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Critical band masking in optic flow
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Abstract
Visual processing has been widely investigated with narrow band stimuli at low contrasts. We used a
masking paradigm to examine how visual sensitivity under these conditions compares with the percep-
tion of the direction of heading in real scenes (i.e., with dynamic natural images at high contrasts). We
first confirmed and extended previous studies showing biases in the amplitude distribution for spatial
frequency, temporal frequency, speed and direction in dynamic natural movies. We then measured con-
trast thresholds for identification of the direction of motion for an observer traveling at various speeds.
In spite of differences in contrast sensitivity and large non-uniformities in the amplitude content of
the stimuli, contrast thresholds were relatively invariant of spatial frequency and completely invariant
of temporal frequency, speed and direction. Our results suggest that visual processing normalises re-
sponses to supra-threshold structure at different spatial and temporal frequencies within natural stimuli
and so equates their effective visibility.
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Introduction

Human visual perception uses spatio-temporal variations of light falling on the retinae de-
rive functional descriptions of the environment. Much of our understanding of this process,
encapsulated in widely accepted channel theories of early vision (Blakemore & Campbell
1969; Campbell & Robson 1968; Graham & Nachmias 1971) comes from experiments with
isolated, static sinusoidal gratings presented briefly at threshold contrast levels. Unlike exper-
imental stimuli, natural images contain broad distributions of (among other things) spatial
frequency, temporal frequency, orientation, speed and direction. Although random dot noise
images are also commonly used in psychophysical studies and have a broad spectrum, the
amplitude spectrum of white noise is quite unlike that of most natural images. While the
amplitude of white noise is on average constant across spatial frequency, orientation and
temporal frequency (for dynamic stimuli), the amplitude of natural scenes falls with spatial
frequency with a characteristic slope of around −1.5 on log–log axes (Kretzmer 1952):

amplitude( f ) = cf −α (1)

where amplitude is averaged across all orientations, c is a constant, f is spatial frequency
and α represents the slope on log–log axes. The value of α lies within a fairly narrow range
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(0.7–2.5) in achromatic images (Field 1987; Burton & Moorhead 1987; Hancock et al. 1992;
Tolhurst et al. 1992; Ruderman 1994; Billock 1996; van der Schaaf & van Hateren 1996; van
Hateren & van der Schaaf 1998). A comparable reduction in the amplitude of higher temporal
frequencies has been reported for dynamic natural scenes and movies (Dong & Atick 1995a;
van Hateren 1997; Billock et al. 2001). With respect to orientation, several studies have
reported that horizontal and vertical structure is relatively higher in amplitude than oblique
structure (Switkes et al. 1978; Hancock et al. 1992; van der Schaaf & van Hateren 1996;
Coppola et al. 1998; Keil & Cristobal 2000; Hansen et al. 2003; Betsch et al. 2004).

Human sensitivity to static sinusoidal modulations in luminance has a classic inverted
“U” shape, peaking at around 2–4 c/deg (Campbell & Green 1965; Campbell & Robson
1968). Sensitivity to temporal modulation of sine gratings depends on spatial frequency,
in that lower spatial frequencies are more visible at higher temporal frequencies (Robson
1966; Kelly 1971; Kulikowski & Tolhurst 1973; Tolhurst et al. 1973). Contrast sensitivity is
maximum for a drifting 3 c/deg grating stimulus at approximately 5 Hz, the so-called optimal
motion stimulus (Watson & Turano 1995). Speed can be expressed as:

Speed = TF/SF (2)

where TF is temporal frequency and SF is spatial frequency. This relationship produces a
roughly flat peak contrast sensitivity for speed/velocity for the optimal combination of spatial
and temporal frequency (Burr & Ross 1982).

Estimates show that channel bandwidths are approximately log scaled (Campbell et al.
1969; Maffei & Fiorentini 1973; Ikeda & Wright 1975; Movshon et al. 1978; DeValois et al.
1982), although bandwidths narrow to some extent at higher spatial frequencies (Blakemore
& Campbell 1969; Tolhurst & Thompson 1981; DeValois et al. 1982). A straight line on
a log–log plot of image amplitude versus spatial frequency indicates constant energy within
bands whose width remains constant expressed in octaves. This means that the response
of the visual system to natural images should be relatively constant across channels (Brady
& Field 2000; Field 1987). Therefore, a low contrast natural image should first become
detectable when its 3–4 c/deg components reach their detection threshold. If the pattern is
dynamic, detection will first be possible when the 5 Hz component at 3–4 c/deg reaches its
contrast detection threshold. To a first approximation (with static images) this speculation
has been confirmed with a number of compound images (Watson 2000) and with natural
scenes (Bex & Makous 2002).

At supra-threshold levels, the dependence of appearance on contrast sensitivity breaks
down and perceived image contrast is relatively independent of spatial frequency (Bryngdahl
1966; Watanabe et al. 1968; Blakemore et al. 1973; Georgeson & Sullivan 1975; Kulikowski
1976; Cannon 1979; Bowker 1983; St John et al. 1987; Brady & Field 1995), a phenomenon
termed contrast constancy. However, the supra-threshold apparent contrast of notch filtered
natural scenes does dip when components at around 4 c/deg are removed (Bex & Makous
2002). This discrepancy—being more characteristic of performance near contrast detection-
threshold—compromises our ability to predict the appearance of broad-band natural images
from the visibility of low-contrast grating patterns.

Contrast constancy therefore suggests that, at supra-threshold contrasts, the responses of
different visual channels are to some extent normalised and therefore that image components
over 4 octaves (between 1–16 c/deg) are of approximately equal visibility. Several studies
have examined how the visual system utilises these equally visible components to perform
discriminations among high contrast complex images of letters or faces Peli et al. 1994;
Solomon & Pelli 1994; Gold et al. 1999). For example, Solomon and Pelli (1994) measured
threshold contrast for letter identification in the presence of low-pass and high-pass filtered
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noise. Contrast sensitivity was highest when masks did not contain components at around
4–8 cycles per letter and was lowest when these components were present in the noise masks.
These results were relatively invariant of the size of the letters, suggesting that contrast
sensitivity per se does not limit performance in visual identification tasks at high contrasts.
Analagous results have been reported for face identification, with optimal components for
this task falling between 8 and 16 cycles per face (Gold et al. 1999; Peli et al. 1994).

If at supra-threshold contrasts, the responses of the visual system are relatively invariant
of spatial scale, then the contrast sensitivity function can no longer predict visual perfor-
mance. It might therefore be expected that the well-documented biases in the spectra of
natural images come to determine visual sensitivity. We test this conjecture in the present
study. We examine how the visual system integrates information across wide ranges of spatial
frequency, temporal frequency, speed and direction in dynamic natural images. We adapt
a noise masking paradigm to measure sensitivity to the direction of heading with dynamic
natural images generated by self motion, known as optic flow (Gibson 1966; Koenderink
1986). We choose this task both because of its ecological relevance, and because it could be
supported by image structure at a variety of spatial and temporal frequencies, allowing us to
investigate interactions among them.

Methods: Stimuli

Natural scenes

Movies were recorded with a Panasonic NV-GS200EB digital video camera with no digital
or optical zoom. Movies were recorded at 3 different speeds of self-motion: driving at 70 mph
along a 2 × 3 lane highway; driving at 30 mph along a 2×1 lane road; walking along an urban
street (see Figure 1 for examples of single frames from our movies). In practice, we found that
a hand-held camera was too unstable to record the optic flow of a pedestrian and that steadier
images were obtained by filming from a car driving at a steady walking speed of 5 mph∗. The
camera was held by author PB who was a passenger in the vehicle and who attempted to
maintain the focus of expansion in the centre of the camera field. A minimum of 15 minutes
of total travel for each speed was collected in up to three sessions. Each movie contained
continuous forward motion at a steady speed with minimal acceleration, deceleration or
other interruption, from traffic signals or pedestrians. There was no attempt to select the
content of the movies for the presence or absence of other vehicles, lamp posts or trees,
etc. The gamma function of the camera was calculated by recording a full field movie of a
CRT screen containing 16 patches of luminances in linear steps from 0 to 100 cd/m2. The
corresponding values in the digital movie were fit with a gamma function and the inverse
of this function was used to linearise the greyscale of the movies. Movies were captured
via a firewire connection and stored to computer disk using Pinnacle Studio software. The
resolution was 320 × 240 at 30 fps and movies were stored as “.avi” files with compression
level set to 0. This was half the native resolution of the original movie but retained the full
visual field, minimised the file size and thus maximised file reading time.

On each experimental trial, 32 successive movie frames were imported, starting at a ran-
dom point within the movie each trial, using the MATLABTM function aviread(). The red,
green and blue values of each frame were gamma corrected and then averaged to produce

∗Generating phase noise from the FFT of a noise image, rather than generating random angles directly, ensures
the correct (Hermitian) symmetry of the resulting spectrum which in turns ensures a near-zero imaginary result
(i.e., that there is no loss of power) when this is back-transformed into the image domain.
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a monochrome/greyscale movie of size 320 × 240 × 32 (horizontal pixels × vertical pixels x
frames). The mean value of the whole movie was subtracted from each pixel, to produce a
zero-mean 3D matrix. The first and last 32 columns of each frame were cropped and the
first and last eight rows of the movie were padded with zeros to produce a 256 × 256 × 32
movie, centred on the original image.

Masking noise

The amplitude spectrum of the noise was matched to that of the stimulus (and to the sen-
sitivity of the visual system) by randomising the phase-spectrum of the source movie. The
3D amplitude spectrum of a driving movie (calculated by taking the absolute values of the
3D Fast Fourier Transform (FFT) computed with the MATLABTM function fftn()) was
combined with the phase spectrum (calculated with the MATLABTM function angle()∗) of
a 256×256×32 white noise image. The inverse FFT of this operation produced a random
phase noise movie with the same amplitude spectrum as the driving movie.

The random phase noise was notch filtered in the 3D spatio-temporal frequency domain.
Notch filters were one octave wide log exponential filters:

A( f ) = 1 +
[
−1 ∗ exp

( |ln( f/Fpeak)|3 ln 2
(b0.5 ln 2)3

)]
(3)

where f specifies spatial frequency, temporal frequency or speed, Fpeak specifies the peak
frequency and b0.5 the half bandwidth of the filter in octaves, which was fixed at 0.5 octaves
(i.e., the full bandwidth was one octave). These filters have the advantage of shallower tails
than some alternative band-pass filters (e.g., Laplacian of Gaussian see (Dakin & Bex 2003)
for discussion of this property in the context of natural images).

Directional notch filters were linear Gaussians:

A( f ) = 1 −
⌊

e−
(

(θ−Fpeak)2

2σ2

)⌋
(4)

where θ specifies direction; Fpeak the peak direction of the notch filter, spaced at 22.5 degree
intervals from 0 to 360 degrees; and σ specifies the standard deviation, which was fixed at
22.5 degrees.

Before calculating the inverse FFT of the phase randomized masks, the amplitude spec-
trum of the 256 × 256 × 32 source movie was multiplied by the 256 × 256 × 32 notch filter.
The real values of the inverse FFT produced a notch filtered, random phase noise mask.

Contrast scaling

The RMS contrast of the mask movie was fixed at 0.2 (approximately 80% Michelson con-
trast, although the precise value inevitably varied slightly from movie sample to sample) by
multiplying every pixel by 0.2 divided by the standard deviation of all 2097152 pixels. The
RMS contrast of the target movie was fixed by a staircase procedure each trial and was scaled
in the same way. The sum of the target and mask movies produced a 256 × 256 × 32 movie
with zero mean and with the desired RMS contrasts of the target and mask. The target plus
mask movie was multiplied by a raised cosine spatio-temporal envelope that was spatially
circular with a radius of 8 degrees and a cosine ramp over 16 pixels (0.5 degrees) and a
temporal ramp over the 1st and last 3 frames. The movie was scaled between 0–255 by mul-
tiplying the 3D matrix by 127 and adding a constant of 127 (note that the RMS contrast of
the rescaled image is now calculated as the standard deviation of luminance (or LUT value,
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the effect is the same) divided by the mean luminance (or LUT value) and is unchanged
by this rescaling). Monochrome resolution was increased to 10.8 bits by bit-stealing (Tyler
1997). We adjusted the luminance of a blue screen (all pixels [0 0 127]) so that it was half
that of a red screen ([127 0 0]) which in turn was half that of a green screen ([0 127 0]) at
mean luminance, (where white, [127 127 127] was 50 cd/m2). This shifted the white-point
of the monitor to 0.31, 0.28 (x,y) at 50 cd/m2 (measured with a Minolta CS100 photome-
ter). Under the constraint that no colour could deviate from the others by more than one
LUT step, this permitted 1785 unique levels. As a conservative estimate of the precision of
our apparatus, the minimum threshold RMS contrast of the images in our experiments was
0.025. Gaussian white noise that is rescaled as in our experiment with this contrast spans the
LUT range 113 to 141 (c.11% Michelson contrast). These 28 levels are represented by 196
unique monochrome steps with bit stealing. This resolution is sufficiently high for contrast
threshold measurements. Furthermore, this estimate of 28 monochrome levels is conserva-
tive because natural images are more leptokurtotic (i.e., the distribution of grey levels has
longer tails) than Gaussian noise (Daugman 1988; Field 1994) and so span a greater number
of LUT steps for a given RMS contrast.

Each movie frame was updated on alternate video frames of a La Cie Electron 22 blue
21” monitor running at 75 Hz, so that the movie sequence lasted 850 msec. This meant that
movies were presented 17% faster than the recording speed (thus 75, 30 and 5 mph movies
actually depicted 82, 35 and 6 mph, respectively). The luminance of the monitor was mea-
sured with a Minolota CS100 photometer and gamma corrected in the graphics card control
panel. We used a GeForce4 MX440 graphics card whose gamma function was linearised
directly to produce true linear 8 bit resolution, without any loss of resolution that occurs
with look-up-tables. Movies were either played forwards or backwards, at random, across
trials. A forward sequence represents expanding optic flow field consistent with forward self
motion, the reverse sequence represents contracting optic flow consistent with backwards
self motion.

Subjects and procedure

The subjects were two of the authors. Each wore conventional optical correction and viewed
the screen monocularly with their dominant eye. Observers fixated a prominent fixation cross
at the centre of the screen and were required to report whether the movie simulated forward or
reverse motion of the vehicle. Feedback was provided following incorrect responses. Although
in real life observers rarely experience high speed backwards self-motion (perhaps only when
looking out of the rear window of a vehicle), approaching and receding objects produce
expanding or contracting retinal image motion, respectively, over a limited area of the visual
field. Even if somewhat unfamiliar, the task was easy in unmasked conditions, and in pilot
runs we determined that forward and reverse responses occurred with equal probability.

The RMS contrast of the random phase mask was fixed (at 0.2 or ∼80% Michelson
contrast), while the RMS contrast of the source movie was under the control of a staircase
(Wetherill & Levitt 1965), that reduced the contrast by 1 dB (1/20 log unit) following three
correct responses and increased the contrast by 1 dB after one incorrect response. The
staircase terminated after ten reversals or 50 trials, whichever occurred first. All conditions
for each parameter of the notch filtering (spatial frequency, temporal frequency, speed and
direction) were randomly interleaved on a single run. Runs for the four parameters were
tested in random order. The raw data from a minimum of five runs for each condition (at
least 200 trials per psychometric function) were combined and fit with a cumulative normal
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Figure 1. (a) and (b) Examples frames from the original movies. (c) Example sum of movie and random-phase
mask.

function by least Chi-square fit (in which the data are weighted by the binomial standard
deviation calculated from the observed proportion correct and the number of trials tested
at each level). The contrast threshold was estimated from the 75% correct point of the
psychometric function and 95% confidence intervals on this point were calculated with a
bootstrap procedure, based on 1000 data sets simulated from the number of experimental
trials at each level (Foster & Bischof 1991).

Results

Spatial frequency tuning

Our first experiment examined which spatial structure within broadband dynamic scenes
observers rely upon to perform a direction discrimination task. In order to quantify the spa-
tial structure of dynamic natural scenes statistically, we first examined the spatial frequency
content of a variety of movie images. We calculated the value of α (the slope of log am-
plitude vs. log spatial frequency in Equation 1) for images captured from various digitized
movies, including indoor, outdoor, manmade and natural scenes. The commercial movies
were ripped to avi files at native video size (720 × 576 pixels) and 30 fps with compression set
to zero. While these dynamic scenes may not accurately represent the natural environment
of many primates, they do constitute on average approximately 15% of the visual diet of
television-watching adults (UK Census 2000). The value of α was calculated from the cen-
tral 256 × 256 pixels of 100 frames randomly selected from each movie. Red, green and blue
pixel values were averaged to produce monochrome image sequences. Amplitudes were aver-
aged within one octave bands and across orientations and were fit with MATLAB’s polyfit()
function to determine the intersect and slope of log spatial frequency versus log amplitude
for each image.

We did not pad the image with zeros to minimise edge artifacts. As a control to determine
the effect of padding on the estimate of spectral slope, we generated 1000 noise images
with a 1/ f 2 slope. We then estimated the slope of this image as described above with and
without zero padding to 512 × 512 pixels. The slope for unpadded images was on average
1.02 times steeper than that for padded images, but the two were not significantly different
(t = −1.07895, p > 0.05) for this number of samples. Although we measured and corrected
the gamma function of our camera, we did not know the gamma function of the camera or
processing used to produce commercial movies. As a second control to determine the effect
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Figure 2. Slope of the log spatial frequency vs. log amplitude spectrum (α) for the movies indicated on the abscissa.
Slopes were calculated for 6400 256 × 256 pixel frames randomly sampled from each movie. Error bars show ±1
standard deviation. See text for details.

of γ on the estimate of spectral slope, we generated 100 noise images with a 1/ f 2 slope then
rescaled the images with gamma values between 0.5 and 4 in log steps. The value of α was
then calculated for each rescaled image the value of γ did not significantly affect the value
of α (t < 0.42 in all cases). We speculate that this is because the changes in the luminance
range with γ affect the magnitude of all components approximately equally.

Figure 2 shows the mean value of α for a range of different movie types, including a cartoon
and our driving movies at each speed and dynamic noise. The value of α for the movies is
consistent with many previous studies of natural images (Billock 1996) and the zero slope for
noise images is as expected for white noise. These calculations confirm that the distribution
of energy in natural scenes and the log-scaled channels of the visual system are fairly well
matched.

The utility of different spatial frequencies components within our movies was mea-
sured with log exponential notch filters (Equation 3) centered at 1, 2, 4, 8 or 16 c/deg.
The temporal frequency spectrum of the stimuli was otherwise unaltered. Figure 3 shows
the RMS contrast of the driving movie that was required to detect its direction of mo-
tion (on 75% of trials) when it was embedded in spatial frequency notch filtered noise.
At all speeds and for both observers, thresholds were significantly lower for notch filters
with a peak at around 2 c/deg (repeated measures ANOVA, F4,8 = 5.77, p < 0.05). Av-
eraged across observers and conditions, thresholds at 2 c/deg are 40% lower than those
at 0.5 or 8 c/deg. This means that the direction of motion in noise could be detected
at lowest contrast when components at around 2 c/deg were removed from the masking
noise. Expressed another way, noise components around 2c/deg had the greatest masking
power.

These results are in good agreement with the peak of the contrast sensitivity function for
images of this size reported for contrast detection of static (Campbell & Green 1965; Camp-
bell & Robson 1968; Howell & Hess 1978) or drifting sine wave gratings (Kelly 1977; Watson
1986) and with static compound images (Watson 2000; Bex & Makous 2002). However, we
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Figure 3. Spatial frequency tuning of critical band masking for optic flow for two observers (PB and IM) at the
3 speeds indicated in the legend. The x-axis shows the peak spatial frequency of the one octave notch that was
absent from our spatial frequency filtered noise masks. The y-axis shows the RMS contrast threshold (in RMS
units) supporting 75% correct direction discrimination (forwards versus backwards motion). Error bars show 95%
confidence intervals.

find that the peak of the function (at around 2c/deg) is the same at all speeds, whereas contrast
thresholds for detecting the direction of heading of random dot optic flow patterns has been
reported to shift towards low spatial frequencies at higher speeds (Kim & Turano 1999).

Temporal frequency tuning

Our next experiment examined how observers utilise time-varying content within broad-
band dynamic scenes. We first examined the temporal frequency content of a variety of
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Figure 4. The slope of the log temporal frequency vs. log amplitude spectrum (α) for a range of movies, indicated
by the axis. Each estimate of slope is based on 100 movies each 256 × 256 pixels and lasting 64 frames. Error bars
show ±1 standard deviation. See text for details.

commercial movies by calculating the temporal value of α (the slope of log amplitude vs.
log temporal frequency) for 100 randomly selected movie sequences each 256 × 256 pixels
× 64 sequential frames. The amplitude at each temporal frequency was averaged across all
spatial frequencies and orientations. In the commercial movies, we ignored scene cuts in
part because we found that scene cuts were surprisingly frequent in 64 frame sequences.
Given that human observers make frequent saccadic eye movements that abruptly change
the retinal image (Yarbus 1967) and the observation that observers tend to shift fixation to
image regions containing different spatial structure (Krieger et al. 2000; Dragoi et al. 2002),
we concluded that this simplification was acceptable. Figure 4 shows the mean value of α for
a range of different movie types. The slope of white noise is flat, as expected, but amplitude
decreased with temporal frequency in dynamic natural scenes. The slope of this attenuation
() is consistent with many previous studies (Dong & Atick 1995a; van Hateren 1997; Billock
et al. 2001). This is not an artifact of the inclusion of scene cuts in our movie samples—this
would tend to reduce the temporal frequency slope (i.e., make it more like temporal white
noise, with zero slope), whereas the movie slopes were clearly negative. Furthermore, there
are no scene cuts in our driving movies, yet their temporal slopes were shallower than those
of the other movies—i.e., they have relatively more energy at high temporal frequencies. This
is almost certainly because our images contain full field motion across all frames, whereas
sequences of 2–3 seconds in commercial movies frequently contain little if any motion. As
for the static images in Experiment 1, we estimated the effect of the unknown γ value in
the commercial movies on the value of α for temporal frequency. We generated 100 random
noise movies of size 256 × 256 × 64 where we fixed the value of α for spatial frequency
at 2 and temporal frequency at 1. While had no net effect on the value of α for spatial
frequency, the value of α for temporal frequency was progressively underestimated as γ

increased. This is to be expected: natural images are dominated by pixels near the mean
luminance (Daugman 1988; Field 1994), and as γ increases, this portion of the input–
output function is progressively expanded. Thus the effective dynamic range (and thus high
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Figure 5. Temporal frequency tuning of critical band masking for optic flow. Details as Figure 3, except that the
notch filter removed a one-octave band of temporal (rather than spatial) frequency components.

temporal frequency modulation) of pixels near mean luminance increases with γ . For this
reason, the values reported in Figure 4 can therefore only be taken as approximations.

The utility of different temporal frequency components in our movies was measured with
log exponential notch temporal frequency filters (Equation 3) centred at 0, 1, 2, 4, 8 or
16 Hz. The spatial frequency spectrum of the stimuli was otherwise unaltered. Figure 5
shows the RMS contrast of the driving movie that was required to detect its direction of
motion in temporal notch filtered noise on 75% trials. It is evident that at all speeds and
for both observers, the tuning functions were flat. There was no evidence that any temporal
frequency was preferred by the visual system to signal the direction of motion in our broad-
band stimuli. In other words, and contrary to the spatial frequency results, noise at all
temporal frequencies has the same masking power.

Speed tuning

The movements of objects in natural scenes are defined by a common speed, rather than
a particular spatial or temporal frequency. We wondered whether this property may have
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caused the flat tuning functions for temporal frequency. It is possible that the direction
discrimination task could have been based on any of the various combinations of spatial and
temporal frequency that might have produced some optimally detectable speed. If this were
the case, it should be possible to determine such an optimal speed with critical band speed
masking.

We first examined the distribution of speeds in a variety of movies, where speed is defined
in Equation 2. Many different combinations of spatial and temporal frequency can produce
the same speed. The upper panel in Figure 6 shows log amplitude as a function of log speed
for 100 random samples of noise and the 30 mph driving movie, each 128 × 128 pixels and

Figure 6. Upper panel: Illustration of log speed vs log amplitude for noise and 30 mph driving movie. The left
data point is stationary (zero speed). Lower panel: Slope of the log speed vs log amplitude spectrum for a range of
movies, indicated by the axis labels. All data are based on 100 movies each 128∗128 pixels∗ 64 frames. Error bars
show 1 standard deviation. See text for details.
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64 frames duration. Amplitude was averaged within one octave bands of speed and across
all directions/orientations. A straight line was fit to the data on log–log axes which, while
failing to capture the elbowed-shape of the curve, does quantify the reduction in amplitude
at low speeds. The lower panel in Figure 6 shows the slope of such fits (log amplitude vs. log
speed) derived using a random sample of 100 sequences from a range of movies, each of size
128 × 128 pixels and 64 frames duration. As before, noise has a speed distribution spectrum
that is on average flat while real movies have relatively high energy at high speeds. We speculate
that the relatively high amplitude at high speeds arises because the rigid motion of edges and
contours in real scenes produces modulation at temporal frequency across spatial scales (see
Discussion).

The sensitivity of the visual system to different speeds in our movies was measured with
log exponential notch speed filters (Equation 3) centered from 1 to 40 deg/sec in log steps.
Figure 7 shows the RMS contrast of the driving movie that was required to detect its direction
of motion in notch-speed filtered noise on 75% trials. At all speeds and for both observers,
the tuning functions were flat. In other words, there was no evidence that any speed was
preferred by the visual system to detect direction of motion. Alternatively, all speeds in noise
have equal masking power.

Direction tuning

In the final section, we examined how observers’ sensitivity to the overall direction of our
stimuli depended on the directional content of our movies. We first examined the directional
content of 100 randomly selected movie sequences each 256 × 256 pixels and 64 frames.
In order to equate the distribution of components at all orientations/directions, the spatial
frequency amplitude spectrum was windowed at all temporal frequencies with a circular
annulus whose edges were attenuated with a raised cosine function over 8 pixels. The movie
was then filtered with a Gaussian band-pass direction filter with a peak at 22.5 degree intervals
and with a standard deviation of 11.25 degrees (see Equation 4). Figure 8 shows the summed
amplitude in each direction band for a range of movies. Horizontal and vertical motion
clearly dominates most movies, a finding that mirrors earlier work looking at the orientation
distribution in static natural images (Switkes et al. 1978; Hancock et al. 1992; van der Schaaf
and van Hateren 1996; Coppola et al. 1998; Keil & Cristobal 2000; Hansen et al. 2003;
Betsch et al. 2004). Horizontal motion dominates vertical motion in commercial movies;
we speculate that this anisotropy is caused by panning camera motion that is frequently
employed in the making of commercial films.

The sensitivity of the visual system to different directions of motion in our movies was mea-
sured with Gaussian notch orientation filters (Equation 4) centered at 22.5 degree intervals.
Figure 9 shows the RMS contrast of the driving movie that was required to detect the direc-
tion of motion in notch-speed filtered noise on 75% trials for the 30 mph movies. For both
observers, the tuning functions were flat. In other words, there was no evidence that the visual
system was more sensitive to, or relied upon, any particular range of directions, even though
natural scenes plainly have more energy concentrated along the cardinal axes of motion.

Discussion

Statistical properties of natural scenes

Our results confirm many previous studies that have reported that the amplitude of high spa-
tial frequency components are attenuated in static natural images; the well-known property of
“1/ f ” scaling (Kretzmer 1952; Burton & Moorhead 1987; Field 1987; Tolhurst et al. 1992;
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Figure 7. Speed tuning of critical band masking for optic flow. Details as Figure 3, except that the notch filter
removed a one-octave band of speed (ωTF/ωSF) components.

Ruderman 1994; Billock 1996; van der Schaaf & van Hateren 1996; van Hateren & van der
Schaaf 1998). This property has been attributed to the presence of numerous edges, shadows
and occlusions in natural scenes, which have a 1/ f amplitude spectrum (Tolhurst et al. 1992;
Balboa et al. 2001), or to the correlations across space of illuminant and material properties
that produce correlations in image luminances (Ruderman 1997). These explanations sim-
ilarly account for the present results. We also confirm that the amplitude of high temporal
frequency components is attenuated in dynamic natural images (Dong & Atick 1995a; van
Hateren 1997; Billock et al. 2001). Analogous to the explanations of high spatial-frequency
drop-off in static images (Ruderman 1997), this occurs in dynamic natural images because
correlations across time of illuminant and material properties produce correlations in image
luminances across time.
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Figure 8. Distribution of direction amplitude for a selection of movies, indicated by the legends. The data show
relative amplitude as a function of the direction of motion in the movie. The data for each movie are based on 100
a random movie sequences, each 256 × 256 pixels ×64 frames duration. Error bars show ±1 standard deviation.
See text for details.

Here, we have extended these analyses of the amplitude spectra of natural images and
report that the distribution of speed and direction are also non-uniform in dynamic natural
scenes. For dynamic white noise the distribution of speed (averaged across the number of
different combinations of spatial and temporal frequency that produce each speed) is flat, like
the distribution of spatial and temporal frequency (in fact the flat distribution of spatial and
temporal frequency cause this property). However, the total amplitude as a function of speed
is not flat and instead reflects the number of combinations of spatial and temporal frequencies
that give rise to a particular speed in the FFT. The distribution of speeds in dynamic natural
scenes is similarly affected by spatial and temporal frequency combinations in the FFT that
produce a given speed, but the mean amplitude across speeds tends to decrease at low
speeds. This property seems surprising given that amplitude tends to increase at low spatial
and temporal frequencies in dynamic natural images (see Figure 4). At first glance, this would
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Figure 9. Direction tuning of critical band masking for optic flow. Details as Figure 3, except that tuning was
measured for one driving speed (30 mph).

appear to indicate a substantial bias towards low speeds, however, note that there are many
more spatio-temporal frequency combinations that produce low speeds in a 3D FFT—mostly
by high spatial frequency components that have relatively low amplitude which reduce the
mean amplitude at a given speed. Thus, the positive slopes we observe arise because of low
energy at low speeds relative to white noise.

We noted above that the slopes of log amplitude vs. log temporal frequency derived from our
stimuli were higher than expected for ideal images that are 1/ f in space time. This suggested
to us that the 1/ f slope for spatial frequency should change with temporal frequency. In order
to test this idea, we measured the slope of the amplitude spectrum as in Figure 2, but at each
temporal frequency within the 3D amplitude spectrum. Figure 10 shows that for noise, as
expected, the amplitude spectrum is flat (zero slope) and this is observed at all temporal

Figure 10. Slope of log amplitude vs. log spatial frequency at different temporal frequencies. The data show the
best fitting slope to the log spatial frequency spectrum (as in Figure 2) at each temporal frequency in movies of
size 128 × 128 pixels ×64 frames. Error bars show + or −1 standard deviation for clarity (crosses = noise, filled
symbols: circles 5 mph, squares 30 mph, triangles 70 mph; open symbols: circles Kill Bill vol 1, squares Toy Story,
triangles Harry Potter and the Philosopher’s Stone).
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frequencies. However, natural movies show a quite different pattern. The zero frequency
(static) component has a slope of around −1.7, as reported in Results. However, as temporal
frequency increases, the slope monotonically decreases (Dong & Atick 1995b). This means
that the image structure at high spatial frequencies has a relatively higher amplitude at high
temporal frequencies. We speculate that this is caused by the movements of real objects which
produce rigid contour motion at a common speed across scales. Temporal frequency must
increase with spatial frequency to produce a fixed speed (Equation 2) and so the amplitude
of high spatial frequencies must increase relative to that of low spatial frequencies. This is
statistically unlikely in dynamic noise, in which spatial frequency structure is uncorrelated
across space and time.

We also report that the distribution of motion directions in dynamic natural images is
biased toward cardinal axes (horizontal & vertical). This is consistent with a well-known
oblique effect in static natural scenes which contain relatively high amplitude at cardinal
orientations (Switkes et al. 1978; Hancock et al. 1992; van der Schaaf & van Hateren 1996;
Coppola et al. 1998; Keil & Cristobal 2000; Hansen et al. 2003; Betsch et al. 2004). The bias
towards vertical motion has been attributed to the presence of the horizon in many natural
images; such horizontal contour structure generates predominantly vertical motion energy.
The horizontal motion bias can be attributed to the combined influence of the horizontal
ground plane and the influence of gravity on the objects that sit upon it—i.e., vertical struc-
ture is more stable because gravity exerts no net force. We also show that the commercial
movie samples contain a further bias toward horizontal (left/right) motion that is not present
in our driving movies. This is consistent with motion along the ground plane of movie ob-
jects and actors and with horizontal camera panning sequences in many movies. Our own
movies conversely, contain expanding or contracting flow fields with motion in all directions,
reducing any ofthe horizontal/vertical bias.

Spatial frequency tuning

We found a small but significant reduction in contrast direction thresholds when components
at around 2–3 c/deg were removed from the masking noise suggesting that structure at this
spatial frequency is most effective for direction discrimination. The location of this peak in
direction sensitivity is consistent with the peak in contrast sensitivity reported for isolated
static sinusoidal patterns of this size (Campbell & Green 1965; Campbell & Robson 1968).
See Watson (2000) for a review of models. At supra-threshold levels, the location of the peak
coincides with the reduction in threshold and supra-threshold apparent contrast that occurs
when components at 2–4 c/deg are removed or phase randomised in natural images (Bex
& Makous 2002). For moving images, this finding is also consistent with the peak spatial
frequency (c. 3 c/deg) for the optimal motion stimulus (Watson & Turano 1995).

In a study of sensitivity to the direction of heading with band-pass filtered dot stimuli,
Kim and Turano (1999) reported that observers were most sensitive to spatial frequencies
at around 2 c/deg and the location of this peak shifted to lower spatial frequencies at higher
speeds. The peak observed in the present study is in good agreement with this result, although
the peak did not shift with speed. A possible reason that we did not observe a shift is that local
temporal frequencies (Figure 4) and speeds (Figure 6) in our stimuli were little affected by
our manipulation of driving speed (from 5 to 70 mph). We speculate that this is because under
natural conditions, for safety purposes, motorists and road designers increase the distance
between vehicles, lanes and boundaries, etc. at high travel speeds to reduce the likelihood
of collisions and to increase the time available for compensatory movements. This results in
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a relatively invariant distribution of retinal speed that may ensure constant sensitivity over
many locomotion speeds, but it undermines our efforts to compare optic flow sensitivity at
different natural travel speeds.

Lack of tuning for temporal frequency, speed and direction

Although we observed modest tuning for spatial frequency, there was no change in contrast
direction thresholds for any notch filtered temporal frequency, speed or direction filtered
noise mask. For isolated grating patterns, peak sensitivity shifts to lower spatial frequencies
as temporal frequency increases (Robson 1966; Kelly 1971; Kulikowski & Tolhurst 1973;
Tolhurst et al.1973). It might therefore be possible that observers switch to a different spatial
frequency for each temporal frequency notch filter and this somehow results in roughly
constant sensitivity. However, the notch filters removed all spatial frequencies at each peak
temporal frequency so performance must depend on other temporal frequencies—and here
we show that these other temporal frequencies are equally effective.

The peak sensitivity for speed also shifts to lower spatial frequencies as temporal frequency
increases, producing roughly constant sensitivity overall (Burr & Ross 1982). This observa-
tion is perhaps unsurprising because, when expressed in terms of the local modulation rate of
the image, sensitivity is relatively constant. Our notch filters removed different combinations
of spatial and temporal frequency and so it is possible that the flat speed tuning we observe
in Figure 7 arises because observers switch to different combinations of spatial and temporal
frequency under different masking conditions.

It is well established that visual acuity and sensitivity are often worse for stationary stimuli
at oblique angles than for identical horizontal or vertical stimuli (for reviews see Appelle
(1972) & Essock (1980)). A similar anisotropy favouring cardinal directions has also been
observed for detection and direction discrimination thresholds for moving targets (Ball &
Sekuler 1982; Heeley & Timney 1988; Heeley et al. 1997; Gros et al. 1998; Matthews &
Qian 1999; Loffler & Orbach 2001; Matthews et al. 2001; Westheimer 2003). The fact that
the human visual system is more sensitive to horizontal and vertical structure lead us to
expect that the direction tuning functions would have peaks at cardinal directions (0◦, 90◦,
180◦ and 270◦). This expectation was further encouraged by the observation that natural
movies have higher amplitude along these axes. Therefore, even if the visual system were not
more sensitive to cardinal directions, these directions have higher amplitude in the stimuli
and should therefore result in lower contrast detection thresholds. But the tuning functions
were flat.

Recently an inverse oblique effect has been reported in the perception of broad-band
and natural scenes. In these images, contrast increments on oblique axes are more visible
than those on cardinal axes (Essock et al. 2003; Hansen et al. 2003). Hansen et al. (2003)
suggest that the higher amplitudes along cardinal axes produce larger responses in neurons
tuned to these orientations and this produces greater divisive normalization (Heeger 1992;
Wilson & Humanski 1993), which in turn renders an increment discrimination more difficult.
An analogous regulation of contrast gain across channels could account for the flat tuning
functions observed here.

A failure of random phase masks?

The most frequently used broad-band mask is white noise because pixel values are indepen-
dent in these images (Pelli & Farell 1999). However, psychophysical estimates of channel
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bandwidth (Henning et al. 1981; Losada & Mullen 1995; Solomon 2000) and the tuning
of neurons in area V1, the first cortical projection area for visual input, have spatial fre-
quency tuning bandwidths that are approximately log scaled (Campbell et al. 1969; Maffei
& Fiorentini 1973; Ikeda & Wright 1975; Movshon et al. 1978; DeValois et al. 1982). This
relationship between the tuning of the visual system and the distribution of energy in natural
scenes means that the excitation across channels in the primate visual system is relatively
uniform for natural images, but is heavily biased towards high spatial frequencies for white
noise (Brady & Field 2000). It has previously been argued that this property can explain
some otherwise puzzling psychophysical results with moving noise patterns (Bex et al. 1995;
Brady et al. 1997; Hess et al. 1998). For example, when only one frame of a random dot
kinematogram (RDK) is spatial frequency filtered, motion energy at spatial scales common
to both frames should support motion perception, but does not (Morgan & Mather 1994).
This finding has been taken as evidence that motion detection is based not on motion energy
(Adelson & Bergen 1985; van Santen & Sperling 1985; Watson & Ahumada 1985), but on
correspondences between features (such as zero crossings). The locations of such features are
uncorrelated between frames in hybrid RDKs and motion detection fails because the visual
system cannot solve the correspondence problem (Morgan & Mather 1994). We have argued
instead that the visual system is overwhelmed by unpaired noise signals at high spatial scales
in the hybrid white noise stimuli. When 1/ f 2 noise (in which energy is distributed evenly
across constant log-bandwidth spatial frequency channels) is used instead of white noise,
motion perception is possible between all pairs of filtered and unfiltered frames of a RDK.
Performance cannot be based on edge matching in these patterns because there is no net
correspondence among edges in the two frames. Motion detection must therefore be based
on motion signals at spatial scales common to both images (i.e., motion energy).

In the present study, we therefore elected to use a noise mask whose spectrum was matched
to that of the stimulus and to the sensitivity of the visual system. However, is it possible that
the flat tuning we observed were caused by the random phase masks (with matched amplitude
spectra) instead of white noise masks? This is unlikely because, owing to the biases in the
amplitude spectra of dynamic natural scenes, if anything our choice should have overestimated
any tuning. For example, suppose that the visual system were equally sensitive to all spatial
frequencies, temporal frequencies and orientations. Any biases in the amplitude spectra of
our movies should elicit the largest response in the visual mechanisms that are most sensitive
to this component. The most visible stimulus therefore should be a movie that contains the
biased components presented with a mask that does not contain them. Since our functions
showed no evidence of such tuning it is therefore unlikely that the absence of tuning was
caused by an inappropriate choice of mask.

A failure of notch filtered masks?

Previous masking studies have employed band-pass or low-pass and high-pass filtered mask
images, with the exception of Losada and Mullen (1995) and Mullen and Losada (1999).
Low-pass and high-pass masks have the advantage that no assumptions are necessary about
the properties (e.g., bandwidths) of detectors under investigation. However, we favoured
notch filtered masks, in which all components within a target band are removed from the
noise. There are several advantages of such masks:

(1) All except the target components are masked equally in all conditions. Conversely,
low-pass and high-pass filters change the amplitude and bandwidth of masking as the
spatial frequency cut-off is changed across conditions.
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(2) Notch filtered masks prevent ‘off-frequency looking’ (Pelli & Farell 1999), analogous
to “off frequency listening” in auditory psychophysics (Patterson 1976). This refers
to the use of a channel that is non-optimally tuned for the stimulus in the absence of
a mask but which is relatively unaffected by the mask and may provide a misleading
estimate of selectivity and tuning.

(3) Low-pass and high-pass masks allow unspecified pooling across a number of unmasked
channels.

(4) It is easy to equate the RMS contrast of all masking images. This is difficult to achieve
with band-pass, low-pass or high-pass filtered noise masks without causing look-up-
table overflows when the requested luminance values exceed the range of the graphics
card or without severely limiting the range of mask contrasts available by the image
with the lowest contrast—typically the high-pass filtered image.

(5) Compared with low-pass and high-pass filtered masks, notch filtered masks require
half the number of trials for the same number of conditions (i.e., a single sweep rather
than separate sweeps for low-pass and high-pass masks).

Could the weak tuning we report be attributable to the use of notch filtered masks? This is
unlikely because previous studies in auditory (Patterson 1976) and visual (Losada & Mullen
1995; Mullen & Losada 1999) psychophysics have reported similar tuning for notch and
band-pass filtered masks. If anything, notch filters produce greater masking effects than band-
pass masks along with modest differences in the estimated channel bandwidth (Solomon
2000).

In order to address the concerns about our non-standard (phase random and notch fil-
tered) noise masks, we ran a control experiment to establish whether, with our paradigm,
we could replicate other studies that have used low-pass and high-pass filtered white noise.
We measured the critical channel for letter identification (Solomon & Pelli 1994; Pelli et al.
2004). RMS contrast thresholds for letter identification were measured in white noise or
in random-phase, amplitude-marched masking noise. The 26 letters of the alphabet were
generated in lower case Arial font using Adobe Photoshop and saved in uncompressed TIFF
format. The letters were negative contrast polarity (dark on light), sized 2 deg (based on the
height of letter “x”) and centered (at half the maximum horizontal and vertical size) on an
8 deg (256 × 256 pixel) blank background. To generate random phase masks, the 26 letters
were read from image files into MATLAB and scaled to zero mean and constant RMS con-
trast. The scaled letters were summed to produce an “average letter”. Each trial, a new mask
was created by randomising the phase spectrum of the average letter (as before, by combining
the amplitude spectrum of the average letter with the phase spectrum of a new random noise
sample). The pixel values were then scaled to fix the RMS contrast of the mask at 0.2 each
trial. For comparison, white noise masks were generated with the MATLAB function rand()
and were also scaled to zero mean and 0.2 RMS contrast. The noise masks were then notch
filtered with log exponential filters (Equation 3) with peaks varying from 0.125 to 16 cycles
per degree (corresponding to 0.06 to 7.3 cycles per letter) in log steps.

On each trial a target letter was selected at random and scaled to have zero mean and
an RMS contrast specified by a 3-down, 1-up staircase. The letter and mask were summed
and scaled between 0–255 with 10.8 bit resolution provided by bit-stealing (Tyler 1997)
within a circular raised cosine window subtending 8 deg at the 57 cm viewing distance. The
stimuli were presented for 500 ms with abrupt onset and offset. The observer’s task was
to identify the target letter by clicking the cursor on the corresponding letter presented n
two rows along the top of the screen. Feedback was provided following incorrect responses.
Figure 11 plots RMS contrast thresholds for 26 AFC letter identification as a function of the
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Figure 11. Critical band masking for stationary letter identification. As Figure 3, except that the target was 1 of
26 Arial font letters presented in white noise masks (filled symbols) or random phase average letter masks (see text
for details). Separated data on the right are for unfiltered masks. Inset image illustrates typical trial stimulus, in this
case a letter W in random-phase mask. Error bars show 95% confidence intervals. Curves are Gaussian fits to the
data.

centre frequency of the notch filter. Filled symbols show thresholds for white noise masks;
open symbols for random phase masks. Letter identification is band-pass tuned for spatial
frequency with both masks. Thresholds are lowest when components at 4.6 cycles per letter
are removed from white noise masks, in good agreement with previous estimates of peak
sensitivity for letters identification (Solomon & Pelli 1994)‡. With average letter random-
phase masks, the function is clearly band-pass tuned although the peak is shifted toward
a slightly higher spatial frequency (6.5 c/letter). This is consistent with the relatively high
amplitude of high spatial frequencies in white noise, compared to the average letter, whose
amplitude spectrum (calculated as described above for natural images) falls as 1/ f 1.8(the
slopes of the 26 individual letters measured individually have a mean of 1.8 and a standard
deviation of 0.15). The key feature of these results is that band-pass tuning is observed clearly
with random phase, notch filtered masks.

The present results cannot therefore be attributed to the masks employed in the present
study but instead show that the visual system relies upon all spatial and temporal structure
derived from real dynamic scenes, approximately equally to perform our direction of heading
task.

Conclusions

It has been suggested that the sensitivity of the visual system is influenced by the natural
environment in which humans have evolved or develop. Several investigators have proposed
that the visual system may be adapted to exploit the statistical redundancies in natural scenes
and in so doing maximise the efficiency with which natural images are encoded (Attneave
1954; Barlow 1961; Laughlin 1981; Srivinansan et al. 1982; Field 1987; Van Hateren 1992;
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van Hateren & van der Schaaf 1998; Parraga et al. 2000; Thomson et al. 2000; Tolhurst &
Tadmor 2000).

We confirm and extend previous studies that have reported statistical regularities in many
different natural images. We report that for a direction discrimination task, observers are
equally sensitive to components at all temporal frequencies, speeds and directions in high
contrast, dynamic natural images. Our results support an emerging view that at supra-
threshold contrasts, the responses of the visual system are relatively invariant of spatial scale
in natural images and that functional behaviour, such as estimation of direction of heading,
depends more on the relationships among image components than on their contrast detec-
tion threshold. At supra-threshold contrasts, in spite of large biases in the distribution of the
amplitude spectra of natural images, the responses of the visual system are relatively constant
and render the components of natural images equally visible to the visual system. Under this
view, structure at any spatial frequency, temporal frequency, speed or direction is equally
effective for visually-guided behaviour.
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