian

(or Naka–Rushton transformed Gaussian), we must
choose a metric, or fiducial level, to apply to the function
because it is otherwise infinite. This is sometimes cho-
sen to be the space constant, or the point at which its
magnitude falls to 1/e, or approximately 36.8%, of the
peak. Alternatively, if we are interested in statistical

Fig. 3. Illustration of the working hypothesis. The Gaussian
contrast envelope and the contrast-modulated, drifting sinu-
soidal carrier are shown together with a hypothetical contrast
level (Ce) that limits visibility of the carrier. The perceived ra-
dius (Pr) indicated in the graph and in Eq. (2) is shown as the
point at which the carrier contrast falls below Ce .
distributions, then the standard deviation of the Gauss-
ian is chosen because it has intuitive meaning. However,
these fiducial levels cannot explain our perception of Ga-
bor size. We therefore hypothesize that the visible ex-
tent of the carrier must be limited by a cortical (physi-
ological) response threshold. Pursuing this analysis in
the cortical domain can require knowledge of the R(C)
parameters as well as cortical magnification, and perhaps
a model of cortical detection. However, our analysis can
be greatly simplified. Rather than transform our stimu-
lus into a cortical domain, we can instead consider the
cortical response threshold level in the spatiotemporal do-
main, i.e., by using C(x, y, t): if R(C) is invertible, we
need only know Ce . This bypasses the question of R(C)
parameters, as well as the exact form of cortical magnifi-
cation. Moreover, by carefully designing our experi-
ments around a well-defined metric in the visual domain,
we can avoid having to postulate a model of cortical re-
sponse to, and detection of, the stimulus (e.g., Ref. 13).
With the hypotheses expressed in Fig. 3 we can make a

few predictions and then proceed to measure psycho-
physically the perceived size of Gabor patches. We begin
by modeling a noiseless system. A noiseless model works
well for describing perceived size at suprathreshold peak
contrasts, but systemic noise significantly affects per-
ceived Gabor size near contrast threshold. The influence
of systemic noise will be accounted for in Section 5 by the
use of a simple extension of the model. From Eq. (1) and
Fig. 3 the perceived radius of a Gaussian-windowed drift-
ing grating in a noiseless system is defined as

Ce 5 Cp expF2
1
2 SPr

s D 2G , (2)

where Pr is the perceived radius of the circular Gabor,
Ce is the value of the Gaussian at the perceived edge of
the Gabor, Cp is the Gabor peak contrast, and s is the
standard deviation of the patch in arcminutes. From
this we can calculate the perceived radius as

Pr 5 sA22 lnS Ce

Cp
D ~arcmin!. (3)

The equation says that if we fix the peak contrast of the
Gabor, then we should find linear variation of perceived
radius with the standard deviation of the Gaussian enve-
lope. However, if we fix the Gaussian standard devia-
tion, then we should have a nonlinear but monotonic re-
lationship between perceived radius and peak contrast.
The resulting psychophysical data show that, as pre-
dicted, the perceived radius of a circular Gabor patch14

with a drifting carrier varies linearly with standard de-
viation but nonlinearly and monotonically with peak con-
trast. Perceived radius varies nonlinearly and nonmono-
tonically with carrier spatial frequency, as would be
predicted from previous spatial frequency contrast
threshold data.
After fitting Eq. (3) to the data, we find that they are

well described by a two-parameter model in which Ce also
depends on the peak contrast (Cp) of the Gabor, as would
be expected from the influence of (local) contrast gain con-
trol. This Cp-dependent threshold represents a type of
self-masking. A comparison of values of Ce predicted by
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the model with measures of contrast detection threshold
for the stimulus indicate that the two are not distinguish-
able: Ce must be very near to, or the same as, contrast
threshold. We conclude that measures of contrast
threshold using Gaussian-windowed stimuli are deter-
mined not just by contrast response of the neurons acti-
vated by the stimulus but also by an integration of that
activation over a noisy, contrast-dependent extent of the
stimulus in cortex (space) and time. This conclusion has
bearing on experiments that require that contrast thresh-
olds be independent of other stimulus parameters.

2. METHODS
A. Apparatus
Visual stimuli were displayed on a Nanao Flexscan 6500
monitor (Eizo Nanao Technologies, Torrence, Calif.) with
the use of a Cambridge Research Systems graphics card
model VSG 2/3 (Cambridge Research Systems, Ltd., Roch-
ester, Kent, England) with 4 Mbytes of video memory.
The VSG 2/3 has built-in hardware for pseudo-12-bit reso-
lution through a linear combination of two 8-bit digital-
to-analog converters. Pseudo-12-bit resolution allows
the use of 256 levels taken from a possible range of 4096
levels and permits fine luminance resolution when only a
small luminance range is required. The digital-to-analog
converter combination method allows the use of 256 lumi-
nance values in the range L0(1 6 m)0.0625, where L0 is
the display’s mean luminance and m is an integer from 1
to 16. The smallest compatible contrast range was used
in each experiment presented here. For example, a 7%
peak contrast stimulus was presented with the use of a
contrast range of 12.5% (m 5 2), so the contrast resolu-
tion was just less than 0.1%. The display was gamma
corrected and linearized for pseudo-12-bit resolution with
the use of a United Detector Technologies model S370
photometer (Graseby Optronics, Orlando, Fla.). The
monitor ran at 100-Hz vertical refresh rate and had a
mean luminance of 20.5 cd/m2. The display area was
22.5 3 22.5 cm (512 3 512 pixels) square and viewed
from 80 cm, producing a display area of 16 3 16 deg.

B. Experimental Method
The method of constant stimuli was used to measure a
point of subjective equality for perceived size of Gabor
patches with a drifting carrier. On any trial the subject
viewed the display binocularly and was first presented
with a fixation point in the center of the screen. Removal
of the fixation point and presentation of the stimulus
were initiated by a key press on the host computer for the
graphics card. The test stimulus was composed of a cir-
cular Gabor (i.e., sx 5 sy) and a positive-increment con-
trast disk. Comparison disks were circular with edges
defined by step functions of 7% contrast, thereby provid-
ing a sharply defined cortical activation area to which we
can compare the Gabor. Pilot experiments indicated that
circular disks of higher and lower contrasts were per-
ceived as the same size as that of the 7% contrast disk.
The two images were presented 2.7 deg (86 pixels) to ei-
ther side of the fixation point on the horizontal meridian.
The disk and Gabor center x and y positions on the screen
were both randomly jittered by an amount chosen uni-
formly from the interval 60.19 deg (66 pixels). The side
of presentation of the Gabor and the disk, and the direc-
tion of drift of the carrier (leftward or rightward), were
randomized for each trial. Stimuli were always pre-
sented for 0.5 s with abrupt onset and offset. The sub-
ject’s task was to select the image (either Gabor or disk)
that appeared larger. Each data point presented here
consists of at least 150 trials over at least five sizes of
disk. Conditions were not interleaved, on account of
equipment limitations. A cumulative Gaussian function
was fitted to the psychometric data for each condition
with the use of a maximum-likelihood procedure. The fit
estimated the mean and the standard deviation of the
Gaussian, as well as the 95% confidence intervals for each
parameter by use of appropriate x2 error surface
contours.15

C. Gabor Stimulus Generation
Gabor luminance profiles were defined as in Eq. (1) and
were presented in a square temporal contrast window
(i.e., abrupt onset and offset). All Gabor patches and ref-
erence disks were generated before the experimental ses-
sion and stored in the video random access memory of the
VSG card. Drifting stimuli were generated as a sequence
of 12 images with phase relationships defined as uc(n)
5 2pn/12 for n between 0 and 11. This produced a spa-
tial displacement of 30 deg of the carrier between each
image in the sequence. The sequence was presented one
image every four video frames (40 ms) to produce a drift
rate of 2.08 cycles of the carrier per second. The initial
carrier phase was randomized for each presentation.

3. RESULTS
Two subjects (two of the authors) measured points of sub-
jective equality (perceived Gabor radius, Pr), using stan-
dard deviations of 7, 10, 14, 21, and 28 pixels (13.125,
18.75, 26.25, 39.375, and 52.5 arcmin, respectively) at 2%,
3.5%, 7%, 14%, 28%, and 56% peak contrast and at 0.1, 1,
3, and 6 cycles/degree (cpd). The data are shown in Fig.
4. Some of the lowest-peak-contrast and smallest-
standard-deviation values were not measurable. Some of
these patches were not visible, while others could be de-
tected but their characteristics were not perceptually well
defined. Perceived Gabor radius is plotted against
Gaussian standard deviation, with peak contrast as a pa-
rameter in each graph. Data for both subjects are shown
in graph pairs, with the spatial frequency for each condi-
tion indicated in each graph. The typical 95% confidence
interval for all data points ranged from 61 arcmin for the
smallest standard deviation to 62 arcmin for the largest
standard deviation. No error bars are shown because
they are typically smaller than the size of the symbols.
Figure 4 shows that the perceived radius (Pr) of the

Gabor varies linearly with the standard deviation of the
Gaussian envelope. However, the slope of that variation,
]Pr /]s, can vary from almost 3 to almost 1, depending on
the spatial frequency and the peak contrast of the Gabor.
As peak contrast decreases, ]Pr /]s also decreases.
Moreover, ]Pr /]s clearly depends on the spatial fre-
quency of the carrier, being higher for 1 and 3 cpd than
for 0.1 and 6 cpd. In order to quantify the linearity of the
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slope, we found linear fits to each data curve in Fig. 4.
The y intercept of that fit varied near zero in an unsys-
tematic manner, and the r2 goodness of fit was always
0.974 or higher, with most values at 0.99 or higher. This
result, combined with the consistency of the 95% confi-
dence interval for each data point, stresses the high de-
gree of linearity of the data with Gaussian standard de-
viation. Note that the greatest deviation from linearity
is at low peak contrasts for the 3- and 6-cpd data. This
should be expected because contrast threshold variation
with position in the visual field is larger for higher spatial
frequencies. That threshold variation with position is
not included in the model and will therefore lead to some
error at higher carrier frequencies on account of
parafoveal viewing.

4. EVALUATING THE CONTRAST
THRESHOLD MODEL
Calculating the Gaussian height at the perceived Gabor
edge, Ce , by using Eq. (2) for each estimate of Pr indi-
cates that Eq. (2) is not quite correct: Ce varies with the
peak contrast (Cp) of the Gabor. There was some varia-
tion of Ce with standard deviation (s) of the Gabor, but
that variation was not systematic across subjects or spa-
tial frequencies. Fitting the data, including variation of
Ce with s, showed that the variation is not statistically
different from zero for six of the eight data sets (two ob-
servers at four spatial frequencies). For this reason we
chose to fit the perceived radius data by using a threshold
described by Ce 5 K0 1 CpK1, which includes a linear
variation of Ce with Cp . Combining this model of Ce
with Eq. (2) produces

Ce 5 K0 1 CpK1 5 Cp expF2
1
2 SPr

s D 2G (4)

or, explicitly,

Pr 5 sA22 lnSK0 1 CpK1

Cp
D ~arcmin!. (5)

The rate of change of perceived radius with standard de-
viation is therefore given by

]Pr

]s
5 A22 lnSK0 1 CpK1

Cp
D (arcmin)/(% contrast).

(6)

Because the data show that ]Pr /]s changes with spatial
frequency, we fit the data in groups by spatial frequency,
using Eq. (5) and a least-squared-error method. The
data from Fig. 4 are replotted in Fig. 5 against peak con-
trast, together with the fitted curves. The data for sub-
ject EF are shown with open symbols, while the data for
subject PB are shown with filled symbols. The fitted
curves for EF are shown with solid curves, while the fitted
curves for PB are shown with dashed curves.
Fig. 4. Perceived Gabor radius plotted against Gaussian standard deviation, with peak contrast (values shown in the legend) as a
parameter in each graph. The data for both subjects are shown in graph pairs, with the spatial frequency for each condition indicated
in each graph. The typical 95% confidence interval for all data points ranged from 61 arcmin for the smallest standard deviation to 62
arcmin for the largest standard deviation. No error bars are shown because they are all smaller than the size of the symbols.
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Fig. 5. Data from Fig. 4 replotted against peak contrast, together with the curve fits from the use of Eq. (5). The data for subject EF
are shown with open symbols, while the data for subject PB are shown with filled symbols. The fits for EF are shown with solid curves,
while the fits for PB are shown with dashed curves.
Table 1 details the fitted parameter values, their 95%
confidence limits, and goodness-of-fit statistics for each
observer for each spatial frequency. A true x2 measure
cannot be calculated because the confidence intervals on
individual data points do not include experimental error
across conditions. The coefficient of determination
(COD) indicates that from 97.8% to 99.5% of the data
variance is accounted for by just two parameters. How-
ever, the serial correlation values imply a real deviation
of the model from the data and hence underparameteriza-
tion of the model. Inspection of the error surfaces indi-
cates that the systematic deviation of the model from the
data is not consistent across spatial frequency conditions.
Attempts to modify the model further based on error sur-
face information failed in that no tested modification pro-
duced consistent fit improvements or consistently nonzero
parameter values across spatial frequencies and subjects.
A. Interpreting the Model Parameters
K0 represents Ce if the presence of the stimulus does not
affect detection (see the interpretation of K1 below). The
values and the variation of K0 are consistent with the
known variation of contrast threshold with spatial fre-
quency, increasing from 0.1 to 3 cpd and then decreasing
at 6 cpd. Comparison of perceived radius across spatial
frequency for fixed contrast and standard deviation shows
a corresponding dependence on spatial frequency. Fig-
ure 6 plots perceived Gabor radius data for contrast val-
ues of 3.5%, 7%, 14%, 28%, and 56% for a standard devia-
tion of 21 pixels (39.4 arcmin) across spatial frequency.
Some of the data are taken from Fig. 4, while the data for
0.3 and 0.6 cpd were additionally measured for comple-
tion of the curves. The graph clearly shows that per-
ceived radius of a Gabor of otherwise fixed parameter val-
ues depends on spatial frequency. Moreover, the
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variation of the size dependence with spatial frequency is
consistent with the known behavior of contrast thresholds
across spatial frequency. The correspondence confirms
that higher sensitivity to the carrier produces a larger
perceived Gabor radius.
Without K1 [i.e., if we used Eq. (2)] the goodness of fit

as indicated by the r2 value is still very good (of the order
of 0.95), but the model selection criterion (MSC), a more
sensitive measure of error-variance reduction, is much
lower. Model fits with constant Ce , i.e., with K150, pro-
duce more error for the low-contrast data (i.e., leftmost
points in Fig. 5). The requirement for K1 in the fit can be
interpreted: K1 corresponds to an increase of Ce as peak
Gabor contrast is increased. It has been previously
shown that stimulus contrasts as low as 3% can change
neuronal response gain, even doubling the neuronal re-
sponse threshold.19,20 We therefore interpret the pres-
ence of K1 as representing the influence of contrast gain
control that produces self-masking. That is, the presence
of the high-contrast center region of the Gabor effectively
increases Ce because contrast gain is reduced. Increas-
ing the Gabor peak contrast increases the area of the Ga-
bor above threshold but also incrementally increases the
local threshold slightly, so the perceived size of the patch
does not increase quite as much as would be expected
from a constant, absolute threshold.
This phenomenon may also be related to apparent con-

trast; when the apparent contrast of a patch of grating is
measured with the use of a matching paradigm, the
patch’s apparent contrast is reduced when it is spatially
adjacent to or surrounded by a high-contrast region of
grating.21 This observation is related to the slope of the
Gaussian envelope at the perceived edge of the Gabor
patch (the data are not shown). The slope of the Gauss-
ian envelope is a measure directly related to the nearness
of the high-contrast center to the perceived Gabor edge, or
the low-contrast surround of the Gabor. Lower values of
Ce are matched to lower envelope slopes, which corre-
spond to larger distances from the high-contrast center of
the Gabor. In a like manner, reduction of apparent con-
trast of a test patch of grating decreases with the distance
from an adjacent high-contrast grating.21

B. Ce and Contrast Detection Threshold
As shown by the goodness-of-fit measures in Table 1, the
model fits the data very well. Moreover, although the
model is not intended to be a model of contrast detection
threshold, we can seek extra support for the model by us-
ing it to predict contrast thresholds and comparing those
predictions with measured thresholds. We note that ex-
trapolation beyond measured data (i.e., down to thresh-
old) can be error prone, but the fits and the parameter es-
timates are good enough to support this action. Both
subjects measured contrast detection performance by us-
ing a two-alternative–forced-choice procedure on the
same equipment and software as those for the measure-
ments of perceived radius. The sharp-edged disk was re-
moved from the display, and the observer’s task was to
Table 1. Fitted Parameters for Eq. (4) for Each Subject for Each Spatial Frequency, Together with a
Statistical Analysis of the Goodness of Fita

Parameter
Values for

Each Subject
K0

(% Contrast)
K1

(% Contrast/% Contrast) N SC
se

(arcmin)
( e2

(arcmin2) r2 COD MSC

EF
0.1 cpd
(95% interval)

0.777
[0.551, 1.00]

0.152
[0.126, 0.178]

20 2.16 2.96 160 0.998 0.986 4.07

1.0 cpd
(95% interval)

0.437
[0.295, 0.580]

0.0678
[0.0476, 0.0880]

23 2.94 4.65 455 0.997 0.978 3.65

3.0 cpd
(95% interval)

0.608
[0.531, 0.685]

0.0309
[0.0232, 0.0386]

27 1.14 2.6 169 0.999 0.994 4.97

6.0 cpd
(95% interval)

1.997
[1.646, 2.348]

0.0619
[0.0429, 0.0810]

19 0.53 2.36 95 0.999 0.993 4.81

PB
0.1 cpd
(95% interval)

0.657
[0.427, 0.886]

0.160
[0.133, 0.187]

20 1.51 3.10 173 0.998 0.983 3.84

1.0 cpd
(95% interval)

0.385
[0.278, 0.492]

0.0688
[0.0530, 0.0845]

23 2.84 3.67 282 0.998 0.985 4.04

3.0 cpd
(95% interval)

0.543
[0.479, 0.672]

0.0241
[0.0182, 0.0300]

27 1.20 2.29 126 0.999 0.995 5.19

6.0 cpd
(95% interval)

1.62
[1.182, 2.063]

0.0705
[0.0455, 0.0956]

19 2.50 3.13 166 0.998 0.987 4.12

aEach best-fit parameter value appears together with its 95% confidence interval determined by a search of the error surface for an appropriate contour
level.16 The number of data points (N) in each fit is presented together with the serial correlation (SC), the standard deviation of the model error (se), and
the total squared error (( e2). Last, we provide three goodness-of-fit measures: r2, the coefficient of determination (COD), and the model selection cri-
terion (MSC).17 Each is a successively more sensitive metric for how well the model accounts for the variance of the data. The MSC also accounts for extra
degrees of freedom resulting from increased parameter count and is derived from the Akaike information criterion.18 In summary, the MSC is calculated
as ln(A/B) 2 2p/N, where N is the number of data points, p is the number of model parameters, A is the sum of weighted, squared deviations of the data
from the weighted mean of the data, and B is the sum of weighted, squared deviations of the data from the model. Larger values indicate a better fit. For
example, a MSC of 5.19 (subject PB, 3 cpd) indicates an A/B ratio of 208.
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detect the side of the display upon which the drifting Ga-
bor appeared. Performance was measured for each of the
four spatial frequencies with the use of a method of con-
stant stimuli and a Gaussian standard deviation of 52.5
arcmin. In the noiseless model perceived size goes to
zero when Cp 5 Ce [or Cp 5 K0 /(1 2 K1)]. As explained
in Subsection 5.C in the extension of the model to include
noise near and at threshold, if Ce is the same as contrast
detection threshold for the carrier, then detection likeli-
hood is 75% correct when Cp 5 Ce . We therefore mea-
sured 75% correct thresholds by fitting a cumulative nor-
mal function to the detection data with a maximum-
likelihood method. Model predictions of contrast
threshold were calculated as Cth 5 K0 /(1 2 K1) from
Table 1.
Figure 7 plots the measured thresholds (cross-filled

symbols) against predicted thresholds (open symbols).
95% confidence intervals are added to the model predic-
tions with the use of the 95% confidence intervals for K0
and K1. Subject PB’s data are shifted downward by 10
dB for clarification of the figure. Only one point per sub-
ject can be rejected as different from the prediction.
Those two points occur for the two spatial frequencies
that contain fewer low-peak-contrast data to constrain

Fig. 6. Perceived Gabor radius data for contrast values of 3.5%,
7%, 14%, 28%, and 56% for a standard deviation of 21 pixels
(39.4 arcmin) across spatial frequency. Some of the data are
taken from Fig. 2, while the data for 0.3 and 0.6 cpd were addi-
tionally measured for completion of the curves. The graph
clearly shows that perceived radius of a Gabor of otherwise fixed
parameter values depends on the spatial frequency of the carrier.
the steepest-sloping part of the model, the segment that
must be accurate if the model is to predict threshold well.
An additional source of error that could influence the
6-cpd predictions is that the model does not include any
influence of the variation of contrast threshold with posi-
tion in the visual field. That variation is larger for
higher spatial frequencies. The success of these model
predictions supports the conclusion that if Ce is different
from contrast detection threshold for the drifting carrier,
that difference is not visible in our results. We therefore
accept the hypothesis that Ce and contrast detection
threshold are the same.

C. Observations
Our experiences in this study compel us to make an ob-
servation that seems to be contrary to popular opinion.
Because a Gabor has a Gaussian contrast envelope, it is
often referred to as a fuzzy stimulus, in that the edges of
the patch are not perceptually well defined. The data
presented here specifically show that, consistent with a
previous report of our ability to categorize disk size,22 our
perception of the size of a Gabor is not fuzzy in any way.
The 95% confidence intervals derived from the psycho-
metric functions are extremely sharp, being from 61 for
s 5 13.125 arcmin to 62 for s 5 52.5 arcmin. More-
over, we can use the standard deviations derived from the
psychometric functions to estimate a Weber fraction for
the Gabor. The standard deviation of the fitted cumula-
tive normal indicates that we regularly see the disk as
different in size from the Gabor when it is 5%–6% larger
or smaller (depending on the observer) than the perceived
size of the Gabor. This value is well within the expected

Fig. 7. Measured contrast detection thresholds (cross-filled
symbols) together with model predictions (open symbols). 95%
confidence intervals are added to the model predictions with the
use of the 95% confidence intervals for K0 and K1. Subject PB’s
data are shifted downward by 10 dB for clarification of the pre-
sentation. Only one point per subject can be rejected as differ-
ent from the prediction. Those two points occur for the two spa-
tial frequencies that contain fewer low-peak-contrast data to
constrain the steepest-sloping part of the model, the segment of
the model curve that must be accurate if it is to predict threshold
well.
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range for Weber fractions in other tasks. The Weber
fraction is lower for the middle spatial frequencies and for
higher contrasts.

5. DISCUSSION
A. Comparison with Previous Work
Gelb and Wilson,23 in a study similar to the present one,
measured the perceived size of spatially narrow-band dif-
ference of Gaussian (DOG) patterns. Their metric stimu-
lus, or standard, was held constant at 50% peak contrast
(peak divided by the mean, as in our study). Comple-
mentary to our approach, their method of measuring a
point of subjective equality was to vary the size of the
DOG of interest rather than that of the standard. The
DOG of interest was fixed to a lower contrast, and then
they varied its s in a double Cornsweet-staircase proce-
dure to find the value of s that produced a perceived size
equal to that of the standard. The task was performed
for a number of DOG contrast values and for different val-
ues of s for the standard. They explained the resulting
perceived size data by using a model containing four spa-
tial frequency channels, or mechanisms, which have non-
linear contrast response functions. The mechanism out-
puts were linearly weighted, summed, and normalized to
produce a size index related to the relative strengths of
response from each spatial frequency channel. They
found that this model could reproduce the shapes of some
but not all of their data curves. Those data varied across
subjects and depended on contrast in an inexplicable
manner. Moreover, the absolute perceived sizes of their
DOG patterns were never measured because the absolute
sizes of the standards were never determined.
Our intent is not to investigate any internal metric of

object size, although Gelb and Wilson23 were apparently
attempting to capture such an internal metric with their
model. However, we also believe that they were measur-
ing the same phenomenon that we have measured, albeit
in a complementary manner. Our results and model ap-
pear to explain the unexpected behaviors of their data.
We must first realize that as the standard deviation of
their test (the lower-contrast DOG) increased, its peak
spatial frequency (fp) decreased as given by [their Eq. (2)]

fp 5
0.2564

s
~cpd!. (7)

During their staircase procedure their stimulus simulta-
neously moved across the dimensions of mathematical
size (as determined by their s) and spatial frequency.
Figure 6 clearly shows that the dependence of perceived
size on spatial frequency (at least, in our Gabor patches)
is not monotonic. Changing the spatial frequency can ei-
ther increase or decrease the perceived size of the patch,
depending on the peak frequency of the DOG. This phe-
nomenon can result in opposing forces on the perceived
size of the Gabor; decreasing s tends to decrease the per-
ceived size, but increasing spatial frequency can increase
its perceived size.
This property can explain the situation in which Gelb

and Wilson’s medium-frequency (less than 3 cpd),
medium-standard-deviation DOG standards were
matched to smaller-standard-deviation DOGs. Increas-
ing stimulus spatial frequency by reducing standard de-
viation increased sensitivity to the stimulus enough to in-
crease its perceived size faster than its perceived size was
reduced by the standard deviation. This would be most
prominent at low contrasts, where the variation of per-
ceived size is slowest with standard deviation (see Fig. 4)
and the reduction of s could be easily countered by an in-
crease of spatial frequency.

B. Implications for Previous Work
The data presented here indicate that varying the peak
contrast of the Gaussian envelope can significantly
change the perceived radius of the Gabor. We can di-
rectly extend this spatial phenomenon to the temporal do-
main (supported by observation): Temporally Gaussian
contrast windows cause perceived patch size to change
with time, first increasing and then decreasing. Detec-
tion thresholds must depend on the spatiotemporally in-
tegrated response of cortical neurons. We therefore con-
clude that contrast thresholds measured with the use of a
spatiotemporally Gaussian contrast envelope result from
integration of neural response over a contrast-dependent
corticotemporal volume.24 Note that although square-
edged, flat-topped contrast windows (e.g., Refs. 25–28)
may produce slightly more frequency spread than a
Gaussian, they do not suffer from this problem.
Anderson and Burr1,2 explored the influence of spatial

integration area on motion perception by measuring con-
trast thresholds for direction discrimination for a number
of Gabor spatial frequencies and by using standard devia-
tion as the size metric. The change of measured thresh-
old with stimulus size is taken to implicate the underly-
ing detector–output combination function. However,
what we need to know here is the activated cortical area
at threshold. We perform this analysis in the context of
a noiseless system, but in Subsection 5.C we discuss the
consequences of a noisy system on perceived size at
threshold. Figure 8 shows a graph of the derivative of

Fig. 8. Derivative of perceived radius with respect to contrast
(]Pr /]Cp , shown by the solid curve) for a standard deviation of
21 and derivative of perceived radius with respect to standard
deviation @]Pr /]s given by Eq. (6), shown by the dashed curve].
In both cases we have set K0 5 1 and K1 5 0 for convenience.
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perceived radius with respect to contrast (]Pr /]Cp ,
shown by the solid curve) for a standard deviation of 21
and the derivative of perceived radius with respect to
standard deviation @]Pr /]s given by Eq. (5), shown by
the dashed curve]. In both cases we have set K0 5 1 and
K1 5 0 for convenience, although the qualitative results
are the same if we use other parameter values. Note
that the upper (horizontal) asymptote for ]Pr /]s is given
by A22 ln K1, the left-hand (vertical) asymptote is at Cp
5 K0, and ]Pr /]s is undefined when Cp , K0 /(1
2 K1).
Figure 8 shows that as contrast is reduced in this noise-

less model, ]Pr /]s decreases. Note that ]Pr /]s 5 1
only at a peak contrast of 1.64%, or 4.3 dB above thresh-
old. (The threshold for this condition is determined by
both K0 and K1.) As Cp approaches threshold (Cth ; in
this case 1%), ]Pr /]s rapidly goes to zero. For a fixed s,
]Pr /]Cp (solid curve) varies in a complementary manner.
Near threshold ]Pr /]Cp is enormous. At 2% contrast (6
dB above threshold) ]Pr /]Cp is larger than 8. At 1.1%
contrast (0.8 dB above threshold) ]Pr /]Cp is over 30.
The impact of this change on cortical activation area is
even more drastic because it is proportional to the square
of the perceived radius. With the use of Eq. (4) the per-
ceived area (Pa) of the patch is

Pa 5 ps2F22 lnSK0 1 CpK1

Cp
D G (arcmin)2, (8)

and the rate of change of perceived area (]Pr /]Cp) with
Gabor peak contrast is

]Pa

]Cp
5

2ps2K0

CpK0 1 Cp
2K1

(arcmin)2/(% contrast). (9)

Clearly, ]Pa /]Cp is nonlinear in both standard deviation
and peak contrast. Likewise, it is clear that using a
Gaussian-windowed stimulus in combination with a con-
trast threshold does not give us direct information on how
spatial summation area affects motion perception. At
threshold there must be some amount of activation in the
cortical neurons at the center of the Gabor patch repre-
sentation, but the cortical extent of that activation is un-
known. Moreover, that cortical activation extent
changes with spatial frequency of the carrier (i.e., Fig. 6).
Thus the influence of spatial frequency, stimulus dura-
tion, stimulus contrast, and spatial extent are confounded
in the corticotemporal (spatiotemporal) integration vol-
ume.

C. Systemic Noise and Perceived Size at Threshold
Equations (5) and (8) predict that, in a noiseless system,
perceived radius and area of a Gabor patch approach zero
at detection threshold @Cp 5 Cth 5 K0 /(1 2 K1)#. How-
ever, it is clear that at contrast levels normally referred to
as threshold we regularly see the stimulus as being non-
zero in size. When we measure thresholds at, say 75%
correct in a two-alternative–forced-choice procedure then
we are actually correctly detecting the stimulus 50% of
the time. That is, half of the time we can see the stimu-
lus, and the other half of the time we guess with 50% ac-
curacy. We can easily explain this phenomenon by ex-
tending the model to include noise that must be present
in the system. The systemic noise is conceptually consis-
tent with a threshold that fluctuates (is noisy). Of
course, the noise could be in the contrast gain control
mechanism, and/or in the response of the neuronal popu-
lation, and/or in the peak contrast (Cp) of the Gabor
patch. If the noise fluctuations are small enough not to
affect the contrast gain control, then these situations are
mathematically similar. For this reason and for pur-
poses of simplified exposition we model peak contrast of
the Gabor as including a zero-mean random variable, ñ,
with a probability-density function (PDF), r ñ. This modi-
fies our model of perceived radius to be

Ce 5 ~Cp 1 ñ !expF2
1
2 SPr

s D 2G , (10)

Pr 5 sA22 lnS Ce

Cp 1 ñ D (arcmin). (11)

Figure 9 shows how this form of systemic noise affects
perceived size at and near detection threshold. Given a
peak contrast exactly at threshold, the noise forces the
Gabor below threshold 50% of the time and above thresh-
old 50% of the time. In a two-alternative–forced-choice
procedure we guess correctly half of the time that the Ga-
bor is below threshold, resulting in detection performance
at a 75% correct level. Moreover, the steep slope of the
perceived radius function, Pr(Cp) [dashed curve in Fig.
9(a)], with peak contrast implies that when the patch is
above threshold, it will also appear to be relatively large.
We can transform the PDF of ñ, r ñ [solid curve in Fig.
9(a)], to produce a PDF for perceived radius, r P̃r [circles,
in Fig. 9(a)], for the stimulus at contrast threshold. The
appropriate theorem29 is

r P̃r 5 u]Cp /]Prur ñ@Cp~Pr!#, (12)

where Cp( ) is the function that maps Pr onto Cp [i.e.,
solve Eq. (4) for Cp]. Figures 9(b) and 9(c) show how
changes in Cp or in the noise variance affect perceived
size when the Gabor is above threshold. Note that the
PDF’s shown in Figs. 9(b) and 9(c) may not sum to 1.0 be-
cause they do not include the probability of the Gabor be-
ing below threshold; that case would be represented by a
discrete probability category at Pr 5 0, but inclusion of
that category complicates the plots. For example, in Fig.
9 we assume that the noise is Gaussian distributed on a
logarithmic contrast axis. The results indicate that, con-
sistent with our data observations, increasing Cp should
result in perceived sizes with less uncertainty (in terms of
the Weber fraction for discrimination), while greater
noise variance at threshold produces larger average per-
ceived sizes (when the stimulus is seen). The latter is
consistent with the observation that, at threshold, when
we see the stimulus, it appears relatively large. For ex-
ample, when s of the Gaussian window is 14 arcmin and
the noise standard deviation is 2.7 dB (the average s of
detection thresholds in Fig. 7), the average perceived di-
ameter (when the Gabor is visible) is 16.5 arcmin and is
larger than 20 arcmin 32% of the time. In a noiseless
system the perceived size approaches zero at threshold,
but noise in the system changes the perceived size into a
stochastic process at and near threshold. We do not see
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the Gabor 50% of the time, but when we do see the Gabor,
it can appear to be relatively large because of the steep
slope of the Pr(Cp) function.
The final result of the analysis must be that, although

contrast threshold decreases with increasing standard de-
viation of a Gabor, Gaussian standard deviation is not an
easily interpretable measure of the influence of cortical
(spatial) summation on direction discrimination. More-
over, the noisy nature of perceived size at threshold com-

Fig. 9. Plot (a) shows how systemic noise combined with the
perceived radius curve, Pr(Cp), determines perceived size at
threshold. The curve at the bottom of (a) is an example of a
PDF, r ñ, which is Gaussian distributed on a logarithmic Cp axis.
The PDF and Pr(Cp) parameters are given in (a); K0 and K1 are
from the 0.1-cpd condition for subject EF (see Table 1). The
PDF for perceived size, r P̃r, is shown at the left of (a). Only the
portion of r ñ to the right of the vertical line marking C th is trans-
formed to produce r P̃r. The portion of r ñ to the left of Cth rep-
resents conditions that are not visible and map to Pr 5 0 (not
shown for clarity). Both r ñ and r P̃r have been scaled in magni-
tude for purposes of clarity. Note that the r P̃r curve in (a) and
the left-hand curves in (b) and (c) are identical [except for a scal-
ing in (a)] because they are the same condition: Cp 5 Cth and
sn 5 2 dB. Plot (b) shows how r P̃r changes as Cp increases for
fixed variance of r ñ. Note that as Cp increases, the variance of
r P̃r decreases. Plot (c) shows how r P̃r changes as the variance of
r ñ increases for Cp fixed at threshold. Note that the PDF’s
shown in (b) and (c) may not have unit area, because they do not
include portions of r P̃r that fall below threshold; that case
would be represented by a discrete probability category at Pr
5 0, but inclusion of that category complicates the plots.
plicates the picture even further: How does the noise af-
fect the integration process? Our conclusion must be
that contrast thresholds with the use of Gaussian-
windowed stimuli depend on noisy, contrast-dependent,
corticotemporal (spatiotemporal) integration.

6. CONCLUSIONS
Using a simple two-parameter model, we show that our
data are very well accounted for by the natural assump-
tion that perceived Gabor size is limited by contrast
threshold for the spatial carrier. As predicted by the
model, the perceived spatial extent of a Gabor patch var-
ies linearly with the standard deviation of the Gaussian
but nonlinearly and monotonically with peak contrast.
Moreover, perceived Gabor size for a fixed standard devia-
tion and peak contrast depends nonlinearly and non-
monotonically on carrier spatial frequency. At suprath-
reshold peak contrasts Gabor perceived size is relatively
unaffected by systemic noise but varies in a manner that
is consistent with the influence of local contrast gain con-
trol. However, at and near threshold, noise plays a ma-
jor role in determining perceived size. We conclude that
measures of contrast threshold with the use of Gaussian-
windowed stimuli (or any other nonflat contrast window)
are determined not just by contrast response of the neu-
rons activated by the stimulus but also by a noisy,
contrast-dependent spatiotemporal (corticotemporal) in-
tegration volume. Contrast threshold measures with
Gaussian-windowed stimuli therefore confound the influ-
ence of spatial and temporal integration with observer
sensitivity to the drifting carrier.
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