
Chapter 14. Statistical Description
of Data

14.0 Introduction

In this chapter and the next, the concept of data enters the discussion more
prominently than before.

Data consist of numbers, of course. But these numbers are fed into the computer,
not produced by it. These are numbers to be treated with considerable respect, neither
to be tampered with, nor subjected to a numerical process whose character you do
not completely understand. You are well advised to acquire a reverence for data that
is rather different from the “sporty” attitude that is sometimes allowable, or even
commendable, in other numerical tasks.

The analysis of data inevitably involves some trafficking with the field of
statistics, that gray area which is not quite a branch of mathematics — and just as
surely not quite a branch of science. In the following sections, you will repeatedly
encounter the following paradigm:

• apply some formula to the data to compute “a statistic”
• compute where the value of that statistic falls in a probability distribution

that is computed on the basis of some “null hypothesis”
• if it falls in a very unlikely spot, way out on a tail of the distribution,

conclude that the null hypothesis is false for your data set
If a statistic falls in a reasonable part of the distribution, you must not make

the mistake of concluding that the null hypothesis is “verified” or “proved.” That is
the curse of statistics, that it can never prove things, only disprove them! At best,
you can substantiate a hypothesis by ruling out, statistically, a whole long list of
competing hypotheses, every one that has ever been proposed. After a while your
adversaries and competitors will give up trying to think of alternative hypotheses,
or else they will grow old and die, and then your hypothesis will become accepted.
Sounds crazy, we know, but that’s how science works!

In this book we make a somewhat arbitrary distinction between data analysis
procedures that are model-independent and those that are model-dependent. In the
former category, we include so-called descriptive statistics that characterize a data
set in general terms: its mean, variance, and so on. We also include statistical tests
that seek to establish the “sameness” or “differentness” of two or more data sets, or
that seek to establish and measure a degree of correlation between two data sets.
These subjects are discussed in this chapter.

609

610 Chapter 14. Statistical Description of Data

In the other category, model-dependent statistics, we lump the whole subject of
fitting data to a theory, parameter estimation, least-squares fits, and so on. Those
subjects are introduced in Chapter 15.

Section 14.1 deals with so-called measures of central tendency, the moments of
a distribution, the median and mode. In §14.2 we learn to test whether different data
sets are drawn from distributions with different values of these measures of central
tendency. This leads naturally, in §14.3, to the more general question of whether two
distributions can be shown to be (significantly) different.

In §14.4–§14.7, we deal with measures of association for two distributions.
We want to determine whether two variables are “correlated” or “dependent” on
one another. If they are, we want to characterize the degree of correlation in
some simple ways. The distinction between parametric and nonparametric (rank)
methods is emphasized.

Section 14.8 introduces the concept of data smoothing, and discusses the
particular case of Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that
was presented in Chapter 6, especially §6.1–§6.4. You may wish, at this point,
to review those sections.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics].

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

14.1 Moments of a Distribution: Mean,
Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a tendency
to cluster around some particular value, then it may be useful to characterize the
set by a few numbers that are related to its moments, the sums of integer powers
of the values.

Best known is the mean of the values x1, . . . , xN ,

x =
1

N

N∑
j=1

xj (14.1.1)

which estimates the value around which central clustering occurs. Note the use of
an overbar to denote the mean; angle brackets are an equally common notation, e.g.,
〈x〉. You should be aware that the mean is not the only available estimator of this

14.1 Moments of a Distribution: Mean, Variance, Skewness 611

quantity, nor is it necessarily the best one. For values drawn from a probability
distribution with very broad “tails,” the mean may converge poorly, or not at all, as
the number of sampled points is increased. Alternative estimators, the median and
the mode, are mentioned at the end of this section.

Having characterized a distribution’s central value, one conventionally next
characterizes its “width” or “variability” around that value. Here again, more than
one measure is available. Most common is the variance,

Var(x1 . . . xN) =
1

N − 1

N∑
j=1

(xj − x)2 (14.1.2)

or its square root, the standard deviation,

σ(x1 . . . xN) =
√

Var(x1 . . . xN) (14.1.3)

Equation (14.1.2) estimates the mean squared deviation of x from its mean value.
There is a long story about why the denominator of (14.1.2) is N − 1 instead of
N . If you have never heard that story, you may consult any good statistics text.
Here we will be content to note that the N − 1 should be changed to N if you
are ever in the situation of measuring the variance of a distribution whose mean
x is known a priori rather than being estimated from the data. (We might also
comment that if the difference between N and N − 1 ever matters to you, then you
are probably up to no good anyway — e.g., trying to substantiate a questionable
hypothesis with marginal data.)

As the mean depends on the first moment of the data, so do the variance and
standard deviation depend on the second moment. It is not uncommon, in real
life, to be dealing with a distribution whose second moment does not exist (i.e., is
infinite). In this case, the variance or standard deviation is useless as a measure
of the data’s width around its central value: The values obtained from equations
(14.1.2) or (14.1.3) will not converge with increased numbers of points, nor show
any consistency from data set to data set drawn from the same distribution. This can
occur even when the width of the peak looks, by eye, perfectly finite. A more robust
estimator of the width is the average deviationormean absolutedeviation, defined by

ADev(x1 . . . xN) =
1

N

N∑
j=1

|xj − x| (14.1.4)

One often substitutes the sample median xmed for x in equation (14.1.4). For any
fixed sample, the median in fact minimizes the mean absolute deviation.

Statisticians have historically sniffed at the use of (14.1.4) instead of (14.1.2),
since the absolute value brackets in (14.1.4) are “nonanalytic” and make theorem-
proving difficult. In recent years, however, the fashion has changed, and the subject
of robust estimation (meaning, estimation for broad distributions with significant
numbers of “outlier” points) has become a popular and important one. Higher
moments, or statistics involving higher powers of the input data, are almost always
less robust than lower moments or statistics that involve only linear sums or (the
lowest moment of all) counting.

612 Chapter 14. Statistical Description of Data

(b)(a)

Skewness

negative positive

positive
(leptokurtic)

negative
(platykurtic)

Kurtosis

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
(Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN) =
1

N

N∑
j=1

[
xj − x

σ

]3
(14.1.5)

where σ = σ(x1 . . . xN) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends
out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value
for (14.1.5), even if the underlying distribution is in fact symmetrical (has zero
skewness). For (14.1.5) to be meaningful, we need to have some idea of its
standard deviation as an estimator of the skewness of the underlying distribution.
Unfortunately, that depends on the shape of the underlying distribution, and rather
critically on its tails! For the idealized case of a normal (Gaussian) distribution, the
standard deviation of (14.1.5) is approximately

√
15/N . In real life it is good practice

to believe in skewnesses only when they are several or many times as large as this.
The kurtosis is also a nondimensional quantity. It measures the relative

peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termed leptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN) =

⎧⎨
⎩ 1

N

N∑
j=1

[
xj − x

σ

]4⎫⎬
⎭− 3 (14.1.6)

where the −3 term makes the value zero for a normal distribution.

14.1 Moments of a Distribution: Mean, Variance, Skewness 613

The standard deviation of (14.1.6) as an estimator of the kurtosis of an
underlying normal distribution is

√
96/N . However, the kurtosis depends on such

a high moment that there are many real-life distributions for which the standard
deviation of (14.1.6) as an estimator is effectively infinite.

Calculation of the quantities defined in this section is perfectly straightforward.
Many textbooks use the binomial theorem to expand out the definitions into sums
of various powers of the data, e.g., the familiar

Var(x1 . . . xN) =
1

N − 1

⎡
⎣
⎛
⎝ N∑
j=1

x2j

⎞
⎠−Nx2

⎤
⎦ ≈ x2 − x2 (14.1.7)

but this can magnify the roundoff error by a large factor and is generally unjustifiable
in terms of computing speed. A clever way to minimize roundoff error, especially
for large samples, is to use the corrected two-pass algorithm [1]: First calculate x,
then calculate Var(x1 . . . xN) by

Var(x1 . . . xN) =
1

N − 1

⎧⎪⎨
⎪⎩
N∑
j=1

(xj − x)2 − 1

N

⎡
⎣ N∑
j=1

(xj − x)

⎤
⎦
2
⎫⎪⎬
⎪⎭ (14.1.8)

The second sum would be zero if x were exact, but otherwise it does a good job of
correcting the roundoff error in the first term.

#include <math.h>

void moment(float data[], int n, float *ave, float *adev, float *sdev,
float *var, float *skew, float *curt)

Given an array of data[1..n], this routine returns its mean ave, average deviation adev,
standard deviation sdev, variance var, skewness skew, and kurtosis curt.
{

void nrerror(char error_text[]);
int j;
float ep=0.0,s,p;

if (n <= 1) nrerror("n must be at least 2 in moment");
s=0.0; First pass to get the mean.
for (j=1;j<=n;j++) s += data[j];
*ave=s/n;
*adev=(*var)=(*skew)=(*curt)=0.0; Second pass to get the first (absolute), sec-

ond, third, and fourth moments of the
deviation from the mean.

for (j=1;j<=n;j++) {
*adev += fabs(s=data[j]-(*ave));
ep += s;
*var += (p=s*s);
*skew += (p *= s);
*curt += (p *= s);

}
*adev /= n;
*var=(*var-ep*ep/n)/(n-1); Corrected two-pass formula.
*sdev=sqrt(*var); Put the pieces together according to the con-

ventional definitions.if (*var) {
skew /= (n(*var)*(*sdev));
*curt=(*curt)/(n*(*var)*(*var))-3.0;

} else nrerror("No skew/kurtosis when variance = 0 (in moment)");
}

614 Chapter 14. Statistical Description of Data

Semi-Invariants

The mean and variance of independent random variables are additive: If x and y are
drawn independently from two, possibly different, probability distributions, then

(x+ y) = x+ y Var(x+ y) = Var(x) + Var(x) (14.1.9)

Higher moments are not, in general, additive. However, certain combinations of them,
called semi-invariants, are in fact additive. If the centered moments of a distribution are
denoted Mk,

Mk ≡
〈
(xi − x)k

〉
(14.1.10)

so that, e.g.,M2 = Var(x), then the first few semi-invariants, denoted Ik are given by

I2 = M2 I3 =M3 I4 = M4 − 3M2
2

I5 = M5 − 10M2M3 I6 =M6 − 15M2M4 − 10M2
3 + 30M3

2

(14.1.11)

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6) are simple powers
of the semi-invariants,

Skew(x) = I3/I
3/2
2 Kurt(x) = I4/I

2
2 (14.1.12)

A Gaussian distribution has all its semi-invariants higher than I2 equal to zero. A Poisson
distribution has all of its semi-invariants equal to its mean. For more details, see [2].

Median and Mode

The median of a probability distribution function p(x) is the value xmed for
which larger and smaller values of x are equally probable:

∫ xmed

−∞
p(x) dx =

1

2
=

∫ ∞

xmed

p(x) dx (14.1.13)

The median of a distribution is estimated from a sample of values x1, . . . ,
xN by finding that value xi which has equal numbers of values above it and below
it. Of course, this is not possible when N is even. In that case it is conventional
to estimate the median as the mean of the unique two central values. If the values
xj j = 1, . . . , N are sorted into ascending (or, for that matter, descending) order,
then the formula for the median is

xmed =

{
x(N+1)/2, N odd
1
2
(xN/2 + x(N/2)+1), N even

(14.1.14)

If a distribution has a strong central tendency, so that most of its area is under
a single peak, then the median is an estimator of the central value. It is a more
robust estimator than the mean is: The median fails as an estimator only if the area
in the tails is large, while the mean fails if the first moment of the tails is large;
it is easy to construct examples where the first moment of the tails is large even
though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). This is a process of order N logN . You might rightly think

14.2 Do Two Distributions Have the Same Means or Variances? 615

that this is wasteful, since it yields much more information than just the median
(e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in
§8.5 that the element x(N+1)/2 can be located in of order N operations. Consult
that section for routines.

The mode of a probability distribution function p(x) is the value of x where it
takes on a maximum value. The mode is useful primarily when there is a single, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a “compromise” value between the two peaks.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 2.

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics], vol. 1, §10.15

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Chan, T.F., Golub, G.H., and LeVeque, R.J. 1983, American Statistician, vol. 37, pp. 242–247. [1]

Cramér, H. 1946, Mathematical Methods of Statistics (Princeton: Princeton University Press),
§15.10. [2]

14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before
some event, a second set after it. We want to know whether the event, a “treatment”
or a “change in a control parameter,” made a difference.

Our first thought is to ask “how many standard deviations” one sample mean is
from the other. That number may in fact be a useful thing to know. It does relate to
the strength or “importance” of a difference of means if that difference is genuine.
However, by itself, it says nothing about whether the difference is genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data points is large.
Conversely, a difference may be moderately large but not significant, if the data
are sparse. We will be meeting these distinct concepts of strength and significance
several times in the next few sections.

A quantity that measures the significance of a difference of means is not the
number of standard deviations that they are apart, but the number of so-called
standard errors that they are apart. The standard error of a set of values measures
the accuracy with which the sample mean estimates the population (or “true”) mean.
Typically the standard error is equal to the sample’s standard deviation divided by
the square root of the number of points in the sample.

616 Chapter 14. Statistical Description of Data

Student’s t-test for Significantly Different Means

Applying the concept of standard error, the conventional statistic for measuring
the significance of a difference of means is termed Student’s t. When the two
distributions are thought to have the same variance, but possibly different means,
then Student’s t is computed as follows: First, estimate the standard error of the
difference of the means, sD, from the “pooled variance” by the formula

sD =

√∑
i∈A(xi − xA)2 +

∑
i∈B(xi − xB)2

NA + NB − 2

(
1

NA
+

1

NB

)
(14.2.1)

where each sum is over the points in one sample, the first or second, each mean
likewise refers to one sample or the other, and NA and NB are the numbers of points
in the first and second samples, respectively. Second, compute t by

t =
xA − xB

sD
(14.2.2)

Third, evaluate the significance of this value of t for Student’s distribution with
NA + NB − 2 degrees of freedom, by equations (6.4.7) and (6.4.9), and by the
routine betai (incomplete beta function) of §6.4.

The significance is a number between zero and one, and is the probability that
|t| could be this large or larger just by chance, for distributions with equal means.
Therefore, a small numerical value of the significance (0.05 or 0.01) means that the
observed difference is “very significant.” The function A(t|ν) in equation (6.4.7)
is one minus the significance.

As a routine, we have

#include <math.h>

void ttest(float data1[], unsigned long n1, float data2[], unsigned long n2,
float *t, float *prob)

Given the arrays data1[1..n1] and data2[1..n2], this routine returns Student’s t as t,
and its significance as prob, small values of prob indicating that the arrays have significantly
different means. The data arrays are assumed to be drawn from populations with the same
true variance.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
float betai(float a, float b, float x);
float var1,var2,svar,df,ave1,ave2;

avevar(data1,n1,&ave1,&var1);
avevar(data2,n2,&ave2,&var2);
df=n1+n2-2; Degrees of freedom.
svar=((n1-1)*var1+(n2-1)*var2)/df; Pooled variance.
t=(ave1-ave2)/sqrt(svar(1.0/n1+1.0/n2));
*prob=betai(0.5*df,0.5,df/(df+(*t)*(*t))); See equation (6.4.9).

}

which makes use of the following routine for computing the mean and variance
of a set of numbers,

14.2 Do Two Distributions Have the Same Means or Variances? 617

void avevar(float data[], unsigned long n, float *ave, float *var)
Given array data[1..n], returns its mean as ave and its variance as var.
{

unsigned long j;
float s,ep;

for (*ave=0.0,j=1;j<=n;j++) *ave += data[j];
*ave /= n;
*var=ep=0.0;
for (j=1;j<=n;j++) {

s=data[j]-(*ave);
ep += s;
*var += s*s;

}
*var=(*var-ep*ep/n)/(n-1); Corrected two-pass formula (14.1.8).

}

The next case to consider is where the two distributions have significantly
different variances, but we nevertheless want to know if their means are the same or
different. (A treatment for baldness has caused some patients to lose all their hair
and turned others into werewolves, but we want to know if it helps cure baldness on
the average!) Be suspicious of the unequal-variance t-test: If two distributions have
very different variances, then they may also be substantially different in shape; in
that case, the difference of the means may not be a particularly useful thing to know.

To find out whether the two data sets have variances that are significantly
different, you use the F-test, described later on in this section.

The relevant statistic for the unequal variance t-test is

t =
xA − xB

[Var(xA)/NA + Var(xB)/NB]1/2
(14.2.3)

This statistic is distributed approximately as Student’s t with a number of degrees
of freedom equal to

[
Var(xA)
NA

+
Var(xB)
NB

]2
[Var(xA)/NA]

2

NA − 1
+

[Var(xB)/NB]
2

NB − 1

(14.2.4)

Expression (14.2.4) is in general not an integer, but equation (6.4.7) doesn’t care.
The routine is

#include <math.h>
#include "nrutil.h"

void tutest(float data1[], unsigned long n1, float data2[], unsigned long n2,
float *t, float *prob)

Given the arrays data1[1..n1] and data2[1..n2], this routine returns Student’s t as t, and
its significance as prob, small values of prob indicating that the arrays have significantly differ-
ent means. The data arrays are allowed to be drawn from populations with unequal variances.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
float betai(float a, float b, float x);
float var1,var2,df,ave1,ave2;

618 Chapter 14. Statistical Description of Data

avevar(data1,n1,&ave1,&var1);
avevar(data2,n2,&ave2,&var2);
*t=(ave1-ave2)/sqrt(var1/n1+var2/n2);
df=SQR(var1/n1+var2/n2)/(SQR(var1/n1)/(n1-1)+SQR(var2/n2)/(n2-1));
*prob=betai(0.5*df,0.5,df/(df+SQR(*t)));

}

Our final example of a Student’s t test is the case of paired samples. Here
we imagine that much of the variance in both samples is due to effects that are
point-by-point identical in the two samples. For example, we might have two job
candidates who have each been rated by the same ten members of a hiring committee.
We want to know if the means of the ten scores differ significantly. We first try
ttest above, and obtain a value of prob that is not especially significant (e.g.,
> 0.05). But perhaps the significance is being washed out by the tendency of some
committee members always to give high scores, others always to give low scores,
which increases the apparent variance and thus decreases the significance of any
difference in the means. We thus try the paired-sample formulas,

Cov(xA, xB) ≡ 1

N − 1

N∑
i=1

(xAi − xA)(xBi − xB) (14.2.5)

sD =

[
Var(xA) + Var(xB) − 2Cov(xA, xB)

N

]1/2
(14.2.6)

t =
xA − xB

sD
(14.2.7)

where N is the number in each sample (number of pairs). Notice that it is important
that a particular value of i label the corresponding points in each sample, that is,
the ones that are paired. The significance of the t statistic in (14.2.7) is evaluated
for N − 1 degrees of freedom.

The routine is

#include <math.h>

void tptest(float data1[], float data2[], unsigned long n, float *t,
float *prob)

Given the paired arrays data1[1..n] and data2[1..n], this routine returns Student’s t for
paired data as t, and its significance as prob, small values of prob indicating a significant
difference of means.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
float betai(float a, float b, float x);
unsigned long j;
float var1,var2,ave1,ave2,sd,df,cov=0.0;

avevar(data1,n,&ave1,&var1);
avevar(data2,n,&ave2,&var2);
for (j=1;j<=n;j++)

cov += (data1[j]-ave1)*(data2[j]-ave2);
cov /= df=n-1;
sd=sqrt((var1+var2-2.0*cov)/n);
*t=(ave1-ave2)/sd;
*prob=betai(0.5*df,0.5,df/(df+(*t)*(*t)));

}

14.2 Do Two Distributions Have the Same Means or Variances? 619

F-Test for Significantly Different Variances

The F-test tests the hypothesis that two samples have different variances by
trying to reject the null hypothesis that their variances are actually consistent. The
statistic F is the ratio of one variance to the other, so values either � 1 or � 1
will indicate very significant differences. The distribution of F in the null case is
given in equation (6.4.11), which is evaluated using the routine betai. In the most
common case, we are willing to disprove the null hypothesis (of equal variances) by
either very large or very small values of F , so the correct significance is two-tailed,
the sum of two incomplete beta functions. It turns out, by equation (6.4.3), that the
two tails are always equal; we need compute only one, and double it. Occasionally,
when the null hypothesis is strongly viable, the identity of the two tails can become
confused, giving an indicated probability greater than one. Changing the probability
to two minus itself correctly exchanges the tails. These considerations and equation
(6.4.3) give the routine

void ftest(float data1[], unsigned long n1, float data2[], unsigned long n2,
float *f, float *prob)

Given the arrays data1[1..n1] and data2[1..n2], this routine returns the value of f, and
its significance as prob. Small values of prob indicate that the two arrays have significantly
different variances.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
float betai(float a, float b, float x);
float var1,var2,ave1,ave2,df1,df2;

avevar(data1,n1,&ave1,&var1);
avevar(data2,n2,&ave2,&var2);
if (var1 > var2) { Make F the ratio of the larger variance to the smaller

one.*f=var1/var2;
df1=n1-1;
df2=n2-1;

} else {
*f=var2/var1;
df1=n2-1;
df2=n1-1;

}
*prob = 2.0*betai(0.5*df2,0.5*df1,df2/(df2+df1*(*f)));
if (*prob > 1.0) *prob=2.0-*prob;

}

CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter IX(B).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

620 Chapter 14. Statistical Description of Data

14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask the single question: Are the two sets drawn from the same distribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null
hypothesis that two data sets are drawn from the same population distribution
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can be consistent with a single distribution function.
One can never prove that two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ
only by one part in 1010.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of
burn-out times? Is the incidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given
tables of numbers of events in discrete categories: first-born, second-born, etc.; or
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the
property that the null hypothesis is a known distribution (distribution of area in the
sky, or incidence of chicken pox in the general population). Fluorescent lights and
educational level involve the comparison of two equally unknown data sets (the two
brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is the chi-square
test. For continuous data as a function of a single variable, the most generally
accepted test is the Kolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose that Ni is the number of events observed in the ith bin, and that ni is
the number expected according to some known distribution. Note that the Ni’s are

14.3 Are Two Distributions Different? 621

integers, while the ni’s may not be. Then the chi-square statistic is

χ2 =
∑
i

(Ni − ni)
2

ni
(14.3.1)

where the sum is over all bins. A large value of χ2 indicates that the null hypothesis
(that theNi’s are drawn from the population represented by theni’s) is rather unlikely.

Any term j in (14.3.1) with 0 = nj = Nj should be omitted from the sum. A
term with nj = 0, Nj �= 0 gives an infinite χ2, as it should, since in this case the
Ni’s cannot possibly be drawn from the ni’s!

The chi-square probability functionQ(χ2|ν) is an incomplete gamma function,
and was already discussed in §6.2 (see equation 6.2.18). Strictly speaking Q(χ2|ν)
is the probability that the sum of the squares of ν random normal variables of unit
variance (and zero mean) will be greater than χ2. The terms in the sum (14.3.1)
are not individually normal. However, if either the number of bins is large (� 1),
or the number of events in each bin is large (� 1), then the chi-square probability
function is a good approximation to the distribution of (14.3.1) in the case of the null
hypothesis. Its use to estimate the significance of the chi-square test is standard.

The appropriate value of ν , the number of degrees of freedom, bears some
additional discussion. If the data are collected with the model ni’s fixed — that
is, not later renormalized to fit the total observed number of events ΣNi — then ν
equals the number of bins NB . (Note that this is not the total number of events!)
Much more commonly, the ni’s are normalized after the fact so that their sum equals
the sum of the Ni’s. In this case the correct value for ν is NB − 1, and the model
is said to have one constraint (knstrn=1 in the program below). If the model that
gives the ni’s has additional free parameters that were adjusted after the fact to agree
with the data, then each of these additional “fitted” parameters decreases ν (and
increases knstrn) by one additional unit.

We have, then, the following program:

void chsone(float bins[], float ebins[], int nbins, int knstrn, float *df,
float *chsq, float *prob)

Given the array bins[1..nbins] containing the observed numbers of events, and an array
ebins[1..nbins] containing the expected numbers of events, and given the number of con-
straints knstrn (normally one), this routine returns (trivially) the number of degrees of freedom
df, and (nontrivially) the chi-square chsq and the significance prob. A small value of prob
indicates a significant difference between the distributions bins and ebins. Note that bins
and ebins are both float arrays, although bins will normally contain integer values.
{

float gammq(float a, float x);
void nrerror(char error_text[]);
int j;
float temp;

*df=nbins-knstrn;
*chsq=0.0;
for (j=1;j<=nbins;j++) {

if (ebins[j] <= 0.0) nrerror("Bad expected number in chsone");
temp=bins[j]-ebins[j];
*chsq += temp*temp/ebins[j];

}
prob=gammq(0.5(*df),0.5*(*chsq)); Chi-square probability function. See §6.2.

}

622 Chapter 14. Statistical Description of Data

Next we consider the case of comparing two binned data sets. Let Ri be the
number of events in bin i for the first data set, Si the number of events in the same
bin i for the second data set. Then the chi-square statistic is

χ2 =
∑
i

(Ri − Si)
2

Ri + Si
(14.3.2)

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is
not just the average of Ri and Si (which would be an estimator of ni in 14.3.1).
Rather, it is twice the average, the sum. The reason is that each term in a chi-square
sum is supposed to approximate the square of a normally distributed quantity with
unit variance. The variance of the difference of two normal quantities is the sum
of their individual variances, not the average.

If the data were collected in such a way that the sum of the Ri’s is necessarily
equal to the sum of Si’s, then the number of degrees of freedom is equal to one
less than the number of bins, NB − 1 (that is, knstrn = 1), the usual case. If
this requirement were absent, then the number of degrees of freedom would be NB .
Example: A birdwatcher wants to know whether the distribution of sighted birds
as a function of species is the same this year as last. Each bin corresponds to one
species. If the birdwatcher takes his data to be the first 1000 birds that he saw in
each year, then the number of degrees of freedom is NB − 1. If he takes his data to
be all the birds he saw on a random sample of days, the same days in each year, then
the number of degrees of freedom is NB (knstrn = 0). In this latter case, note that
he is also testing whether the birds were more numerous overall in one year or the
other: That is the extra degree of freedom. Of course, any additional constraints on
the data set lower the number of degrees of freedom (i.e., increase knstrn to more
positive values) in accordance with their number.

The program is

void chstwo(float bins1[], float bins2[], int nbins, int knstrn, float *df,
float *chsq, float *prob)

Given the arrays bins1[1..nbins] and bins2[1..nbins], containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns the
number of degrees of freedom df, the chi-square chsq, and the significance prob. A small value
of prob indicates a significant difference between the distributions bins1 and bins2. Note that
bins1 and bins2 are both float arrays, although they will normally contain integer values.
{

float gammq(float a, float x);
int j;
float temp;

*df=nbins-knstrn;
*chsq=0.0;
for (j=1;j<=nbins;j++)

if (bins1[j] == 0.0 && bins2[j] == 0.0)
--(*df); No data means one less degree of free-

dom.else {
temp=bins1[j]-bins2[j];
*chsq += temp*temp/(bins1[j]+bins2[j]);

}
prob=gammq(0.5(*df),0.5*(*chsq)); Chi-square probability function. See §6.2.

}

14.3 Are Two Distributions Different? 623

Equation (14.3.2) and the routine chstwo both apply to the case where the total
number of data points is the same in the two binned sets. For unequal numbers of
data points, the formula analogous to (14.3.2) is

χ2 =
∑
i

(
√
S/RRi −

√
R/SSi)

2

Ri + Si
(14.3.3)

where

R ≡
∑
i

Ri S ≡
∑
i

Si (14.3.4)

are the respective numbers of data points. It is straightforward to make the
corresponding change in chstwo.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (or K–S) test is applicable to unbinned distributions
that are functions of a single independent variable, that is, to data sets where each
data point can be associated with a single number (lifetime of each lightbulb when
it burns out, or declination of each star). In such cases, the list of data points can
be easily converted to an unbiased estimator SN (x) of the cumulative distribution
function of the probability distribution from which it was drawn: If the N events are
located at values xi, i = 1, . . . , N , then SN (x) is the function giving the fraction
of data points to the left of a given value x. This function is obviously constant
between consecutive (i.e., sorted into ascending order) xi’s, and jumps by the same
constant 1/N at each xi. (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative
distribution function estimates by the above procedure. However, all cumulative
distribution functions agree at the smallest allowable value of x (where they are
zero), and at the largest allowable value of x (where they are unity). (The smallest
and largest values might of course be ±∞.) So it is the behavior between the largest
and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference
between two cumulative distribution functions: the absolute value of the area between
them, for example. Or their integrated mean square difference. The Kolmogorov-
Smirnov D is a particularly simple measure: It is defined as the maximum value
of the absolute difference between two cumulative distribution functions. Thus,
for comparing one data set’s SN (x) to a known cumulative distribution function
P (x), the K–S statistic is

D = max−∞<x<∞ |SN (x) − P (x)| (14.3.5)

while for comparing two different cumulative distribution functions SN1 (x) and
SN2 (x), the K–S statistic is

D = max−∞<x<∞ |SN1 (x) − SN2 (x)| (14.3.6)

624 Chapter 14. Statistical Description of Data

x

x

D

P(x)

SN (x)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Figure 14.3.1. Kolmogorov-Smirnov statistic D. A measured distribution of values in x (shown
as N dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative
probability distribution is plotted as P (x). A step-function cumulative probability distribution SN (x) is
constructed, one that rises an equal amount at each measured point. D is the greatest distance between
the two cumulative distributions.

What makes the K–S statistic useful is that its distribution in the case of the null
hypothesis (data sets drawn from the same distribution) can be calculated, at least to
useful approximation, thus giving the significance of any observed nonzero value of
D. A central feature of the K–S test is that it is invariant under reparametrization
of x; in other words, you can locally slide or stretch the x axis in Figure 14.3.1,
and the maximum distance D remains unchanged. For example, you will get the
same significance using x as using log x.

The function that enters into the calculation of the significance can be written
as the following sum:

QKS(λ) = 2

∞∑
j=1

(−1)j−1 e−2j
2λ2 (14.3.7)

which is a monotonic function with the limiting values

QKS(0) = 1 QKS(∞) = 0 (14.3.8)

In terms of this function, the significance level of an observed value of D (as
a disproof of the null hypothesis that the distributions are the same) is given
approximately [1] by the formula

Probability (D > observed) = QKS

([√
Ne + 0.12 + 0.11/

√
Ne

]
D
)

(14.3.9)

14.3 Are Two Distributions Different? 625

where Ne is the effective number of data points, Ne = N for the case (14.3.5)
of one distribution, and

Ne =
N1N2

N1 +N2
(14.3.10)

for the case (14.3.6) of two distributions, where N1 is the number of data points in
the first distribution, N2 the number in the second.

The nature of the approximation involved in (14.3.9) is that it becomes
asymptotically accurate as the Ne becomes large, but is already quite good for
Ne ≥ 4, as small a number as one might ever actually use. (See [1].)

So, we have the following routines for the cases of one and two distributions:

#include <math.h>
#include "nrutil.h"

void ksone(float data[], unsigned long n, float (*func)(float), float *d,
float *prob)

Given an array data[1..n], and given a user-supplied function of a single variable func which
is a cumulative distribution function ranging from 0 (for smallest values of its argument) to 1
(for largest values of its argument), this routine returns the K–S statistic d, and the significance
level prob. Small values of prob show that the cumulative distribution function of data is
significantly different from func. The array data is modified by being sorted into ascending
order.
{

float probks(float alam);
void sort(unsigned long n, float arr[]);
unsigned long j;
float dt,en,ff,fn,fo=0.0;

sort(n,data); If the data are already sorted into as-
cending order, then this call can be
omitted.

en=n;
*d=0.0;
for (j=1;j<=n;j++) { Loop over the sorted data points.

fn=j/en; Data’s c.d.f. after this step.
ff=(*func)(data[j]); Compare to the user-supplied function.
dt=FMAX(fabs(fo-ff),fabs(fn-ff)); Maximum distance.
if (dt > *d) *d=dt;
fo=fn;

}
en=sqrt(en);
prob=probks((en+0.12+0.11/en)(*d)); Compute significance.

}

#include <math.h>

void kstwo(float data1[], unsigned long n1, float data2[], unsigned long n2,
float *d, float *prob)

Given an array data1[1..n1], and an array data2[1..n2], this routine returns the K–
S statistic d, and the significance level prob for the null hypothesis that the data sets are
drawn from the same distribution. Small values of prob show that the cumulative distribution
function of data1 is significantly different from that of data2. The arrays data1 and data2
are modified by being sorted into ascending order.
{

float probks(float alam);
void sort(unsigned long n, float arr[]);
unsigned long j1=1,j2=1;
float d1,d2,dt,en1,en2,en,fn1=0.0,fn2=0.0;

626 Chapter 14. Statistical Description of Data

sort(n1,data1);
sort(n2,data2);
en1=n1;
en2=n2;
*d=0.0;
while (j1 <= n1 && j2 <= n2) { If we are not done...

if ((d1=data1[j1]) <= (d2=data2[j2])) fn1=j1++/en1; Next step is in data1.
if (d2 <= d1) fn2=j2++/en2; Next step is in data2.
if ((dt=fabs(fn2-fn1)) > *d) *d=dt;

}
en=sqrt(en1*en2/(en1+en2));
prob=probks((en+0.12+0.11/en)(*d)); Compute significance.

}

Both of the above routines use the following routine for calculating the function
QKS :

#include <math.h>
#define EPS1 0.001
#define EPS2 1.0e-8

float probks(float alam)
Kolmogorov-Smirnov probability function.
{

int j;
float a2,fac=2.0,sum=0.0,term,termbf=0.0;

a2 = -2.0*alam*alam;
for (j=1;j<=100;j++) {

term=fac*exp(a2*j*j);
sum += term;
if (fabs(term) <= EPS1*termbf || fabs(term) <= EPS2*sum) return sum;
fac = -fac; Alternating signs in sum.
termbf=fabs(term);

}
return 1.0; Get here only by failing to converge.

}

Variants on the K–S Test

The sensitivity of the K–S test to deviations from a cumulative distribution function
P (x) is not independent of x. In fact, the K–S test tends to be most sensitive around the
median value, where P (x) = 0.5, and less sensitive at the extreme ends of the distribution,
where P (x) is near 0 or 1. The reason is that the difference |SN (x) − P (x)| does not, in the
null hypothesis, have a probability distribution that is independent of x. Rather, its variance is
proportional to P (x)[1− P (x)], which is largest at P = 0.5. Since the K–S statistic (14.3.5)
is the maximum difference over all x of two cumulative distribution functions, a deviation that
might be statistically significant at its own value of x gets compared to the expected chance
deviation at P = 0.5, and is thus discounted. A result is that, while the K–S test is good at
finding shifts in a probability distribution, especially changes in the median value, it is not
always so good at finding spreads, which more affect the tails of the probability distribution,
and which may leave the median unchanged.

One way of increasing the power of the K–S statistic out on the tails is to replace
D (equation 14.3.5) by a so-called stabilized or weighted statistic [2-4], for example the
Anderson-Darling statistic,

D* = max
−∞<x<∞

|SN (x) − P (x)|√
P (x)[1− P (x)] (14.3.11)

14.3 Are Two Distributions Different? 627

Unfortunately, there is no simple formula analogous to equations (14.3.7) and (14.3.9) for this
statistic, although Noé [5] gives a computationalmethod using a recursion relation and provides
a graph of numerical results. There are many other possible similar statistics, for example

D** =

∫ 1

P=0

|SN (x)− P (x)|√
P (x)[1− P (x)]dP (x) (14.3.12)

which is also discussed by Anderson and Darling (see [3]).
Another approach, which we prefer as simpler and more direct, is due to Kuiper [6,7].

We already mentioned that the standard K–S test is invariant under reparametrizations of the
variable x. An even more general symmetry, which guarantees equal sensitivities at all values
of x, is to wrap the x axis around into a circle (identifying the points at±∞), and to look for
a statistic that is now invariant under all shifts and parametrizations on the circle. This allows,
for example, a probability distribution to be “cut” at some central value of x, and the left and
right halves to be interchanged, without altering the statistic or its significance.

Kuiper’s statistic, defined as

V = D+ +D− = max
−∞<x<∞

[SN (x)− P (x)] + max
−∞<x<∞

[P (x)− SN (x)] (14.3.13)

is the sum of the maximum distance of SN (x) above and below P (x). You should be able
to convince yourself that this statistic has the desired invariance on the circle: Sketch the
indefinite integral of two probability distributions defined on the circle as a function of angle
around the circle, as the angle goes through several times 360◦ . If you change the starting
point of the integration, D+ and D− change individually, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statistic V ,
directly analogous to equations (14.3.7)–(14.3.10). Let

QKP (λ) = 2

∞∑
j=1

(4j2λ2 − 1)e−2j
2λ2 (14.3.14)

which is monotonic and satisfies

QKP (0) = 1 QKP (∞) = 0 (14.3.15)

In terms of this function the significance level is [1]

Probability (V > observed) = QKP

([√
Ne + 0.155 + 0.24/

√
Ne

]
D

)
(14.3.16)

Here Ne is N in the one-sample case, or is given by equation (14.3.10) in the case of
two samples.

Of course, Kuiper’s test is ideal for any problem originally defined on a circle, for
example, to test whether the distribution in longitude of something agrees with some theory,
or whether two somethings have different distributions in longitude. (See also [8].)

We will leave to you the coding of routines analogous to ksone, kstwo, and probks,
above. (For λ < 0.4, don’t try to do the sum 14.3.14. Its value is 1, to 7 figures, but the series
can require many terms to converge, and loses accuracy to roundoff.)

Two final cautionary notes: First, we should mention that all varieties of K–S test lack
the ability to discriminate some kinds of distributions. A simple example is a probability
distribution with a narrow “notch” within which the probability falls to zero. Such a
distribution is of course ruled out by the existence of even one data point within the notch,
but, because of its cumulative nature, a K–S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean
and variance), then the distribution of the K–S statisticD for a cumulative distribution function
P (x) that uses the estimated parameters is no longer given by equation (14.3.9). In general,
you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.

CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(C) and IX(E).

628 Chapter 14. Statistical Description of Data

Stephens, M.A. 1970, Journal of the Royal Statistical Society, ser. B, vol. 32, pp. 115–122. [1]

Anderson, T.W., and Darling, D.A. 1952, Annals of Mathematical Statistics, vol. 23, pp. 193–212.
[2]

Darling, D.A. 1957, Annals of Mathematical Statistics, vol. 28, pp. 823–838. [3]

Michael, J.R. 1983, Biometrika, vol. 70, no. 1, pp. 11–17. [4]

Noé, M. 1972, Annals of Mathematical Statistics, vol. 43, pp. 58–64. [5]
Kuiper, N.H. 1962, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,

ser. A., vol. 63, pp. 38–47. [6]

Stephens, M.A. 1965, Biometrika, vol. 52, pp. 309–321. [7]
Fisher, N.I., Lewis, T., and Embleton, B.J.J. 1987, Statistical Analysis of Spherical Data (New

York: Cambridge University Press). [8]

14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal with measures of association
for two distributions. The situation is this: Each data point has two or more
different quantities associated with it, and we want to know whether knowledge of
one quantity gives us any demonstrable advantage in predicting the value of another
quantity. In many cases, one variable will be an “independent” or “control” variable,
and another will be a “dependent” or “measured” variable. Then, we want to know if
the latter variable is in fact dependent on or associated with the former variable. If it
is, we want to have some quantitative measure of the strength of the association. One
often hears this loosely stated as the question of whether two variables are correlated
or uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in §14.5 and §14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with
different categories forming a loose hierarchy.

• A variable is called nominal if its values are the members of some
unordered set. For example, “state of residence” is a nominal variable
that (in the U.S.) takes on one of 50 values; in astrophysics, “type of
galaxy” is a nominal variable with the three values “spiral,” “elliptical,”
and “irregular.”

• A variable is termed ordinal if its values are the members of a discrete, but
ordered, set. Examples are: grade in school, planetary order from the Sun
(Mercury = 1, Venus = 2, . . .), number of offspring. There need not be
any concept of “equal metric distance” between the values of an ordinal
variable, only that they be intrinsically ordered.

• We will call a variable continuous if its values are real numbers, as
are times, distances, temperatures, etc. (Social scientists sometimes
distinguish between interval and ratio continuous variables, but we do not
find that distinction very compelling.)

14.4 Contingency Table Analysis of Two Distributions 629

1. male

2. female

.

.

.

.

.

.

.

.

.
. . .

.

.

.

. . .

. . .

. . .

. . .1.
red

of
red males

N11

of
red females

N21

of
green females

N22

of
green males

N12

of
 males
N1⋅

of
females
N2⋅

2.
green

of red
N ⋅1

of green
N⋅2

total #
N

Figure 14.4.1. Example of a contingency table for two nominal variables, here sex and color. The
row and column marginals (totals) are shown. The variables are “nominal,” i.e., the order in which
their values are listed is arbitrary and does not affect the result of the contingency table analysis. If
the ordering of values has some intrinsic meaning, then the variables are “ordinal” or “continuous,” and
correlation techniques (§14.5-§14.6) can be utilized.

A continuous variable can always be made into an ordinal one by binning it
into ranges. If we choose to ignore the ordering of the bins, then we can turn it into
a nominal variable. Nominal variables constitute the lowest type of the hierarchy,
and therefore the most general. For example, a set of several continuous or ordinal
variables can be turned, if crudely, into a single nominal variable, by coarsely
binning each variable and then taking each distinct combination of bin assignments
as a single nominal value. When multidimensional data are sparse, this is often
the only sensible way to proceed.

The remainder of this section will deal with measures of association between
nominal variables. For any pair of nominal variables, the data can be displayed as
a contingency table, a table whose rows are labeled by the values of one nominal
variable, whose columns are labeled by the values of the other nominal variable,
and whose entries are nonnegative integers giving the number of observed events
for each combination of row and column (see Figure 14.4.1). The analysis of
association between nominal variables is thus called contingency table analysis or
crosstabulation analysis.

We will introduce two different approaches. The first approach, based on the
chi-square statistic, does a good job of characterizing the significance of association,
but is only so-so as a measure of the strength (principally because its numerical
values have no very direct interpretations). The second approach, based on the
information-theoretic concept of entropy, says nothing at all about the significance of
association (use chi-square for that!), but is capable of very elegantly characterizing
the strength of an association already known to be significant.

630 Chapter 14. Statistical Description of Data

Measures of Association Based on Chi-Square

Some notation first: Let Nij denote the number of events that occur with the
first variable x taking on its ith value, and the second variable y taking on its jth
value. Let N denote the total number of events, the sum of all the Nij’s. Let Ni·
denote the number of events for which the first variable x takes on its ith value
regardless of the value of y; N·j is the number of events with the jth value of y
regardless of x. So we have

Ni· =
∑
j

Nij N·j =
∑
i

Nij

N =
∑
i

Ni· =
∑
j

N·j
(14.4.1)

N·j and Ni· are sometimes called the row and column totals or marginals, but we
will use these terms cautiously since we can never keep straight which are the rows
and which are the columns!

The null hypothesis is that the two variables x and y have no association. In this
case, the probability of a particular value of x given a particular value of y should
be the same as the probability of that value of x regardless of y. Therefore, in the
null hypothesis, the expected number for any Nij , which we will denote nij , can be
calculated from only the row and column totals,

nij
N·j

=
Ni·
N

which implies nij =
Ni·N·j
N

(14.4.2)

Notice that if a column or row total is zero, then the expected number for all the
entries in that column or row is also zero; in that case, the never-occurring bin of
x or y should simply be removed from the analysis.

The chi-square statistic is now given by equation (14.3.1), which, in the present
case, is summed over all entries in the table,

χ2 =
∑
i,j

(Nij − nij)
2

nij
(14.4.3)

The number of degrees of freedom is equal to the number of entries in the table
(product of its row size and column size) minus the number of constraints that have
arisen from our use of the data themselves to determine the nij . Each row total and
column total is a constraint, except that this overcounts by one, since the total of the
column totals and the total of the row totals both equal N , the total number of data
points. Therefore, if the table is of size I by J , the number of degrees of freedom is
IJ − I − J + 1. Equation (14.4.3), along with the chi-square probability function
(§6.2), now give the significance of an association between the variables x and y.

Suppose there is a significant association. How do we quantify its strength, so
that (e.g.) we can compare the strength of one association with another? The idea
here is to find some reparametrization of χ2 which maps it into some convenient
interval, like 0 to 1, where the result is not dependent on the quantity of data that we
happen to sample, but rather depends only on the underlying population from which

14.4 Contingency Table Analysis of Two Distributions 631

the data were drawn. There are several different ways of doing this. Two of the
more common are called Cramer’s V and the contingency coefficient C.

The formula for Cramer’s V is

V =

√
χ2

N min (I − 1, J − 1)
(14.4.4)

where I and J are again the numbers of rows and columns, and N is the total
number of events. Cramer’s V has the pleasant property that it lies between zero
and one inclusive, equals zero when there is no association, and equals one only
when the association is perfect: All the events in any row lie in one unique column,
and vice versa. (In chess parlance, no two rooks, placed on a nonzero table entry,
can capture each other.)

In the case of I = J = 2, Cramer’s V is also referred to as the phi statistic.
The contingency coefficient C is defined as

C =

√
χ2

χ2 + N
(14.4.5)

It also lies between zero and one, but (as is apparent from the formula) it can never
achieve the upper limit. While it can be used to compare the strength of association
of two tables with the same I and J , its upper limit depends on I and J . Therefore
it can never be used to compare tables of different sizes.

The trouble with both Cramer’s V and the contingency coefficient C is that,
when they take on values in between their extremes, there is no very direct
interpretation of what that value means. For example, you are in Las Vegas, and a
friend tells you that there is a small, but significant, association between the color of
a croupier’s eyes and the occurrence of red and black on his roulette wheel. Cramer’s
V is about 0.028, your friend tells you. You know what the usual odds against you
are (because of the green zero and double zero on the wheel). Is this association
sufficient for you to make money? Don’t ask us!

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-30 A small number.

void cntab1(int **nn, int ni, int nj, float *chisq, float *df, float *prob,
float *cramrv, float *ccc)

Given a two-dimensional contingency table in the form of an integer array nn[1..ni][1..nj],
this routine returns the chi-square chisq, the number of degrees of freedom df, the significance
level prob (small values indicating a significant association), and two measures of association,
Cramer’s V (cramrv) and the contingency coefficient C (ccc).
{

float gammq(float a, float x);
int nnj,nni,j,i,minij;
float sum=0.0,expctd,*sumi,*sumj,temp;

sumi=vector(1,ni);
sumj=vector(1,nj);
nni=ni; Number of rows
nnj=nj; and columns.
for (i=1;i<=ni;i++) { Get the row totals.

sumi[i]=0.0;

632 Chapter 14. Statistical Description of Data

for (j=1;j<=nj;j++) {
sumi[i] += nn[i][j];
sum += nn[i][j];

}
if (sumi[i] == 0.0) --nni; Eliminate any zero rows by reducing the num-

ber.}
for (j=1;j<=nj;j++) { Get the column totals.

sumj[j]=0.0;
for (i=1;i<=ni;i++) sumj[j] += nn[i][j];
if (sumj[j] == 0.0) --nnj; Eliminate any zero columns.

}
*df=nni*nnj-nni-nnj+1; Corrected number of degrees of freedom.
*chisq=0.0;
for (i=1;i<=ni;i++) { Do the chi-square sum.

for (j=1;j<=nj;j++) {
expctd=sumj[j]*sumi[i]/sum;
temp=nn[i][j]-expctd;
*chisq += temp*temp/(expctd+TINY); Here TINY guarantees that any

eliminated row or column will
not contribute to the sum.

}
}
prob=gammq(0.5(*df),0.5*(*chisq)); Chi-square probability function.
minij = nni < nnj ? nni-1 : nnj-1;
*cramrv=sqrt(*chisq/(sum*minij));
*ccc=sqrt(*chisq/(*chisq+sum));
free_vector(sumj,1,nj);
free_vector(sumi,1,ni);

}

Measures of Association Based on Entropy

Consider the game of “twenty questions,” where by repeated yes/no questions
you try to eliminate all except one correct possibility for an unknown object. Better
yet, consider a generalization of the game, where you are allowed to ask multiple
choice questions as well as binary (yes/no) ones. The categories in your multiple
choice questions are supposed to be mutually exclusive and exhaustive (as are
“yes” and “no”).

The value to you of an answer increases with the number of possibilities that
it eliminates. More specifically, an answer that eliminates all except a fraction p of
the remaining possibilities can be assigned a value − lnp (a positive number, since
p < 1). The purpose of the logarithm is to make the value additive, since (e.g.) one
question that eliminates all but 1/6 of the possibilities is considered as good as two
questions that, in sequence, reduce the number by factors 1/2 and 1/3.

So that is the value of an answer; but what is the value of a question? If there
are I possible answers to the question (i = 1, . . . , I) and the fraction of possibilities
consistent with the ith answer is pi (with the sum of the pi’s equal to one), then the
value of the question is the expectation value of the value of the answer, denoted H ,

H = −
I∑
i=1

pi lnpi (14.4.6)

In evaluating (14.4.6), note that

lim
p→0

p lnp = 0 (14.4.7)

14.4 Contingency Table Analysis of Two Distributions 633

The value H lies between 0 and ln I. It is zero only when one of the pi’s is one, all
the others zero: In this case, the question is valueless, since its answer is preordained.
H takes on its maximum value when all the pi’s are equal, in which case the question
is sure to eliminate all but a fraction 1/I of the remaining possibilities.

The value H is conventionally termed the entropy of the distribution given by
the pi’s, a terminology borrowed from statistical physics.

So far we have said nothing about the association of two variables; but suppose
we are deciding what question to ask next in the game and have to choose between
two candidates, or possibly want to ask both in one order or another. Suppose that
one question, x, has I possible answers, labeled by i, and that the other question,
y, as J possible answers, labeled by j. Then the possible outcomes of asking both
questions form a contingency table whose entries Nij , when normalized by dividing
by the total number of remaining possibilities N , give all the information about the
p’s. In particular, we can make contact with the notation (14.4.1) by identifying

pij =
Nij
N

pi· =
Ni·
N

(outcomes of question x alone)

p·j =
N·j
N

(outcomes of question y alone)

(14.4.8)

The entropies of the questions x and y are, respectively,

H(x) = −
∑
i

pi· ln pi· H(y) = −
∑
j

p·j lnp·j (14.4.9)

The entropy of the two questions together is

H(x, y) = −
∑
i,j

pij lnpij (14.4.10)

Now what is the entropy of the question y given x (that is, if x is asked first)?
It is the expectation value over the answers to x of the entropy of the restricted
y distribution that lies in a single column of the contingency table (corresponding
to the x answer):

H(y|x) = −
∑
i

pi·
∑
j

pij
pi·

ln
pij
pi·

= −
∑
i,j

pij ln
pij
pi·

(14.4.11)

Correspondingly, the entropy of x given y is

H(x|y) = −
∑
j

p·j
∑
i

pij
p·j

ln
pij
p·j

= −
∑
i,j

pij ln
pij
p·j

(14.4.12)

We can readily prove that the entropy of y given x is never more than the
entropy of y alone, i.e., that asking x first can only reduce the usefulness of asking

634 Chapter 14. Statistical Description of Data

y (in which case the two variables are associated!):

H(y|x) −H(y) = −
∑
i,j

pij ln
pij/pi·
p·j

=
∑
i,j

pij ln
p·jpi·
pij

≤
∑
i,j

pij

(
p·jpi·
pij

− 1

)

=
∑
i,j

pi·p·j −
∑
i,j

pij

= 1 − 1 = 0

(14.4.13)

where the inequality follows from the fact

lnw ≤ w − 1 (14.4.14)

We now have everything we need to define a measure of the “dependency” of y
on x, that is to say a measure of association. This measure is sometimes called the
uncertainty coefficient of y. We will denote it as U(y|x),

U(y|x) ≡ H(y) −H(y|x)

H(y)
(14.4.15)

This measure lies between zero and one, with the value 0 indicating that x and y
have no association, the value 1 indicating that knowledge of x completely predicts
y. For in-between values, U(y|x) gives the fraction of y’s entropy H(y) that is
lost if x is already known (i.e., that is redundant with the information in x). In our
game of “twenty questions,” U(y|x) is the fractional loss in the utility of question
y if question x is to be asked first.

If we wish to view x as the dependent variable, y as the independent one, then
interchanging x and y we can of course define the dependency of x on y,

U(x|y) ≡ H(x) −H(x|y)

H(x)
(14.4.16)

If we want to treat x and y symmetrically, then the useful combination turns
out to be

U(x, y) ≡ 2

[
H(y) +H(x) −H(x, y)

H(x) + H(y)

]
(14.4.17)

If the two variables are completely independent, then H(x, y) = H(x) + H(y), so
(14.4.17) vanishes. If the two variables are completely dependent, then H(x) =
H(y) = H(x, y), so (14.4.16) equals unity. In fact, you can use the identities (easily
proved from equations 14.4.9–14.4.12)

H(x, y) = H(x) + H(y|x) = H(y) +H(x|y) (14.4.18)

to show that

U(x, y) =
H(x)U(x|y) + H(y)U(y|x)

H(x) + H(y)
(14.4.19)

i.e., that the symmetrical measure is just a weighted average of the two asymmetrical
measures (14.4.15) and (14.4.16), weighted by the entropy of each variable separately.

Here is a program for computing all the quantities discussed, H(x), H(y),
H(x|y), H(y|x), H(x, y), U(x|y), U(y|x), and U(x, y):

14.4 Contingency Table Analysis of Two Distributions 635

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-30 A small number.

void cntab2(int **nn, int ni, int nj, float *h, float *hx, float *hy,
float *hygx, float *hxgy, float *uygx, float *uxgy, float *uxy)

Given a two-dimensional contingency table in the form of an integer array nn[i][j], where i
labels the x variable and ranges from 1 to ni, j labels the y variable and ranges from 1 to nj,
this routine returns the entropy h of the whole table, the entropy hx of the x distribution, the
entropy hy of the y distribution, the entropy hygx of y given x, the entropy hxgy of x given y,
the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y (eq. 14.4.16),
and the symmetrical dependency uxy (eq. 14.4.17).
{

int i,j;
float sum=0.0,p,*sumi,*sumj;

sumi=vector(1,ni);
sumj=vector(1,nj);
for (i=1;i<=ni;i++) { Get the row totals.

sumi[i]=0.0;
for (j=1;j<=nj;j++) {

sumi[i] += nn[i][j];
sum += nn[i][j];

}
}
for (j=1;j<=nj;j++) { Get the column totals.

sumj[j]=0.0;
for (i=1;i<=ni;i++)

sumj[j] += nn[i][j];
}
*hx=0.0; Entropy of the x distribution,
for (i=1;i<=ni;i++)

if (sumi[i]) {
p=sumi[i]/sum;
*hx -= p*log(p);

}
*hy=0.0; and of the y distribution.
for (j=1;j<=nj;j++)

if (sumj[j]) {
p=sumj[j]/sum;
*hy -= p*log(p);

}
*h=0.0;
for (i=1;i<=ni;i++) Total entropy: loop over both x

for (j=1;j<=nj;j++) and y.
if (nn[i][j]) {

p=nn[i][j]/sum;
*h -= p*log(p);

}
*hygx=(*h)-(*hx); Uses equation (14.4.18),
*hxgy=(*h)-(*hy); as does this.
*uygx=(*hy-*hygx)/(*hy+TINY); Equation (14.4.15).
*uxgy=(*hx-*hxgy)/(*hx+TINY); Equation (14.4.16).
uxy=2.0(*hx+*hy-*h)/(*hx+*hy+TINY); Equation (14.4.17).
free_vector(sumj,1,nj);
free_vector(sumi,1,ni);

}

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

636 Chapter 14. Statistical Description of Data

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Fano, R.M. 1961, Transmission of Information (New York: Wiley and MIT Press), Chapter 2.

14.5 Linear Correlation

We next turn to measures of association between variables that are ordinal
or continuous, rather than nominal. Most widely used is the linear correlation
coefficient. For pairs of quantities (xi, yi), i = 1, . . . , N , the linear correlation
coefficient r (also called the product-moment correlation coefficient, or Pearson’s
r) is given by the formula

r =

∑
i

(xi − x)(yi − y)√∑
i

(xi − x)2
√∑

i

(yi − y)2
(14.5.1)

where, as usual, x is the mean of the xi’s, y is the mean of the yi’s.
The value of r lies between −1 and 1, inclusive. It takes on a value of 1, termed

“complete positive correlation,” when the data points lie on a perfect straight line
with positive slope, with x and y increasing together. The value 1 holds independent
of the magnitude of the slope. If the data points lie on a perfect straight line with
negative slope, y decreasing as x increases, then r has the value −1; this is called
“complete negative correlation.” A value of r near zero indicates that the variables
x and y are uncorrelated.

When a correlation is known to be significant, r is one conventional way of
summarizing its strength. In fact, the value of r can be translated into a statement
about what residuals (root mean square deviations) are to be expected if the data are
fitted to a straight line by the least-squares method (see §15.2, especially equations
15.2.13 – 15.2.14). Unfortunately, r is a rather poor statistic for deciding whether
an observed correlation is statistically significant, and/or whether one observed
correlation is significantly stronger than another. The reason is that r is ignorant of
the individual distributions of x and y, so there is no universal way to compute its
distribution in the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis
is that x and y are uncorrelated, and if the distributions for x and y each have
enough convergent moments (“tails” die off sufficiently rapidly), and if N is large
(typically> 500), then r is distributed approximately normally, with a mean of zero
and a standard deviation of 1/

√
N . In that case, the (double-sided) significance of

the correlation, that is, the probability that |r| should be larger than its observed
value in the null hypothesis, is

erfc

(
|r| √N√

2

)
(14.5.2)

where erfc(x) is the complementary error function, equation (6.2.8), computed by
the routines erffc or erfcc of §6.2. A small value of (14.5.2) indicates that the

14.5 Linear Correlation 637

two distributions are significantly correlated. (See expression 14.5.9 below for a
more accurate test.)

Most statistics books try to go beyond (14.5.2) and give additional statistical
tests that can be made using r. In almost all cases, however, these tests are valid
only for a very special class of hypotheses, namely that the distributions of x and y
jointly form a binormal or two-dimensional Gaussian distribution around their mean
values, with joint probability density

p(x, y) dxdy = const. × exp

[
−1

2
(a11x

2 − 2a12xy + a22y
2)

]
dxdy (14.5.3)

where a11, a12, and a22 are arbitrary constants. For this distribution r has the value

r = − a12√
a11a22

(14.5.4)

There are occasions when (14.5.3) may be known to be a good model of the
data. There may be other occasions when we are willing to take (14.5.3) as at least
a rough and ready guess, since many two-dimensional distributions do resemble a
binormal distribution, at least not too far out on their tails. In either situation, we can
use (14.5.3) to go beyond (14.5.2) in any of several directions:

First, we can allow for the possibility that the number N of data points is not
large. Here, it turns out that the statistic

t = r

√
N − 2

1 − r2
(14.5.5)

is distributed in the null case (of no correlation) like Student’s t-distribution with
ν = N − 2 degrees of freedom, whose two-sided significance level is given by
1 − A(t|ν) (equation 6.4.7). As N becomes large, this significance and (14.5.2)
become asymptotically the same, so that one never does worse by using (14.5.5),
even if the binormal assumption is not well substantiated.

Second, when N is only moderately large (≥ 10), we can compare whether
the difference of two significantly nonzero r’s, e.g., from different experiments, is
itself significant. In other words, we can quantify whether a change in some control
variable significantly alters an existing correlation between two other variables. This
is done by using Fisher’s z-transformation to associate each measured r with a
corresponding z,

z =
1

2
ln

(
1 + r

1 − r

)
(14.5.6)

Then, each z is approximately normally distributed with a mean value

z =
1

2

[
ln

(
1 + rtrue
1 − rtrue

)
+

rtrue
N − 1

]
(14.5.7)

where rtrue is the actual or population value of the correlation coefficient, and with
a standard deviation

σ(z) ≈ 1√
N − 3

(14.5.8)

638 Chapter 14. Statistical Description of Data

Equations (14.5.7) and (14.5.8), when they are valid, give several useful
statistical tests. For example, the significance level at which a measured value of r
differs from some hypothesized value rtrue is given by

erfc

(|z − z| √N − 3√
2

)
(14.5.9)

where z and z are given by (14.5.6) and (14.5.7), with small values of (14.5.9)
indicating a significant difference. (Setting z = 0 makes expression 14.5.9 a more
accurate replacement for expression 14.5.2 above.) Similarly, the significance of a
difference between two measured correlation coefficients r1 and r2 is

erfc

⎛
⎝ |z1 − z2|√

2
√

1
N1−3 + 1

N2−3

⎞
⎠ (14.5.10)

where z1 and z2 are obtained from r1 and r2 using (14.5.6), and where N1 and N2
are, respectively, the number of data points in the measurement of r1 and r2.

All of the significances above are two-sided. If you wish to disprove the null
hypothesis in favor of a one-sided hypothesis, such as that r1 > r2 (where the sense
of the inequality was decided a priori), then (i) if your measured r1 and r2 have
the wrong sense, you have failed to demonstrate your one-sided hypothesis, but (ii)
if they have the right ordering, you can multiply the significances given above by
0.5, which makes them more significant.

But keep in mind: These interpretations of the r statistic can be completely
meaningless if the joint probability distribution of your variables x and y is too
different from a binormal distribution.

#include <math.h>
#define TINY 1.0e-20 Will regularize the unusual case of complete correlation.

void pearsn(float x[], float y[], unsigned long n, float *r, float *prob,
float *z)

Given two arrays x[1..n] and y[1..n], this routine computes their correlation coefficient
r (returned as r), the significance level at which the null hypothesis of zero correlation is
disproved (prob whose small value indicates a significant correlation), and Fisher’s z (returned
as z), whose value can be used in further statistical tests as described above.
{

float betai(float a, float b, float x);
float erfcc(float x);
unsigned long j;
float yt,xt,t,df;
float syy=0.0,sxy=0.0,sxx=0.0,ay=0.0,ax=0.0;

for (j=1;j<=n;j++) { Find the means.
ax += x[j];
ay += y[j];

}
ax /= n;
ay /= n;
for (j=1;j<=n;j++) { Compute the correlation coefficient.

xt=x[j]-ax;
yt=y[j]-ay;
sxx += xt*xt;
syy += yt*yt;

14.6 Nonparametric or Rank Correlation 639

sxy += xt*yt;
}
*r=sxy/(sqrt(sxx*syy)+TINY);
*z=0.5*log((1.0+(*r)+TINY)/(1.0-(*r)+TINY)); Fisher’s z transformation.
df=n-2;
t=(*r)*sqrt(df/((1.0-(*r)+TINY)*(1.0+(*r)+TINY))); Equation (14.5.5).
*prob=betai(0.5*df,0.5,df/(df+t*t)); Student’s t probability.

/* *prob=erfcc(fabs((*z)*sqrt(n-1.0))/1.4142136) */
For large n, this easier computation of prob, using the short routine erfcc, would give approx-
imately the same value.
}

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(A) and IX(B).

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), §19.7.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

14.6 Nonparametric or Rank Correlation

It is precisely the uncertainty in interpreting the significance of the linear
correlation coefficient r that leads us to the important concepts of nonparametric or
rank correlation. As before, we are givenN pairs of measurements (xi, yi). Before,
difficulties arose because we did not necessarily know the probability distribution
function from which the xi’s or yi’s were drawn.

The key concept of nonparametric correlation is this: If we replace the value
of each xi by the value of its rank among all the other xi’s in the sample, that
is, 1, 2, 3, . . ., N , then the resulting list of numbers will be drawn from a perfectly
known distribution function, namely uniformly from the integers between 1 and N ,
inclusive. Better than uniformly, in fact, since if the xi’s are all distinct, then each
integer will occur precisely once. If some of the xi’s have identical values, it is
conventional to assign to all these “ties” the mean of the ranks that they would have
had if their values had been slightly different. This midrank will sometimes be an
integer, sometimes a half-integer. In all cases the sum of all assigned ranks will be
the same as the sum of the integers from 1 to N , namely 1

2N(N + 1).
Of course we do exactly the same procedure for the yi’s, replacing each value

by its rank among the other yi’s in the sample.
Now we are free to invent statistics for detecting correlation between uniform

sets of integers between 1 and N , keeping in mind the possibility of ties in the ranks.
There is, of course, some loss of information in replacing the original numbers by
ranks. We could construct some rather artificial examples where a correlation could
be detected parametrically (e.g., in the linear correlation coefficient r), but could not

640 Chapter 14. Statistical Description of Data

be detected nonparametrically. Such examples are very rare in real life, however,
and the slight loss of information in ranking is a small price to pay for a very major
advantage: When a correlation is demonstrated to be present nonparametrically,
then it is really there! (That is, to a certainty level that depends on the significance
chosen.) Nonparametric correlation is more robust than linear correlation, more
resistant to unplanned defects in the data, in the same sort of sense that the median
is more robust than the mean. For more on the concept of robustness, see §15.7.

As always in statistics, some particular choices of a statistic have already been
invented for us and consecrated, if not beatified, by popular use. We will discuss
two, the Spearman rank-order correlation coefficient (rs), and Kendall’s tau (τ).

Spearman Rank-Order Correlation Coefficient

Let Ri be the rank of xi among the other x’s, Si be the rank of yi among the
other y’s, ties being assigned the appropriate midrank as described above. Then the
rank-order correlation coefficient is defined to be the linear correlation coefficient
of the ranks, namely,

rs =

∑
i(Ri −R)(Si − S)√∑

i(Ri − R)2
√∑

i(Si − S)2
(14.6.1)

The significance of a nonzero value of rs is tested by computing

t = rs

√
N − 2

1 − r2s
(14.6.2)

which is distributed approximately as Student’s distribution with N − 2 degrees of
freedom. A key point is that this approximation does not depend on the original
distribution of the x’s and y’s; it is always the same approximation, and always
pretty good.

It turns out that rs is closely related to another conventional measure of
nonparametric correlation, the so-called sum squared difference of ranks, defined as

D =
N∑
i=1

(Ri − Si)
2 (14.6.3)

(This D is sometimes denoted D**, where the asterisks are used to indicate that
ties are treated by midranking.)

When there are no ties in the data, then the exact relation between D and rs is

rs = 1 − 6D

N3 −N
(14.6.4)

When there are ties, then the exact relation is slightly more complicated: Let fk be
the number of ties in the kth group of ties among theRi’s, and let gm be the number
of ties in the mth group of ties among the Si’s. Then it turns out that

rs =
1 − 6

N3 −N

[
D + 1

12

∑
k(f3k − fk) + 1

12

∑
m(g3m − gm)

]
[

1 −
∑
k(f

3
k − fk)

N3 −N

]1/2 [
1 −

∑
m(g3m − gm)

N3 −N

]1/2 (14.6.5)

14.6 Nonparametric or Rank Correlation 641

holds exactly. Notice that if all the fk’s and all the gm’s are equal to one, meaning
that there are no ties, then equation (14.6.5) reduces to equation (14.6.4).

In (14.6.2) we gave a t-statistic that tests the significance of a nonzero rs. It is
also possible to test the significance of D directly. The expectation value of D in
the null hypothesis of uncorrelated data sets is

D =
1

6
(N3 −N) − 1

12

∑
k

(f3k − fk) − 1

12

∑
m

(g3m − gm) (14.6.6)

its variance is

Var(D) =
(N − 1)N2(N + 1)2

36

×
[
1 −

∑
k(f

3
k − fk)

N3 −N

] [
1 −

∑
m(g3m − gm)

N3 −N

] (14.6.7)

and it is approximately normally distributed, so that the significance level is a
complementary error function (cf. equation 14.5.2). Of course, (14.6.2) and (14.6.7)
are not independent tests, but simply variants of the same test. In the program that
follows, we calculate both the significance level obtained by using (14.6.2) and the
significance level obtained by using (14.6.7); their discrepancy will give you an idea
of how good the approximations are. You will also notice that we break off the task
of assigning ranks (including tied midranks) into a separate function, crank.

#include <math.h>
#include "nrutil.h"

void spear(float data1[], float data2[], unsigned long n, float *d, float *zd,
float *probd, float *rs, float *probrs)

Given two data arrays, data1[1..n] and data2[1..n], this routine returns their sum-squared
difference of ranks as D, the number of standard deviations by which D deviates from its null-
hypothesis expected value as zd, the two-sided significance level of this deviation as probd,
Spearman’s rank correlation rs as rs, and the two-sided significance level of its deviation from
zero as probrs. The external routines crank (below) and sort2 (§8.2) are used. A small value
of either probd or probrs indicates a significant correlation (rs positive) or anticorrelation
(rs negative).
{

float betai(float a, float b, float x);
void crank(unsigned long n, float w[], float *s);
float erfcc(float x);
void sort2(unsigned long n, float arr[], float brr[]);
unsigned long j;
float vard,t,sg,sf,fac,en3n,en,df,aved,*wksp1,*wksp2;

wksp1=vector(1,n);
wksp2=vector(1,n);
for (j=1;j<=n;j++) {

wksp1[j]=data1[j];
wksp2[j]=data2[j];

}
sort2(n,wksp1,wksp2); Sort each of the data arrays, and convert the entries to

ranks. The values sf and sg return the sums
∑
(f3k−fk)

and
∑
(g3m − gm), respectively.

crank(n,wksp1,&sf);
sort2(n,wksp2,wksp1);
crank(n,wksp2,&sg);
*d=0.0;
for (j=1;j<=n;j++) Sum the squared difference of ranks.

*d += SQR(wksp1[j]-wksp2[j]);

642 Chapter 14. Statistical Description of Data

en=n;
en3n=en*en*en-en;
aved=en3n/6.0-(sf+sg)/12.0; Expectation value of D,
fac=(1.0-sf/en3n)*(1.0-sg/en3n);
vard=((en-1.0)*en*en*SQR(en+1.0)/36.0)*fac; and variance of D give
*zd=(*d-aved)/sqrt(vard); number of standard devia-

tions and significance.*probd=erfcc(fabs(*zd)/1.4142136);
rs=(1.0-(6.0/en3n)(*d+(sf+sg)/12.0))/sqrt(fac); Rank correlation coefficient,
fac=(*rs+1.0)*(1.0-(*rs));
if (fac > 0.0) {

t=(*rs)*sqrt((en-2.0)/fac); and its t value,
df=en-2.0;
*probrs=betai(0.5*df,0.5,df/(df+t*t)); give its significance.

} else
*probrs=0.0;

free_vector(wksp2,1,n);
free_vector(wksp1,1,n);

}

void crank(unsigned long n, float w[], float *s)
Given a sorted array w[1..n], replaces the elements by their rank, including midranking of ties,
and returns as s the sum of f3 − f , where f is the number of elements in each tie.
{

unsigned long j=1,ji,jt;
float t,rank;

*s=0.0;
while (j < n) {

if (w[j+1] != w[j]) { Not a tie.
w[j]=j;
++j;

} else { A tie:
for (jt=j+1;jt<=n && w[jt]==w[j];jt++); How far does it go?
rank=0.5*(j+jt-1); This is the mean rank of the tie,
for (ji=j;ji<=(jt-1);ji++) w[ji]=rank; so enter it into all the tied

entries,t=jt-j;
*s += t*t*t-t; and update s.
j=jt;

}
}
if (j == n) w[n]=n; If the last element was not tied, this is its rank.

}

Kendall’s Tau

Kendall’s τ is even more nonparametric than Spearman’s rs or D. Instead of
using the numerical difference of ranks, it uses only the relative ordering of ranks:
higher in rank, lower in rank, or the same in rank. But in that case we don’t even
have to rank the data! Ranks will be higher, lower, or the same if and only if
the values are larger, smaller, or equal, respectively. On balance, we prefer rs as
being the more straightforward nonparametric test, but both statistics are in general
use. In fact, τ and rs are very strongly correlated and, in most applications, are
effectively the same test.

To define τ , we start with the N data points (xi, yi). Now consider all
1
2
N(N − 1) pairs of data points, where a data point cannot be paired with itself,

and where the points in either order count as one pair. We call a pair concordant

14.6 Nonparametric or Rank Correlation 643

if the relative ordering of the ranks of the two x’s (or for that matter the two x’s
themselves) is the same as the relative ordering of the ranks of the two y’s (or for
that matter the two y’s themselves). We call a pair discordant if the relative ordering
of the ranks of the two x’s is opposite from the relative ordering of the ranks of the
two y’s. If there is a tie in either the ranks of the two x’s or the ranks of the two
y’s, then we don’t call the pair either concordant or discordant. If the tie is in the
x’s, we will call the pair an “extra y pair.” If the tie is in the y’s, we will call the
pair an “extra x pair.” If the tie is in both the x’s and the y’s, we don’t call the pair
anything at all. Are you still with us?

Kendall’s τ is now the following simple combination of these various counts:

τ =
concordant − discordant√

concordant + discordant + extra-y
√

concordant + discordant + extra-x
(14.6.8)

You can easily convince yourself that this must lie between 1 and −1, and that it
takes on the extreme values only for complete rank agreement or complete rank
reversal, respectively.

More important, Kendall has worked out, from the combinatorics, the approx-
imate distribution of τ in the null hypothesis of no association between x and y.
In this case τ is approximately normally distributed, with zero expectation value
and a variance of

Var(τ) =
4N + 10

9N(N − 1)
(14.6.9)

The following program proceeds according to the above description, and
therefore loops over all pairs of data points. Beware: This is an O(N2) algorithm,
unlike the algorithm for rs, whose dominant sort operations are of order N logN . If
you are routinely computing Kendall’s τ for data sets of more than a few thousand
points, you may be in for some serious computing. If, however, you are willing to
bin your data into a moderate number of bins, then read on.

#include <math.h>

void kendl1(float data1[], float data2[], unsigned long n, float *tau,
float *z, float *prob)

Given data arrays data1[1..n] and data2[1..n], this program returns Kendall’s τ as tau,
its number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
negative).
{

float erfcc(float x);
unsigned long n2=0,n1=0,k,j;
long is=0;
float svar,aa,a2,a1;

for (j=1;j<n;j++) { Loop over first member of pair,
for (k=(j+1);k<=n;k++) { and second member.

a1=data1[j]-data1[k];
a2=data2[j]-data2[k];
aa=a1*a2;
if (aa) { Neither array has a tie.

++n1;

644 Chapter 14. Statistical Description of Data

++n2;
aa > 0.0 ? ++is : --is;

} else { One or both arrays have ties.
if (a1) ++n1; An “extra x” event.
if (a2) ++n2; An “extra y” event.

}
}

}
*tau=is/(sqrt((double) n1)*sqrt((double) n2)); Equation (14.6.8).
svar=(4.0*n+10.0)/(9.0*n*(n-1.0)); Equation (14.6.9).
*z=(*tau)/sqrt(svar);
*prob=erfcc(fabs(*z)/1.4142136); Significance.

}

Sometimes it happens that there are only a few possible values each for x and
y. In that case, the data can be recorded as a contingency table (see §14.4) that gives
the number of data points for each contingency of x and y.

Spearman’s rank-order correlation coefficient is not a very natural statistic
under these circumstances, since it assigns to each x and y bin a not-very-meaningful
midrank value and then totals up vast numbers of identical rank differences. Kendall’s
tau, on the other hand, with its simple counting, remains quite natural. Furthermore,
its O(N2) algorithm is no longer a problem, since we can arrange for it to loop over
pairs of contingency table entries (each containing many data points) instead of over
pairs of data points. This is implemented in the program that follows.

Note that Kendall’s tau can be applied only to contingency tables where both
variables are ordinal, i.e., well-ordered, and that it looks specifically for monotonic
correlations, not for arbitrary associations. These two properties make it less general
than the methods of §14.4, which applied to nominal, i.e., unordered, variables and
arbitrary associations.

Comparing kendl1 above with kendl2 below, you will see that we have
“floated” a number of variables. This is because the number of events in a
contingency table might be sufficiently large as to cause overflows in some of the
integer arithmetic, while the number of individual data points in a list could not
possibly be that large [for an O(N2) routine!].

#include <math.h>

void kendl2(float **tab, int i, int j, float *tau, float *z, float *prob)
Given a two-dimensional table tab[1..i][1..j], such that tab[k][l] contains the number
of events falling in bin k of one variable and bin l of another, this program returns Kendall’s τ
as tau, its number of standard deviations from zero as z, and its two-sided significance level as
prob. Small values of prob indicate a significant correlation (tau positive) or anticorrelation
(tau negative) between the two variables. Although tab is a float array, it will normally
contain integral values.
{

float erfcc(float x);
long nn,mm,m2,m1,lj,li,l,kj,ki,k;
float svar,s=0.0,points,pairs,en2=0.0,en1=0.0;

nn=i*j; Total number of entries in contingency table.
points=tab[i][j];
for (k=0;k<=nn-2;k++) { Loop over entries in table,

ki=(k/j); decoding a row,
kj=k-j*ki; and a column.
points += tab[ki+1][kj+1]; Increment the total count of events.
for (l=k+1;l<=nn-1;l++) { Loop over other member of the pair,

14.7 Do Two-Dimensional Distributions Differ? 645

li=l/j; decoding its row
lj=l-j*li; and column.
mm=(m1=li-ki)*(m2=lj-kj);
pairs=tab[ki+1][kj+1]*tab[li+1][lj+1];
if (mm) { Not a tie.

en1 += pairs;
en2 += pairs;
s += (mm > 0 ? pairs : -pairs); Concordant, or discordant.

} else {
if (m1) en1 += pairs;
if (m2) en2 += pairs;

}
}

}
*tau=s/sqrt(en1*en2);
svar=(4.0*points+10.0)/(9.0*points*(points-1.0));
*z=(*tau)/sqrt(svar);
*prob=erfcc(fabs(*z)/1.4142136);

}

CITED REFERENCES AND FURTHER READING:

Lehmann, E.L. 1975, Nonparametrics: Statistical Methods Based on Ranks (San Francisco:
Holden-Day).

Downie, N.M., and Heath, R.W. 1965, Basic Statistical Methods, 2nd ed. (New York: Harper &
Row), pp. 206–209.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

14.7 Do Two-Dimensional Distributions Differ?

We here discuss a useful generalization of the K–S test (§14.3) to two-dimensional
distributions. This generalization is due to Fasano and Franceschini [1], a variant on an
earlier idea due to Peacock [2].

In a two-dimensional distribution, each data point is characterized by an (x, y) pair of
values. An example near to our hearts is that each of the 19 neutrinos that were detected
from Supernova 1987A is characterized by a time ti and by an energy Ei (see [3]). We
might wish to know whether these measured pairs (ti, Ei), i = 1 . . . 19 are consistent with a
theoretical model that predicts neutrino flux as a function of both time and energy — that is,
a two-dimensional probability distribution in the (x, y) [here, (t, E)] plane. That would be a
one-sample test. Or, given two sets of neutrino detections, from two comparable detectors,
we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional K–S test, we want to range over
the (x, y) plane in search of some kind of maximum cumulative difference between two
two-dimensional distributions. Unfortunately, cumulative probability distribution is not
well-defined in more than one dimension! Peacock’s insight was that a good surrogate is
the integrated probability in each of four natural quadrants around a given point (xi, yi),
namely the total probabilities (or fraction of data) in (x > xi, y > yi), (x < xi, y > yi),
(x < xi, y < yi), (x > xi, y < yi). The two-dimensional K–S statistic D is now taken
to be the maximum difference (ranging both over data points and over quadrants) of the
corresponding integrated probabilities. When comparing two data sets, the value of D may
depend on which data set is ranged over. In that case, define an effective D as the average

646 Chapter 14. Statistical Description of Data

− 3 − 2 − 1 0 1 2 3
− 3

− 2

− 1

0

1

2

3

.11|.09

.65|.26

.12|.09

.12|.56

Figure 14.7.1. Two-dimensional distributions of 65 triangles and 35 squares. The two-dimensional K–S
test finds that point one of whose quadrants (shown by dotted lines) maximizes the difference between
fraction of triangles and fraction of squares. Then, equation (14.7.1) indicates whether the difference is
statistically significant, i.e., whether the triangles and squaresmust have different underlyingdistributions.

of the two values obtained. If you are confused at this point about the exact definition of D,
don’t fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem
to have somewhat different distributions in the plane. The dotted lines are centered on the
triangle that maximizes the D statistic; the maximum occurs in the upper-left quadrant. That
quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The
value of D is thus 0.44. Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution
of D in the null hypothesis is independent of the shape of the two-dimensional distribution.
In this respect the two-dimensional K–S test is not as natural as its one-dimensional parent.
However, extensive Monte Carlo integrations have shown that the distribution of the two-
dimensionalD is very nearly identical for even quite different distributions, as long as they
have the same coefficient of correlation r, defined in the usual way by equation (14.5.1). In
their paper, Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the
distribution ofD as a function of (of course)D, sample size N , and coefficient of correlation
r. Analyzing their results, one finds that the significance levels for the two-dimensional K–S
test can be summarized by the simple, though approximate, formulas,

Probability (D > observed) = QKS

(√
N D

1 +
√
1− r2(0.25− 0.75/

√
N)

)
(14.7.1)

14.7 Do Two-Dimensional Distributions Differ? 647

for the one-sample case, and the same for the two-sample case, but with

N =
N1N2

N1 +N2
. (14.7.2)

The above formulas are accurate enough when N >∼ 20, and when the indicated
probability (significance level) is less than (more significant than) 0.20 or so. When the
indicated probability is > 0.20, its value may not be accurate, but the implication that the
data and model (or two data sets) are not significantly different is certainly correct. Notice
that in the limit of r → 1 (perfect correlation), equations (14.7.1) and (14.7.2) reduce to
equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and
the two-dimensional K–S test becomes a one-dimensional K–S test.

The significance level for the data in Figure 14.7.1, by the way, is about 0.001. This
establishes to a near-certainty that the triangles and squares were drawn from different
distributions. (As in fact they were.)

Of course, if you do not want to rely on the Monte Carlo experiments embodied in
equation (14.7.1), you can do your own: Generate a lot of synthetic data sets from your
model, each one with the same number of points as the real data set. Compute D for each
synthetic data set, using the accompanying computer routines (but ignoring their calculated
probabilities), and count what fraction of the time these syntheticD’s exceed theD from the
real data. That fraction is your significance.

One disadvantage of the two-dimensional tests, by comparison with their one-
dimensional progenitors, is that the two-dimensional tests require of order N2 operations:
Two nested loops of order N take the place of an N logN sort. For small computers, this
restricts the usefulness of the tests to N less than several thousand.

We now give computer implementations. The one-sample case is embodied in the
routine ks2d1s (that is, 2-dimensions, 1-sample). This routine calls a straightforward utility
routine quadct to count points in the four quadrants, and it calls a user-supplied routine
quadvl that must be capable of returning the integrated probability of an analytic model in
each of four quadrants around an arbitrary (x, y) point. A trivial sample quadvl is shown;
realistic quadvls can be quite complicated, often incorporating numerical quadratures over
analytic two-dimensional distributions.

#include <math.h>
#include "nrutil.h"

void ks2d1s(float x1[], float y1[], unsigned long n1,
void (*quadvl)(float, float, float *, float *, float *, float *),
float *d1, float *prob)

Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x and y
coordinates of n1 data points in arrays x1[1..n1] and y1[1..n1], and given a user-supplied
function quadvl that exemplifies the model, this routine returns the two-dimensional K-S
statistic as d1, and its significance level as prob. Small values of prob show that the sample
is significantly different from the model. Note that the test is slightly distribution-dependent,
so prob is only an estimate.
{

void pearsn(float x[], float y[], unsigned long n, float *r, float *prob,
float *z);

float probks(float alam);
void quadct(float x, float y, float xx[], float yy[], unsigned long nn,

float *fa, float *fb, float *fc, float *fd);
unsigned long j;
float dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen;

*d1=0.0;
for (j=1;j<=n1;j++) { Loop over the data points.

quadct(x1[j],y1[j],x1,y1,n1,&fa,&fb,&fc,&fd);
(*quadvl)(x1[j],y1[j],&ga,&gb,&gc,&gd);
*d1=FMAX(*d1,fabs(fa-ga));
*d1=FMAX(*d1,fabs(fb-gb));
*d1=FMAX(*d1,fabs(fc-gc));

648 Chapter 14. Statistical Description of Data

*d1=FMAX(*d1,fabs(fd-gd));
For both the sample and the model, the distribution is integrated in each of four
quadrants, and the maximum difference is saved.

}
pearsn(x1,y1,n1,&r1,&dum,&dumm); Get the linear correlation coefficient r1.
sqen=sqrt((double)n1);
rr=sqrt(1.0-r1*r1);
Estimate the probability using the K-S probability function probks.
*prob=probks(*d1*sqen/(1.0+rr*(0.25-0.75/sqen)));

}

void quadct(float x, float y, float xx[], float yy[], unsigned long nn,
float *fa, float *fb, float *fc, float *fd)

Given an origin (x,y), and an array of nn points with coordinates xx[1..nn] and yy[1..nn],
count how many of them are in each quadrant around the origin, and return the normalized
fractions. Quadrants are labeled alphabetically, counterclockwise from the upper right. Used
by ks2d1s and ks2d2s.
{

unsigned long k,na,nb,nc,nd;
float ff;
na=nb=nc=nd=0;
for (k=1;k<=nn;k++) {

if (yy[k] > y) {
xx[k] > x ? ++na : ++nb;

} else {
xx[k] > x ? ++nd : ++nc;

}
}
ff=1.0/nn;
*fa=ff*na;
*fb=ff*nb;
*fc=ff*nc;
*fd=ff*nd;

}

#include "nrutil.h"

void quadvl(float x, float y, float *fa, float *fb, float *fc, float *fd)
This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square −1 < x < 1, −1 < y < 1. In general this routine
should return, for any point (x,y), the fraction of the total distribution in each of the four
quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1. Quadrants
are alphabetical, counterclockwise from the upper right.
{

float qa,qb,qc,qd;

qa=FMIN(2.0,FMAX(0.0,1.0-x));
qb=FMIN(2.0,FMAX(0.0,1.0-y));
qc=FMIN(2.0,FMAX(0.0,x+1.0));
qd=FMIN(2.0,FMAX(0.0,y+1.0));
*fa=0.25*qa*qb;
*fb=0.25*qb*qc;
*fc=0.25*qc*qd;
*fd=0.25*qd*qa;

}

The routine ks2d2s is the two-sample case of the two-dimensional K–S test. It also calls
quadct, pearsn, and probks. Being a two-sample test, it does not need an analytic model.

14.7 Do Two-Dimensional Distributions Differ? 649

#include <math.h>
#include "nrutil.h"

void ks2d2s(float x1[], float y1[], unsigned long n1, float x2[], float y2[],
unsigned long n2, float *d, float *prob)

Two-dimensional Kolmogorov-Smirnov test on two samples. Given the x and y coordinates of
the first sample as n1 values in arrays x1[1..n1] and y1[1..n1], and likewise for the second
sample, n2 values in arrays x2 and y2, this routine returns the two-dimensional, two-sample
K-S statistic as d, and its significance level as prob. Small values of prob show that the
two samples are significantly different. Note that the test is slightly distribution-dependent, so
prob is only an estimate.
{

void pearsn(float x[], float y[], unsigned long n, float *r, float *prob,
float *z);

float probks(float alam);
void quadct(float x, float y, float xx[], float yy[], unsigned long nn,

float *fa, float *fb, float *fc, float *fd);
unsigned long j;
float d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,sqen;

d1=0.0;
for (j=1;j<=n1;j++) { First, use points in the first sample as ori-

gins.quadct(x1[j],y1[j],x1,y1,n1,&fa,&fb,&fc,&fd);
quadct(x1[j],y1[j],x2,y2,n2,&ga,&gb,&gc,&gd);
d1=FMAX(d1,fabs(fa-ga));
d1=FMAX(d1,fabs(fb-gb));
d1=FMAX(d1,fabs(fc-gc));
d1=FMAX(d1,fabs(fd-gd));

}
d2=0.0;
for (j=1;j<=n2;j++) { Then, use points in the second sample as

origins.quadct(x2[j],y2[j],x1,y1,n1,&fa,&fb,&fc,&fd);
quadct(x2[j],y2[j],x2,y2,n2,&ga,&gb,&gc,&gd);
d2=FMAX(d2,fabs(fa-ga));
d2=FMAX(d2,fabs(fb-gb));
d2=FMAX(d2,fabs(fc-gc));
d2=FMAX(d2,fabs(fd-gd));

}
d=0.5(d1+d2); Average the K-S statistics.
sqen=sqrt(n1*n2/(double)(n1+n2));
pearsn(x1,y1,n1,&r1,&dum,&dumm); Get the linear correlation coefficient for each

sample.pearsn(x2,y2,n2,&r2,&dum,&dumm);
rr=sqrt(1.0-0.5*(r1*r1+r2*r2));
Estimate the probability using the K-S probability function probks.
*prob=probks(*d*sqen/(1.0+rr*(0.25-0.75/sqen)));

}

CITED REFERENCES AND FURTHER READING:

Fasano, G. and Franceschini, A. 1987, Monthly Notices of the Royal Astronomical Society,
vol. 225, pp. 155–170. [1]

Peacock, J.A. 1983, Monthly Notices of the Royal Astronomical Society, vol. 202, pp. 615–627.
[2]

Spergel, D.N., Piran, T., Loeb, A., Goodman, J., and Bahcall, J.N. 1987, Science, vol. 237,
pp. 1471–1473. [3]

650 Chapter 14. Statistical Description of Data

14.8 Savitzky-Golay Smoothing Filters

In §13.5 we learned something about the construction and application of digital filters,
but little guidance was given on which particular filter to use. That, of course, depends
on what you want to accomplish by filtering. One obvious use for low-pass filters is to
smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly
varying and also corrupted by random noise. Then it can sometimes be useful to replace
each data point by some kind of local average of surrounding data points. Since nearby
points measure very nearly the same underlying value, averaging can reduce the level of noise
without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond
the fringe of some better posed, and therefore more highly recommended, techniques that
are discussed elsewhere in this book. If you are fitting data to a parametric model, for
example (see Chapter 15), it is almost always better to use raw data than to use data that
has been pre-processed by a smoothing procedure. Another alternative to blind smoothing is
so-called “optimal” or Wiener filtering, as discussed in §13.3 and more generally in §13.6.
Data smoothing is probably most justified when it is used simply as a graphical technique, to
guide the eye through a forest of data points all with large error bars; or as a means of making
initial rough estimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data
smoothing, and termed variously Savitzky-Golay [1], least-squares [2], or DISPO (Digital
Smoothing Polynomial) [3] filters. Rather than having their properties defined in the Fourier
domain, and then translated to the time domain, Savitzky-Golay filters derive directly from
a particular formulation of the data smoothing problem in the time domain, as we will now
see. Savitzky-Golay filters were initially (and are still often) used to render visible the relative
widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data values fi ≡ f(ti),
where ti ≡ t0 + iΔ for some constant sample spacing Δ and i = . . . − 2,−1, 0, 1, 2,
We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse
response filter) replaces each data value fi by a linear combination gi of itself and some
number of nearby neighbors,

gi =

nR∑
n=−nL

cnfi+n (14.8.1)

Here nL is the number of points used “to the left” of a data point i, i.e., earlier than it, while
nR is the number used to the right, i.e., later. A so-called causal filter would have nR = 0.

As a starting point for understanding Savitzky-Golay filters, consider the simplest
possible averaging procedure: For some fixed nL = nR , compute each gi as the average of
the data points from fi−nL to fi+nR . This is sometimes called moving window averaging
and corresponds to equation (14.8.1) with constant cn = 1/(nL + nR +1). If the underlying
function is constant, or is changing linearly with time (increasing or decreasing), then no
bias is introduced into the result. Higher points at one end of the averaging interval are on
the average balanced by lower points at the other end. A bias is introduced, however, if
the underlying function has a nonzero second derivative. At a local maximum, for example,
moving window averaging always reduces the function value. In the spectrometric application,
a narrow spectral line has its height reduced and its width increased. Since these parameters
are themselves of physical interest, the bias introduced is distinctly undesirable.

Note, however, that moving window averaging does preserve the area under a spectral
line, which is its zeroth moment, and also (if the window is symmetric with nL = nR) its
mean position in time, which is its first moment. What is violated is the second moment,
equivalent to the line width.

The idea of Savitzky-Golay filtering is to find filter coefficients cn that preserve higher
moments. Equivalently, the idea is to approximate the underlying function within the moving
window not by a constant (whose estimate is the average), but by a polynomial of higher
order, typically quadratic or quartic: For each point fi, we least-squares fit a polynomial to all

14.8 Savitzky-Golay Smoothing Filters 651

M nL nR Sample Savitzky-Golay Coefficients

2 2 2 −0.086 0.343 0.486 0.343 −0.086

2 3 1 −0.143 0.171 0.343 0.371 0.257

2 4 0 0.086 −0.143 −0.086 0.257 0.886

2 5 5 −0.084 0.021 0.103 0.161 0.196 0.207 0.196 0.161 0.103 0.021 −0.084

4 4 4 0.035 −0.128 0.070 0.315 0.417 0.315 0.070 −0.128 0.035

4 5 5 0.042 −0.105 −0.023 0.140 0.280 0.333 0.280 0.140 −0.023 −0.105 0.042

nL + nR + 1 points in the moving window, and then set gi to be the value of that polynomial
at position i. (If you are not familiar with least-squares fitting, you might want to look ahead
to Chapter 15.) We make no use of the value of the polynomial at any other point. When we
move on to the next point fi+1, we do a whole new least-squares fit using a shifted window.

All these least-squares fits would be laborious if done as described. Luckily, since the
process of least-squares fitting involves only a linear matrix inversion, the coefficients of a
fitted polynomial are themselves linear in the values of the data. That means that we can do
all the fitting in advance, for fictitious data consisting of all zeros except for a single 1, and
then do the fits on the real data just by taking linear combinations. This is the key point, then:
There are particular sets of filter coefficients cn for which equation (14.8.1) “automatically”
accomplishes the process of polynomial least-squares fitting inside a moving window.

To derive such coefficients, consider how g0 might be obtained: We want to fit a
polynomial of degreeM in i, namely a0 + a1i+ · · ·+ aM iM to the values f−nL , . . . , fnR .
Then g0 will be the value of that polynomial at i = 0, namely a0. The design matrix for
this problem (§15.4) is

Aij = ij i = −nL, . . . , nR, j = 0, . . . ,M (14.8.2)

and the normal equations for the vector of aj’s in terms of the vector offi’s is in matrix notation

(AT · A) · a = AT · f or a = (AT · A)−1 · (AT · f) (14.8.3)

We also have the specific forms{
AT · A

}
ij
=

nR∑
k=−nL

AkiAkj =

nR∑
k=−nL

ki+j (14.8.4)

and {
AT · f

}
j
=

nR∑
k=−nL

Akjfk =

nR∑
k=−nL

kjfk (14.8.5)

Since the coefficient cn is the component a0 when f is replaced by the unit vector en,
−nL ≤ n < nR, we have

cn =
{
(AT · A)−1 · (AT · en)

}
0
=

M∑
m=0

{
(AT · A)−1

}
0m
nm (14.8.6)

Note that equation (14.8.6) says that we need only one row of the inverse matrix. (Numerically
we can get this by LU decomposition with only a single backsubstitution.)

The function savgol, below, implements equation (14.8.6). As input, it takes the
parameters nl = nL, nr = nR, and m = M (the desired order). Also input is np, the
physical length of the output array c, and a parameter ld which for data fitting should be
zero. In fact, ld specifies which coefficient among the ai’s should be returned, and we are
here interested in a0. For another purpose, namely the computation of numerical derivatives
(already mentioned in §5.7) the useful choice is ld ≥ 1. With ld = 1, for example, the
filtered first derivative is the convolution (14.8.1) divided by the stepsizeΔ. For derivatives,
one usually wants m = 4 or larger.

652 Chapter 14. Statistical Description of Data

#include <math.h>
#include "nrutil.h"

void savgol(float c[], int np, int nl, int nr, int ld, int m)
Returns in c[1..np], in wrap-around order (N.B.!) consistent with the argument respns in
routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward (past)
data points used, while nr is the number of rightward (future) data points, making the total
number of data points used nl+ nr+1. ld is the order of the derivative desired (e.g., ld = 0
for smoothed function). m is the order of the smoothing polynomial, also equal to the highest
conserved moment; usual values are m = 2 or m = 4.
{

void lubksb(float **a, int n, int *indx, float b[]);
void ludcmp(float **a, int n, int *indx, float *d);
int imj,ipj,j,k,kk,mm,*indx;
float d,fac,sum,**a,*b;

if (np < nl+nr+1 || nl < 0 || nr < 0 || ld > m || nl+nr < m)
nrerror("bad args in savgol");
indx=ivector(1,m+1);
a=matrix(1,m+1,1,m+1);
b=vector(1,m+1);
for (ipj=0;ipj<=(m << 1);ipj++) { Set up the normal equations of the desired

least-squares fit.sum=(ipj ? 0.0 : 1.0);
for (k=1;k<=nr;k++) sum += pow((double)k,(double)ipj);
for (k=1;k<=nl;k++) sum += pow((double)-k,(double)ipj);
mm=IMIN(ipj,2*m-ipj);
for (imj = -mm;imj<=mm;imj+=2) a[1+(ipj+imj)/2][1+(ipj-imj)/2]=sum;

}
ludcmp(a,m+1,indx,&d); Solve them: LU decomposition.
for (j=1;j<=m+1;j++) b[j]=0.0;
b[ld+1]=1.0;
Right-hand side vector is unit vector, depending on which derivative we want.
lubksb(a,m+1,indx,b); Get one row of the inverse matrix.
for (kk=1;kk<=np;kk++) c[kk]=0.0; Zero the output array (it may be bigger than

number of coefficients).for (k = -nl;k<=nr;k++) {
sum=b[1]; Each Savitzky-Golay coefficient is the dot

product of powers of an integer with the
inverse matrix row.

fac=1.0;
for (mm=1;mm<=m;mm++) sum += b[mm+1]*(fac *= k);
kk=((np-k) % np)+1; Store in wrap-around order.
c[kk]=sum;

}
free_vector(b,1,m+1);
free_matrix(a,1,m+1,1,m+1);
free_ivector(indx,1,m+1);

}

As output, savgol returns the coefficients cn, for −nL ≤ n ≤ nR. These are stored in
c in “wrap-around order”; that is, c0 is in c[1], c−1 is in c[2], and so on for further negative
indices. The value c1 is stored in c[np], c2 in c[np-1], and so on for positive indices. This
order may seem arcane, but it is the natural one where causal filters have nonzero coefficients
in low array elements of c. It is also the order required by the function convlv in §13.1,
which can be used to apply the digital filter to a data set.

The accompanying table shows some typical output from savgol. For orders 2 and
4, the coefficients of Savitzky-Golay filters with several choices of nL and nR are shown.
The central column is the coefficient applied to the data fi in obtaining the smoothed gi.
Coefficients to the left are applied to earlier data; to the right, to later. The coefficients
always add (within roundoff error) to unity. One sees that, as befits a smoothing operator,
the coefficients always have a central positive lobe, but with smaller, outlying corrections
of both positive and negative sign. In practice, the Savitzky-Golay filters are most useful
for much larger values of nL and nR, since these few-point formulas can accomplish only
a relatively small amount of smoothing.

Figure 14.8.1 shows a numerical experiment using a 33 point smoothing filter, that is,

14.8 Savitzky-Golay Smoothing Filters 653

8
6
4
2
0

after square (16,16,0)

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

after S–G (16,16,4)

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

before

0 100 200 300 400 500 600 700 800 900

Figure 14.8.1. Top: Synthetic noisy data consisting of a sequence of progressively narrower bumps,
and additive Gaussian white noise. Center: Result of smoothing the data by a simple moving window
average. The window extends 16 points leftward and rightward, for a total of 33 points. Note that narrow
features are broadened and suffer corresponding loss of amplitude. The dotted curve is the underlying
function used to generate the synthetic data. Bottom: Result of smoothing the data by a Savitzky-Golay
smoothing filter (of degree 4) using the same 33 points. While there is less smoothing of the broadest
feature, narrower features have their heights and widths preserved.

nL = nR = 16. The upper panel shows a test function, constructed to have six “bumps” of
varying widths, all of height 8 units. To this function Gaussian white noise of unit variance
has been added. (The test function without noise is shown as the dotted curves in the center
and lower panels.) The widths of the bumps (full width at half of maximum, or FWHM) are
140, 43, 24, 17, 13, and 10, respectively.

The middle panel of Figure 14.8.1 shows the result of smoothing by a moving window
average. One sees that the window of width 33 does quite a nice job of smoothing the broadest
bump, but that the narrower bumps suffer considerable loss of height and increase of width.
The underlying signal (dotted) is very badly represented.

The lower panel shows the result of smoothing with a Savitzky-Golay filter of the
identical width, and degreeM = 4. One sees that the heights and widths of the bumps are
quite extraordinarily preserved. A trade-off is that the broadest bump is less smoothed. That
is because the central positive lobe of the Savitzky-Golay filter coefficients fills only a fraction
of the full 33 point width. As a rough guideline, best results are obtained when the full width
of the degree 4 Savitzky-Golay filter is between 1 and 2 times the FWHM of desired features
in the data. (References [3] and [4] give additional practical hints.)

Figure 14.8.2 shows the result of smoothing the same noisy “data” with broader
Savitzky-Golay filters of 3 different orders. Here we have nL = nR = 32 (65 point filter)
and M = 2, 4, 6. One sees that, when the bumps are too narrow with respect to the filter
size, then even the Savitzky-Golay filter must at some point give out. The higher order filter
manages to track narrower features, but at the cost of less smoothing on broad features.

To summarize: Within limits, Savitzky-Golay filtering does manage to provide smoothing

654 Chapter 14. Statistical Description of Data

after S–G (32,32,4)

after S–G (32,32,2)

8
6
4
2
0

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

after S–G (32,32,6)

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

0 100 200 300 400 500 600 700 800 900

Figure 14.8.2. Result of applying wider 65 point Savitzky-Golay filters to the same data set as in Figure
14.8.1. Top: degree 2. Center: degree 4. Bottom: degree 6. All of these filters are inoptimally broad
for the resolution of the narrow features. Higher-order filters do best at preserving feature heights and
widths, but do less smoothing on broader features.

without loss of resolution. It does this by assuming that relatively distant data points have
some significant redundancy that can be used to reduce the level of noise. The specific nature
of the assumed redundancy is that the underlying function should be locally well-fitted by a
polynomial. When this is true, as it is for smooth line profiles not too much narrower than
the filter width, then the performance of Savitzky-Golay filters can be spectacular. When it
is not true, then these filters have no compelling advantage over other classes of smoothing
filter coefficients.

A last remark concerns irregularly sampled data, where the values fi are not uniformly
spaced in time. The obvious generalization of Savitzky-Golay filtering would be to do a
least-squares fit within a moving window around each data point, one containing a fixed
number of data points to the left (nL) and right (nR). Because of the irregular spacing,
however, there is no way to obtain universal filter coefficients applicable to more than one
data point. One must instead do the actual least-squares fits for each data point. This becomes
computationally burdensome for larger nL, nR, and M .

As a cheap alternative, one can simply pretend that the data points are equally spaced.
This amounts to virtually shifting, within each moving window, the data points to equally
spaced positions. Such a shift introduces the equivalent of an additional source of noise
into the function values. In those cases where smoothing is useful, this noise will often be
much smaller than the noise already present. Specifically, if the location of the points is
approximately random within the window, then a rough criterion is this: If the change in f
across the full width of the N = nL + nR + 1 point window is less than

√
N/2 times the

measurement noise on a single point, then the cheap method can be used.

14.8 Savitzky-Golay Smoothing Filters 655

CITED REFERENCES AND FURTHER READING:

Savitzky A., and Golay, M.J.E. 1964, Analytical Chemistry, vol. 36, pp. 1627–1639. [1]
Hamming, R.W. 1983, Digital Filters, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall). [2]

Ziegler, H. 1981, Applied Spectroscopy, vol. 35, pp. 88–92. [3]

Bromba, M.U.A., and Ziegler, H. 1981, Analytical Chemistry, vol. 53, pp. 1583–1586. [4]

Chapter 15. Modeling of Data

15.0 Introduction

Given a set of observations, one often wants to condense and summarize the
data by fitting it to a “model” that depends on adjustable parameters. Sometimes the
model is simply a convenient class of functions, such as polynomials or Gaussians,
and the fit supplies the appropriate coefficients. Other times, the model’s parameters
come from some underlying theory that the data are supposed to satisfy; examples
are coefficients of rate equations in a complex network of chemical reactions, or
orbital elements of a binary star. Modeling can also be used as a kind of constrained
interpolation, where you want to extend a few data points into a continuous function,
but with some underlying idea of what that function should look like.

The basic approach in all cases is usually the same: You choose or design a
figure-of-merit function (“merit function,” for short) that measures the agreement
between the data and the model with a particular choice of parameters. The merit
function is conventionally arranged so that small values represent close agreement.
The parameters of the model are then adjusted to achieve a minimum in the merit
function, yielding best-fit parameters. The adjustment process is thus a problem in
minimization in many dimensions. This optimization was the subject of Chapter 10;
however, there exist special, more efficient, methods that are specific to modeling,
and we will discuss these in this chapter.

There are important issues that go beyond the mere finding of best-fit parameters.
Data are generally not exact. They are subject to measurement errors (called noise
in the context of signal-processing). Thus, typical data never exactly fit the model
that is being used, even when that model is correct. We need the means to assess
whether or not the model is appropriate, that is, we need to test the goodness-of-fit
against some useful statistical standard.

We usually also need to know the accuracy with which parameters are de-
termined by the data set. In other words, we need to know the likely errors of
the best-fit parameters.

Finally, it is not uncommon in fitting data to discover that the merit function
is not unimodal, with a single minimum. In some cases, we may be interested in
global rather than local questions. Not, “how good is this fit?” but rather, “how
sure am I that there is not a very much better fit in some corner of parameter space?”
As we have seen in Chapter 10, especially §10.9, this kind of problem is generally
quite difficult to solve.

The important message we want to deliver is that fitting of parameters is not
the end-all of parameter estimation. To be genuinely useful, a fitting procedure

656

15.1 Least Squares as a Maximum Likelihood Estimator 657

should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a
statistical measure of goodness-of-fit. When the third item suggests that the model
is an unlikely match to the data, then items (i) and (ii) are probably worthless.
Unfortunately, many practitioners of parameter estimation never proceed beyond
item (i). They deem a fit acceptable if a graph of data and model “looks good.” This
approach is known as chi-by-eye. Luckily, its practitioners get what they deserve.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter X.

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), Chapters 18–19.

15.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fittingN data points (xi, yi) i = 1, . . . , N , to a model that
has M adjustable parameters aj, j = 1, . . . ,M . The model predicts a functional
relationship between the measured independent and dependent variables,

y(x) = y(x; a1 . . . aM) (15.1.1)

where the dependence on the parameters is indicated explicitly on the right-hand side.
What, exactly, do we want to minimize to get fitted values for the aj ’s? The

first thing that comes to mind is the familiar least-squares fit,

minimize over a1 . . . aM :

N∑
i=1

[yi − y(xi; a1 . . . aM)]
2

(15.1.2)

But where does this come from? What general principles is it based on? The answer
to these questions takes us into the subject of maximum likelihood estimators.

Given a particular data set of xi’s and yi’s, we have the intuitive feeling that
some parameter sets a1 . . . aM are very unlikely — those for which the model
function y(x) looks nothing like the data — while others may be very likely — those
that closely resemble the data. How can we quantify this intuitive feeling? How can
we select fitted parameters that are “most likely” to be correct? It is not meaningful
to ask the question, “What is the probability that a particular set of fitted parameters
a1 . . . aM is correct?” The reason is that there is no statistical universe of models
from which the parameters are drawn. There is just one model, the correct one, and
a statistical universe of data sets that are drawn from it!

658 Chapter 15. Modeling of Data

That being the case, we can, however, turn the question around, and ask, “Given
a particular set of parameters, what is the probability that this data set could have
occurred?” If the yi’s take on continuous values, the probability will always be
zero unless we add the phrase, “...plus or minus some fixed Δy on each data point.”
So let’s always take this phrase as understood. If the probability of obtaining the
data set is infinitesimally small, then we can conclude that the parameters under
consideration are “unlikely” to be right. Conversely, our intuition tells us that the
data set should not be too improbable for the correct choice of parameters.

In other words, we identify the probability of the data given the parameters
(which is a mathematically computable number), as the likelihood of the parameters
given the data. This identification is entirely based on intuition. It has no formal
mathematical basis in and of itself; as we already remarked, statistics is not a
branch of mathematics!

Once we make this intuitive identification, however, it is only a small further
step to decide to fit for the parameters a1 . . . aM precisely by finding those values
that maximize the likelihood defined in the above way. This form of parameter
estimation is maximum likelihood estimation.

We are now ready to make the connection to (15.1.2). Suppose that each data
point yi has a measurement error that is independently random and distributed as a
normal (Gaussian) distribution around the “true” model y(x). And suppose that the
standard deviations σ of these normal distributions are the same for all points. Then
the probability of the data set is the product of the probabilities of each point,

P ∝
N∏
i=1

{
exp

[
−1

2

(
yi − y(xi)

σ

)2]
Δy

}
(15.1.3)

Notice that there is a factor Δy in each term in the product. Maximizing (15.1.3) is
equivalent to maximizing its logarithm, or minimizing the negative of its logarithm,
namely, [

N∑
i=1

[yi − y(xi)]
2

2σ2

]
−N log Δy (15.1.4)

Since N , σ, and Δy are all constants, minimizing this equation is equivalent to
minimizing (15.1.2).

What we see is that least-squares fitting is a maximum likelihood estimation
of the fitted parameters if the measurement errors are independent and normally
distributed with constant standard deviation. Notice that we made no assumption
about the linearity or nonlinearity of the model y(x; a1 . . .) in its parameters
a1 . . . aM . Just below, we will relax our assumption of constant standard deviations
and obtain the very similar formulas for what is called “chi-square fitting” or
“weighted least-squares fitting.” First, however, let us discuss further our very
stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love with
the fact that the probability distribution of the sum of a very large number of very
small random deviations almost always converges to a normal distribution. (For
precise statements of this central limit theorem, consult [1] or other standard works
on mathematical statistics.) This infatuation tended to focus interest away from the

15.1 Least Squares as a Maximum Likelihood Estimator 659

fact that, for real data, the normal distribution is often rather poorly realized, if it is
realized at all. We are often taught, rather casually, that, on average, measurements
will fall within ±σ of the true value 68 percent of the time, within ±2σ 95 percent
of the time, and within ±3σ 99.7 percent of the time. Extending this, one would
expect a measurement to be off by ±20σ only one time out of 2 × 1088. We all
know that “glitches” are much more likely than that!

In some instances, the deviations from a normal distribution are easy to
understand and quantify. For example, in measurements obtained by counting
events, the measurement errors are usually distributed as a Poisson distribution,
whose cumulative probability function was already discussed in §6.2. When the
number of counts going into one data point is large, the Poisson distributionconverges
towards a Gaussian. However, the convergence is not uniform when measured in
fractional accuracy. The more standard deviations out on the tail of the distribution,
the larger the number of counts must be before a value close to the Gaussian is
realized. The sign of the effect is always the same: The Gaussian predicts that “tail”
events are much less likely than they actually (by Poisson) are. This causes such
events, when they occur, to skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so easy to
understand in detail. Experimental points are occasionally just way off. Perhaps
the power flickered during a point’s measurement, or someone kicked the apparatus,
or someone wrote down a wrong number. Points like this are called outliers.
They can easily turn a least-squares fit on otherwise adequate data into nonsense.
Their probability of occurrence in the assumed Gaussian model is so small that the
maximum likelihood estimator is willing to distort the whole curve to try to bring
them, mistakenly, into line.

The subject of robust statistics deals with cases where the normal or Gaussian
model is a bad approximation, or cases where outliers are important. We will discuss
robust methods briefly in §15.7. All the sections between this one and that one
assume, one way or the other, a Gaussian model for the measurement errors in the
data. It it quite important that you keep the limitations of that model in mind, even
as you use the very useful methods that follow from assuming it.

Finally, note that our discussion of measurement errors has been limited to
statistical errors, the kind that will average away if we only take enough data.
Measurements are also susceptible to systematic errors that will not go away with
any amount of averaging. For example, the calibration of a metal meter stick might
depend on its temperature. If we take all our measurements at the same wrong
temperature, then no amount of averaging or numerical processing will correct for
this unrecognized systematic error.

Chi-Square Fitting

We considered the chi-square statistic once before, in §14.3. Here it arises
in a slightly different context.

If each data point (xi, yi) has its own, known standard deviation σi, then
equation (15.1.3) is modified only by putting a subscript i on the symbol σ. That
subscript also propagates docilely into (15.1.4), so that the maximum likelihood

660 Chapter 15. Modeling of Data

estimate of the model parameters is obtained by minimizing the quantity

χ2 ≡
N∑
i=1

(
yi − y(xi; a1 . . . aM)

σi

)2
(15.1.5)

called the “chi-square.”
To whatever extent the measurement errors actuallyare normally distributed, the

quantityχ2 is correspondingly a sum ofN squares of normally distributed quantities,
each normalized to unit variance. Once we have adjusted the a1 . . . aM to minimize
the value of χ2, the terms in the sum are not all statistically independent. For models
that are linear in the a’s, however, it turns out that the probability distribution for
different values of χ2 at its minimum can nevertheless be derived analytically, and
is the chi-square distribution for N −M degrees of freedom. We learned how to
compute this probability function using the incomplete gamma function gammq in
§6.2. In particular, equation (6.2.18) gives the probability Q that the chi-square
should exceed a particular value χ2 by chance, where ν = N −M is the number of
degrees of freedom. The quantity Q, or its complement P ≡ 1 − Q, is frequently
tabulated in appendices to statistics books, but we generally find it easier to use
gammq and compute our own values: Q = gammq (0.5ν, 0.5χ2). It is quite common,
and usually not too wrong, to assume that the chi-square distribution holds even for
models that are not strictly linear in the a’s.

This computed probability gives a quantitative measure for the goodness-of-fit
of the model. If Q is a very small probability for some particular data set, then the
apparent discrepancies are unlikely to be chance fluctuations. Much more probably
either (i) the model is wrong — can be statistically rejected, or (ii) someone has lied to
you about the size of the measurement errors σi — they are really larger than stated.

It is an important point that the chi-square probability Q does not directly
measure the credibility of the assumption that the measurement errors are normally
distributed. It assumes they are. In most, but not all, cases, however, the effect of
nonnormal errors is to create an abundance of outlier points. These decrease the
probabilityQ, so that we can add another possible, though less definitive, conclusion
to the above list: (iii) the measurement errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for this reason
that reasonable experimenters are often rather tolerant of low probabilities Q. It is
not uncommon to deem acceptable on equal terms any models with, say, Q > 0.001.
This is not as sloppy as it sounds: Truly wrong models will often be rejected with
vastly smaller values of Q, 10−18, say. However, if day-in and day-out you find
yourself accepting models with Q ∼ 10−3, you really should track down the cause.

If you happen to know the actual distribution law of your measurement errors,
then you might wish toMonte Carlo simulate some data sets drawn from a particular
model, cf. §7.2–§7.3. You can then subject these synthetic data sets to your actual
fitting procedure, so as to determine both the probability distribution of the χ2

statistic, and also the accuracy with which your model parameters are reproduced
by the fit. We discuss this further in §15.6. The technique is very general, but it
can also be very expensive.

At the opposite extreme, it sometimes happens that the probabilityQ is too large,
too near to 1, literally too good to be true! Nonnormal measurement errors cannot
in general produce this disease, since the normal distribution is about as “compact”

15.2 Fitting Data to a Straight Line 661

as a distribution can be. Almost always, the cause of too good a chi-square fit
is that the experimenter, in a “fit” of conservativism, has overestimated his or her
measurement errors. Very rarely, too good a chi-square signals actual fraud, data
that has been “fudged” to fit the model.

A rule of thumb is that a “typical” value of χ2 for a “moderately” good fit is
χ2 ≈ ν . More precise is the statement that theχ2 statistic has a mean ν and a standard
deviation

√
2ν, and, asymptotically for large ν , becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerations related to χ2 fitting are used to derive a value
for σ. If we assume that all measurements have the same standard deviation,σi = σ,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constant σ to all points, next fitting for the model parameters by minimizing χ2,
and finally recomputing

σ2 =

N∑
i=1

[yi − y(xi)]
2/(N −M) (15.1.6)

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least allows some kind of error bar to be assigned
to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters ak,
we obtain equations that must hold at the chi-square minimum,

0 =

N∑
i=1

(
yi − y(xi)

σ2i

)(
∂y(xi; . . . ak . . .)

∂ak

)
k = 1, . . . ,M (15.1.7)

Equation (15.1.7) is, in general, a set of M nonlinear equations for the M unknown
ak. Various of the procedures described subsequently in this chapter derive from
(15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 1–4.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set of N data points (xi, yi) to
a straight-line model

y(x) = y(x; a, b) = a + bx (15.2.1)

662 Chapter 15. Modeling of Data

This problem is often called linear regression, a terminology that originated, long
ago, in the social sciences. We assume that the uncertainty σi associated with
each measurement yi is known, and that the xi’s (values of the dependent variable)
are known exactly.

To measure how well the model agrees with the data, we use the chi-square
merit function (15.1.5), which in this case is

χ2(a, b) =

N∑
i=1

(
yi − a− bxi

σi

)2
(15.2.2)

If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations of a and b; if the errors are not normally
distributed, then the estimations are not maximum likelihood, but may still be useful
in a practical sense. In §15.7, we will treat the case where outlier points are so
numerous as to render the χ2 merit function useless.

Equation (15.2.2) is minimized to determine a and b. At its minimum,
derivatives of χ2(a, b) with respect to a, b vanish.

0 =
∂χ2

∂a
= −2

N∑
i=1

yi − a− bxi
σ2i

0 =
∂χ2

∂b
= −2

N∑
i=1

xi(yi − a− bxi)

σ2i

(15.2.3)

These conditions can be rewritten in a convenient form if we define the following
sums:

S ≡
N∑
i=1

1

σ2i
Sx ≡

N∑
i=1

xi
σ2i

Sy ≡
N∑
i=1

yi
σ2i

Sxx ≡
N∑
i=1

x2i
σ2i

Sxy ≡
N∑
i=1

xiyi
σ2i

(15.2.4)

With these definitions (15.2.3) becomes

aS + bSx = Sy

aSx + bSxx = Sxy
(15.2.5)

The solution of these two equations in two unknowns is calculated as

Δ ≡ SSxx − (Sx)2

a =
SxxSy − SxSxy

Δ

b =
SSxy − SxSy

Δ

(15.2.6)

Equation (15.2.6) gives the solution for the best-fit model parameters a and b.

15.2 Fitting Data to a Straight Line 663

We are not done, however. We must estimate the probable uncertainties in
the estimates of a and b, since obviously the measurement errors in the data must
introduce some uncertainty in the determination of those parameters. If the data
are independent, then each contributes its own bit of uncertainty to the parameters.
Consideration of propagation of errors shows that the variance σ2f in the value of
any function will be

σ2f =
N∑
i=1

σ2i

(
∂f

∂yi

)2
(15.2.7)

For the straight line, the derivatives of a and b with respect to yi can be directly
evaluated from the solution:

∂a

∂yi
=

Sxx − Sxxi
σ2iΔ

∂b

∂yi
=

Sxi − Sx
σ2iΔ

(15.2.8)

Summing over the points as in (15.2.7), we get

σ2a = Sxx/Δ

σ2b = S/Δ
(15.2.9)

which are the variances in the estimates of a and b, respectively. We will see in
§15.6 that an additional number is also needed to characterize properly the probable
uncertainty of the parameter estimation. That number is the covariance of a and b,
and (as we will see below) is given by

Cov(a, b) = −Sx/Δ (15.2.10)

The coefficient of correlation between the uncertainty in a and the uncertainty
in b, which is a number between −1 and 1, follows from (15.2.10) (compare
equation 14.5.1),

rab =
−Sx√
SSxx

(15.2.11)

A positive value of rab indicates that the errors in a and b are likely to have the
same sign, while a negative value indicates the errors are anticorrelated, likely to
have opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the
model. Absent this estimate, we have not the slightest indication that the parameters
a and b in the model have any meaning at all! The probability Q that a value of
chi-square as poor as the value (15.2.2) should occur by chance is

Q = gammq

(
N − 2

2
,
χ2

2

)
(15.2.12)

664 Chapter 15. Modeling of Data

Here gammq is our routine for the incomplete gamma function Q(a, x), §6.2. If
Q is larger than, say, 0.1, then the goodness-of-fit is believable. If it is larger
than, say, 0.001, then the fit may be acceptable if the errors are nonnormal or have
been moderately underestimated. If Q is less than 0.001 then the model and/or
estimation procedure can rightly be called into question. In this latter case, turn
to §15.7 to proceed further.

If you do not know the individual measurement errors of the points σi, and are
proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then
here is the procedure for estimating the probable uncertainties of the parameters a
and b: Set σi ≡ 1 in all equations through (15.2.6), and multiply σa and σb, as
obtained from equation (15.2.9), by the additional factor

√
χ2/(N − 2), where χ2

is computed by (15.2.2) using the fitted parameters a and b. As discussed above,
this procedure is equivalent to assuming a good fit, so you get no independent
goodness-of-fit probability Q.

In §14.5 we promised a relation between the linear correlation coefficient
r (equation 14.5.1) and a goodness-of-fit measure, χ2 (equation 15.2.2). For
unweighted data (all σi = 1), that relation is

χ2 = (1 − r2)NVar (y1 . . . yN) (15.2.13)

where

NVar (y1 . . . yN) ≡
N∑
i=1

(yi − y)2 (15.2.14)

For data with varying weights σi, the above equations remain valid if the sums in
equation (14.5.1) are weighted by 1/σ2i .

The following function, fit, carries out exactly the operations that we have
discussed. When the weights σ are known in advance, the calculations exactly
correspond to the formulas above. However, when weights σ are unavailable,
the routine assumes equal values of σ for each point and assumes a good fit, as
discussed in §15.1.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we
rewrite them as follows: Define

ti =
1

σi

(
xi − Sx

S

)
, i = 1, 2, . . . , N (15.2.15)

and

Stt =

N∑
i=1

t2i (15.2.16)

Then, as you can verify by direct substitution,

b =
1

Stt

N∑
i=1

tiyi
σi

(15.2.17)

a =
Sy − Sxb

S
(15.2.18)

15.2 Fitting Data to a Straight Line 665

σ2a =
1

S

(
1 +

S2x
SStt

)
(15.2.19)

σ2b =
1

Stt
(15.2.20)

Cov(a, b) = − Sx
SStt

(15.2.21)

rab =
Cov(a, b)

σaσb
(15.2.22)

#include <math.h>
#include "nrutil.h"

void fit(float x[], float y[], int ndata, float sig[], int mwt, float *a,
float *b, float *siga, float *sigb, float *chi2, float *q)

Given a set of data points x[1..ndata],y[1..ndata] with individual standard deviations
sig[1..ndata], fit them to a straight line y = a + bx by minimizing χ2. Returned are
a,b and their respective probable uncertainties siga and sigb, the chi-square chi2, and the
goodness-of-fit probability q (that the fit would have χ2 this large or larger). If mwt=0 on
input, then the standard deviations are assumed to be unavailable: q is returned as 1.0 and
the normalization of chi2 is to unit standard deviation on all points.
{

float gammq(float a, float x);
int i;
float wt,t,sxoss,sx=0.0,sy=0.0,st2=0.0,ss,sigdat;

*b=0.0;
if (mwt) { Accumulate sums ...

ss=0.0;
for (i=1;i<=ndata;i++) { ...with weights

wt=1.0/SQR(sig[i]);
ss += wt;
sx += x[i]*wt;
sy += y[i]*wt;

}
} else {

for (i=1;i<=ndata;i++) { ...or without weights.
sx += x[i];
sy += y[i];

}
ss=ndata;

}
sxoss=sx/ss;
if (mwt) {

for (i=1;i<=ndata;i++) {
t=(x[i]-sxoss)/sig[i];
st2 += t*t;
*b += t*y[i]/sig[i];

}
} else {

for (i=1;i<=ndata;i++) {
t=x[i]-sxoss;
st2 += t*t;
*b += t*y[i];

}
}
*b /= st2; Solve for a, b, σa, and σb.
a=(sy-sx(*b))/ss;
*siga=sqrt((1.0+sx*sx/(ss*st2))/ss);
*sigb=sqrt(1.0/st2);

666 Chapter 15. Modeling of Data

*chi2=0.0; Calculate χ2.
*q=1.0;
if (mwt == 0) {

for (i=1;i<=ndata;i++)
*chi2 += SQR(y[i]-(*a)-(*b)*x[i]);

sigdat=sqrt((*chi2)/(ndata-2)); For unweighted data evaluate typ-
ical sig using chi2, and ad-
just the standard deviations.

*siga *= sigdat;
*sigb *= sigdat;

} else {
for (i=1;i<=ndata;i++)

*chi2 += SQR((y[i]-(*a)-(*b)*x[i])/sig[i]);
if (ndata>2) *q=gammq(0.5*(ndata-2),0.5*(*chi2)); Equation (15.2.12).

}
}

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in the yi’s, but also in
the xi’s, then the task of fitting a straight-line model

y(x) = a+ bx (15.3.1)

is considerably harder. It is straightforward to write down the χ2 merit function for this case,

χ2(a, b) =

N∑
i=1

(yi − a− bxi)2
σ2y i + b

2σ2x i

(15.3.2)

where σx i and σy i are, respectively, the x and y standard deviations for the ith point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallest χ2 between each data point and the line with
slope b, and also as the variance of the linear combination yi − a − bxi of two random
variables xi and yi,

Var(yi − a− bxi) = Var(yi) + b
2Var(xi) = σ

2
y i + b

2σ2x i ≡ 1/wi (15.3.3)

The sum of the square of N random variables, each normalized by its variance, is thus
χ2-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for
the slope ∂χ2/∂b = 0 nonlinear. However, the corresponding condition for the intercept,
∂χ2/∂a = 0, is still linear and yields

a =

[∑
i

wi(yi − bxi)
]/∑

i

wi (15.3.4)

where the wi’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional
function to minimize with respect to b, while using equation (15.3.4) at each stage to ensure
that the minimum with respect to b is also minimized with respect to a.

15.3 Straight-Line Data with Errors in Both Coordinates 667

Δχ2 = 1

σa

A

B

σb

0

b

a

s

r

Figure 15.3.1. Standard errors for the parameters a and b. The point B can be found by varying the
slope b while simultaneously minimizing the intercept a. This gives the standard error σb, and also the
value s. The standard error σa can then be found by the geometric relation σ2a = s2 + r2.

Because of the finite error bars on the xi’s, the minimum χ2 as a function of b will
be finite, though usually large, when b equals infinity (line of infinite slope). The angle
θ ≡ arctan b is thus more suitable as a parametrization of slope than b itself. The value of χ2

will then be periodic in θ with period π (not 2π!). If any data points have very small σy ’s
but moderate or large σx ’s, then it is also possible to have a maximum in χ2 near zero slope,
θ ≈ 0. In that case, there can sometimes be two χ2 minima, one at positive slope and the
other at negative. Only one of these is the correct global minimum. It is therefore important
to have a good starting guess for b (or θ). Our strategy, implemented below, is to scale the
yi’s so as to have variance equal to the xi’s, then to do a conventional (as in §15.2) linear fit
with weights derived from the (scaled) sum σ2y i + σ

2
x i. This yields a good starting guess for

b if the data are even plausibly related to a straight-line model.
Finding the standard errors σa and σb on the parameters a and b is more complicated.

We will see in §15.6 that, in appropriate circumstances, the standard errors in a and b are the
respective projections onto the a and b axes of the “confidence region boundary” where χ2

takes on a value one greater than its minimum, Δχ2 = 1. In the linear case of §15.2, these
projections follow from the Taylor series expansion

Δχ2 ≈ 1

2

[
∂2χ2

∂a2
(Δa)2 +

∂2χ2

∂b2
(Δb)2

]
+
∂2χ2

∂a∂b
ΔaΔb (15.3.5)

Because of the present nonlinearity in b, however, analytic formulas for the second derivatives
are quite unwieldy; more important, the lowest-order term frequently gives a poor approxima-
tion to Δχ2. Our strategy is therefore to find the roots of Δχ2 = 1 numerically, by adjusting
the value of the slope b away from the minimum. In the program below the general root finder
zbrent is used. It may occur that there are no roots at all — for example, if all error bars are
so large that all the data points are compatible with each other. It is important, therefore, to
make some effort at bracketing a putative root before refining it (cf. §9.1).

Because a is minimized at each stage of varying b, successful numerical root-finding
leads to a value of Δa that minimizes χ2 for the value of Δb that gives Δχ2 = 1. This (see
Figure 15.3.1) directly gives the tangent projection of the confidence region onto the b axis,
and thus σb. It does not, however, give the tangent projection of the confidence region onto
the a axis. In the figure, we have found the point labeled B; to find σa we need to find the

668 Chapter 15. Modeling of Data

point A. Geometry to the rescue: To the extent that the confidence region is approximated
by an ellipse, then you can prove (see figure) that σ2a = r2 + s2. The value of s is known
from having found the point B. The value of r follows from equations (15.3.2) and (15.3.3)
applied at the χ2 minimum (point O in the figure), giving

r2 = 1

/∑
i

wi (15.3.6)

Actually, since b can go through infinity, this whole procedure makes more sense in
(a, θ) space than in (a, b) space. That is in fact how the following program works. Since
it is conventional, however, to return standard errors for a and b, not a and θ, we finally
use the relation

σb = σθ/ cos
2 θ (15.3.7)

We caution that if b and its standard error are both large, so that the confidence region actually
includes infinite slope, then the standard error σb is not very meaningful. The function chixy
is normally called only by the routine fitexy. However, if you want, you can yourself
explore the confidence region by making repeated calls to chixy (whose argument is an angle
θ, not a slope b), after a single initializing call to fitexy.

A final caution, repeated from §15.0, is that if the goodness-of-fit is not acceptable
(returned probability is too small), the standard errors σa and σb are surely not believable. In
dire circumstances, you might try scaling all your x and y error bars by a constant factor until
the probability is acceptable (0.5, say), to get more plausible values for σa and σb.

#include <math.h>
#include "nrutil.h"
#define POTN 1.571000
#define BIG 1.0e30
#define PI 3.14159265
#define ACC 1.0e-3

int nn; Global variables communicate with
chixy.float *xx,*yy,*sx,*sy,*ww,aa,offs;

void fitexy(float x[], float y[], int ndat, float sigx[], float sigy[],
float *a, float *b, float *siga, float *sigb, float *chi2, float *q)

Straight-line fit to input data x[1..ndat] and y[1..ndat]with errors in both x and y, the re-
spective standard deviations being the input quantities sigx[1..ndat] and sigy[1..ndat].
Output quantities are a and b such that y = a + bx minimizes χ2, whose value is returned
as chi2. The χ2 probability is returned as q, a small value indicating a poor fit (sometimes
indicating underestimated errors). Standard errors on a and b are returned as siga and sigb.
These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the data are
consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG, then the data
are consistent with all values of b.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
float brent(float ax, float bx, float cx,

float (*f)(float), float tol, float *xmin);
float chixy(float bang);
void fit(float x[], float y[], int ndata, float sig[], int mwt,

float *a, float *b, float *siga, float *sigb, float *chi2, float *q);
float gammq(float a, float x);
void mnbrak(float *ax, float *bx, float *cx, float *fa, float *fb,

float *fc, float (*func)(float));
float zbrent(float (*func)(float), float x1, float x2, float tol);
int j;
float swap,amx,amn,varx,vary,ang[7],ch[7],scale,bmn,bmx,d1,d2,r2,

dum1,dum2,dum3,dum4,dum5;

xx=vector(1,ndat);
yy=vector(1,ndat);

15.3 Straight-Line Data with Errors in Both Coordinates 669

sx=vector(1,ndat);
sy=vector(1,ndat);
ww=vector(1,ndat);
avevar(x,ndat,&dum1,&varx); Find the x and y variances, and scale

the data into the global variables
for communication with the func-
tion chixy.

avevar(y,ndat,&dum1,&vary);
scale=sqrt(varx/vary);
nn=ndat;
for (j=1;j<=ndat;j++) {

xx[j]=x[j];
yy[j]=y[j]*scale;
sx[j]=sigx[j];
sy[j]=sigy[j]*scale;
ww[j]=sqrt(SQR(sx[j])+SQR(sy[j])); Use both x and y weights in first

trial fit.}
fit(xx,yy,nn,ww,1,&dum1,b,&dum2,&dum3,&dum4,&dum5); Trial fit for b.
offs=ang[1]=0.0; Construct several angles for refer-

ence points, and make b an an-
gle.

ang[2]=atan(*b);
ang[4]=0.0;
ang[5]=ang[2];
ang[6]=POTN;
for (j=4;j<=6;j++) ch[j]=chixy(ang[j]);
mnbrak(&ang[1],&ang[2],&ang[3],&ch[1],&ch[2],&ch[3],chixy);
Bracket the χ2 minimum and then locate it with brent.
*chi2=brent(ang[1],ang[2],ang[3],chixy,ACC,b);
*chi2=chixy(*b);
*a=aa;
q=gammq(0.5(nn-2),*chi2*0.5); Compute χ2 probability.
for (r2=0.0,j=1;j<=nn;j++) r2 += ww[j]; Save the inverse sum of weights at

the minimum.r2=1.0/r2;
bmx=BIG; Now, find standard errors for b as

points where Δχ2 = 1.bmn=BIG;
offs=(*chi2)+1.0;
for (j=1;j<=6;j++) { Go through saved values to bracket

the desired roots. Note period-
icity in slope angles.

if (ch[j] > offs) {
d1=fabs(ang[j]-(*b));
while (d1 >= PI) d1 -= PI;
d2=PI-d1;
if (ang[j] < *b) {

swap=d1;
d1=d2;
d2=swap;

}
if (d1 < bmx) bmx=d1;
if (d2 < bmn) bmn=d2;

}
}
if (bmx < BIG) { Call zbrent to find the roots.

bmx=zbrent(chixy,*b,*b+bmx,ACC)-(*b);
amx=aa-(*a);
bmn=zbrent(chixy,*b,*b-bmn,ACC)-(*b);
amn=aa-(*a);
sigb=sqrt(0.5(bmx*bmx+bmn*bmn))/(scale*SQR(cos(*b)));
siga=sqrt(0.5(amx*amx+amn*amn)+r2)/scale; Error in a has additional piece

r2.} else (*sigb)=(*siga)=BIG;
*a /= scale; Unscale the answers.
*b=tan(*b)/scale;
free_vector(ww,1,ndat);
free_vector(sy,1,ndat);
free_vector(sx,1,ndat);
free_vector(yy,1,ndat);
free_vector(xx,1,ndat);

}

670 Chapter 15. Modeling of Data

#include <math.h>
#include "nrutil.h"
#define BIG 1.0e30

extern int nn;
extern float *xx,*yy,*sx,*sy,*ww,aa,offs;

float chixy(float bang)
Captive function of fitexy, returns the value of (χ2 − offs) for the slope b=tan(bang).
Scaled data and offs are communicated via the global variables.
{

int j;
float ans,avex=0.0,avey=0.0,sumw=0.0,b;

b=tan(bang);
for (j=1;j<=nn;j++) {

ww[j] = SQR(b*sx[j])+SQR(sy[j]);
sumw += (ww[j] = (ww[j] < 1.0/BIG ? BIG : 1.0/ww[j]));
avex += ww[j]*xx[j];
avey += ww[j]*yy[j];

}
avex /= sumw;
avey /= sumw;
aa=avey-b*avex;
for (ans = -offs,j=1;j<=nn;j++)

ans += ww[j]*SQR(yy[j]-aa-b*xx[j]);
return ans;

}

Be aware that the literature on the seemingly straightforward subject of this section
is generally confusing and sometimes plain wrong. Deming’s [1] early treatment is sound,
but its reliance on Taylor expansions gives inaccurate error estimates. References [2-4] are
reliable, more recent, general treatments with critiques of earlier work. York [5] and Reed [6]
usefully discuss the simple case of a straight line as treated here, but the latter paper has
some errors, corrected in [7]. All this commotion has attracted the Bayesians [8-10], who
have still different points of view.

CITED REFERENCES AND FURTHER READING:

Deming, W.E. 1943, Statistical Adjustment of Data (New York: Wiley), reprinted 1964 (New York:
Dover). [1]

Jefferys, W.H. 1980, Astronomical Journal, vol. 85, pp. 177–181; see also vol. 95, p. 1299
(1988). [2]

Jefferys, W.H. 1981, Astronomical Journal, vol. 86, pp. 149–155; see also vol. 95, p. 1300
(1988). [3]

Lybanon, M. 1984, American Journal of Physics, vol. 52, pp. 22–26. [4]

York, D. 1966, Canadian Journal of Physics, vol. 44, pp. 1079–1086. [5]

Reed, B.C. 1989, American Journal of Physics, vol. 57, pp. 642–646; see also vol. 58, p. 189,
and vol. 58, p. 1209. [6]

Reed, B.C. 1992, American Journal of Physics, vol. 60, pp. 59–62. [7]

Zellner, A. 1971, An Introduction to Bayesian Inference in Econometrics (New York: Wiley);
reprinted 1987 (Malabar, FL: R. E. Krieger Pub. Co.). [8]

Gull, S.F. 1989, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer). [9]

Jaynes, E.T. 1991, in Maximum-Entropy and Bayesian Methods, Proc. 10th Int. Workshop,
W.T. Grandy, Jr., and L.H. Schick, eds. (Boston: Kluwer). [10]

Macdonald, J.R., and Thompson, W.J. 1992, American Journal of Physics, vol. 60, pp. 66–73.

15.4 General Linear Least Squares 671

15.4 General Linear Least Squares

An immediate generalization of §15.2 is to fit a set of data points (xi, yi) to a
model that is not just a linear combination of 1 and x (namely a + bx), but rather a
linear combination of any M specified functions of x. For example, the functions
could be 1, x, x2, . . . , xM−1, in which case their general linear combination,

y(x) = a1 + a2x + a3x
2 + · · · + aMx

M−1 (15.4.1)

is a polynomial of degree M − 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.

The general form of this kind of model is

y(x) =

M∑
k=1

akXk(x) (15.4.2)

where X1(x), . . . , XM (x) are arbitrary fixed functions of x, called the basis
functions.

Note that the functions Xk(x) can be wildly nonlinear functions of x. In this
discussion “linear” refers only to the model’s dependence on its parameters ak .

For these linear models we generalize the discussion of the previous section
by defining a merit function

χ2 =

N∑
i=1

[
yi −

∑M
k=1 akXk(xi)

σi

]2
(15.4.3)

As before, σi is the measurement error (standard deviation) of the ith data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of §15.1) be set to the constant value σ = 1.

Once again, we will pick as best parameters those that minimize χ2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whose N ×M components are constructed from the M
basis functions evaluated at the N abscissas xi, and from the N measurement errors
σi, by the prescription

Aij =
Xj(xi)

σi
(15.4.4)

The matrixA is called the design matrix of the fitting problem. Notice that in general
A has more rows than columns, N ≥M , since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector b of length N by

bi =
yi
σi

(15.4.5)

and denote the M vector whose components are the parameters to be fitted,
a1, . . . , aM , by a.

672 Chapter 15. Modeling of Data

X1(x1)
σ1

x1 X2(x1)
σ1

. . . XM(x1)
σ1

X1() X2() . . . XM()

X1(x2)
σ2

x2 X2(x2)
σ2

. . . XM(x2)
σ2

...
...

...
...

...
...

...

X1(xN)
σN

xN X2(xN)
σN

. . . XM(xN)
σN

da
ta

 p
oi

nt
s

basis functions

Figure 15.4.1. Design matrix for the least-squares fit of a linear combination ofM basis functions to N
data points. The matrix elements involve the basis functions evaluated at the values of the independent
variable at which measurementsare made, and the standard deviations of the measured dependentvariable.
The measured values of the dependent variable do not enter the design matrix.

Solution by Use of the Normal Equations

The minimum of (15.4.3) occurs where the derivative of χ2 with respect to all
M parameters ak vanishes. Specializing equation (15.1.7) to the case of the model
(15.4.2), this condition yields the M equations

0 =

N∑
i=1

1

σ2i

⎡
⎣yi − M∑

j=1

ajXj(xi)

⎤
⎦Xk(xi) k = 1, . . . ,M (15.4.6)

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

M∑
j=1

αkjaj = βk (15.4.7)

where

αkj =

N∑
i=1

Xj(xi)Xk(xi)

σ2i
or equivalently [α] = AT · A (15.4.8)

an M × M matrix, and

βk =

N∑
i=1

yiXk(xi)

σ2i
or equivalently [β] = AT · b (15.4.9)

15.4 General Linear Least Squares 673

a vector of length M .
The equations (15.4.6) or (15.4.7) are called the normal equations of the least-

squares problem. They can be solved for the vector of parameters a by the standard
methods of Chapter 2, notably LU decomposition and backsubstitution, Choleksy
decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations
can be written as either

[α] · a = [β] or as
(
AT · A) · a = AT · b (15.4.10)

The inverse matrix Cjk ≡ [α]−1jk is closely related to the probable (or, more
precisely, standard) uncertainties of the estimated parameters a. To estimate these
uncertainties, consider that

aj =

M∑
k=1

[α]−1jk βk =

M∑
k=1

Cjk

[
N∑
i=1

yiXk(xi)

σ2i

]
(15.4.11)

and that the variance associated with the estimate aj can be found as in (15.2.7) from

σ2(aj) =

N∑
i=1

σ2i

(
∂aj
∂yi

)2
(15.4.12)

Note that αjk is independent of yi, so that

∂aj
∂yi

=
M∑
k=1

CjkXk(xi)/σ
2
i (15.4.13)

Consequently, we find that

σ2(aj) =

M∑
k=1

M∑
l=1

CjkCjl

[
N∑
i=1

Xk(xi)Xl(xi)

σ2i

]
(15.4.14)

The final term in brackets is just the matrix [α]. Since this is the matrix inverse
of [C], (15.4.14) reduces immediately to

σ2(aj) = Cjj (15.4.15)

In other words, the diagonal elements of [C] are the variances (squared
uncertainties) of the fitted parameters a. It should not surprise you to learn that the
off-diagonal elements Cjk are the covariances between aj and ak (cf. 15.2.10); but
we shall defer discussion of these to §15.6.

We will now give a routine that implements the above formulas for the general
linear least-squares problem, by the method of normal equations. Since we wish to
compute not only the solution vector a but also the covariance matrix [C], it is most
convenient to use Gauss-Jordan elimination (routine gaussj of §2.1) to perform the
linear algebra. The operation count, in this application, is no larger than that for LU
decomposition. If you have no need for the covariance matrix, however, you can
save a factor of 3 on the linear algebra by switching to LU decomposition, without

674 Chapter 15. Modeling of Data

computation of the matrix inverse. In theory, since AT · A is positive definite,
Cholesky decomposition is the most efficient way to solve the normal equations.
However, in practice most of the computing time is spent in looping over the data
to form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of a least-squares problem directly from
the normal equations is rather susceptible to roundoff error. An alternative, and
preferred, technique involves QR decomposition (§2.10, §11.3, and §11.6) of the
design matrixA. This is essentially what we did at the end of §15.2 for fitting data to
a straight line, but without invoking all the machinery of QR to derive the necessary
formulas. Later in this section, we will discuss other difficulties in the least-squares
problem, for which the cure is singular value decomposition (SVD), of which we give
an implementation. It turns out that SVD also fixes the roundoff problem, so it is our
recommended technique for all but “easy” least-squares problems. It is for these easy
problems that the following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping trick that is quite useful in
practical work. Frequently it is a matter of “art” to decide which parameters ak
in a model should be fit from the data set, and which should be held constant at
fixed values, for example values predicted by a theory or measured in a previous
experiment. One wants, therefore, to have a convenient means for “freezing”
and “unfreezing” the parameters ak. In the following routine the total number of
parameters ak is denoted ma (called M above). As input to the routine, you supply
an array ia[1..ma], whose components are either zero or nonzero (e.g., 1). Zeros
indicate that you want the corresponding elements of the parameter vector a[1..ma]
to be held fixed at their input values. Nonzeros indicate parameters that should be
fitted for. On output, any frozen parameters will have their variances, and all their
covariances, set to zero in the covariance matrix.

#include "nrutil.h"

void lfit(float x[], float y[], float sig[], int ndat, float a[], int ia[],
int ma, float **covar, float *chisq, void (*funcs)(float, float [], int))

Given a set of data points x[1..ndat], y[1..ndat] with individual standard deviations
sig[1..ndat], use χ2 minimization to fit for some or all of the coefficients a[1..ma] of
a function that depends linearly on a, y =

∑
i ai × afunci(x). The input array ia[1..ma]

indicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
for a[1..ma], χ2 = chisq, and the covariance matrix covar[1..ma][1..ma]. (Parameters
held fixed will return zero covariances.) The user supplies a routine funcs(x,afunc,ma) that
returns the ma basis functions evaluated at x = x in the array afunc[1..ma].
{

void covsrt(float **covar, int ma, int ia[], int mfit);
void gaussj(float **a, int n, float **b, int m);
int i,j,k,l,m,mfit=0;
float ym,wt,sum,sig2i,**beta,*afunc;

beta=matrix(1,ma,1,1);
afunc=vector(1,ma);
for (j=1;j<=ma;j++)

if (ia[j]) mfit++;
if (mfit == 0) nrerror("lfit: no parameters to be fitted");
for (j=1;j<=mfit;j++) { Initialize the (symmetric) matrix.

for (k=1;k<=mfit;k++) covar[j][k]=0.0;
beta[j][1]=0.0;

}
for (i=1;i<=ndat;i++) { Loop over data to accumulate coefficients of

the normal equations.

15.4 General Linear Least Squares 675

(*funcs)(x[i],afunc,ma);
ym=y[i];
if (mfit < ma) { Subtract off dependences on known pieces

of the fitting function.for (j=1;j<=ma;j++)
if (!ia[j]) ym -= a[j]*afunc[j];

}
sig2i=1.0/SQR(sig[i]);
for (j=0,l=1;l<=ma;l++) {

if (ia[l]) {
wt=afunc[l]*sig2i;
for (j++,k=0,m=1;m<=l;m++)

if (ia[m]) covar[j][++k] += wt*afunc[m];
beta[j][1] += ym*wt;

}
}

}
for (j=2;j<=mfit;j++) Fill in above the diagonal from symmetry.

for (k=1;k<j;k++)
covar[k][j]=covar[j][k];

gaussj(covar,mfit,beta,1); Matrix solution.
for (j=0,l=1;l<=ma;l++)

if (ia[l]) a[l]=beta[++j][1]; Partition solution to appropriate coefficients
a.*chisq=0.0;

for (i=1;i<=ndat;i++) { Evaluate χ2 of the fit.
(*funcs)(x[i],afunc,ma);
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]*afunc[j];
*chisq += SQR((y[i]-sum)/sig[i]);

}
covsrt(covar,ma,ia,mfit); Sort covariance matrix to true order of fitting

coefficients.free_vector(afunc,1,ma);
free_matrix(beta,1,ma,1,1);

}

That last call to a function covsrt is only for the purpose of spreading the
covariances back into the full ma × ma covariance matrix, in the proper rows and
columns and with zero variances and covariances set for variables which were
held frozen.

The function covsrt is as follows.

#define SWAP(a,b) {swap=(a);(a)=(b);(b)=swap;}

void covsrt(float **covar, int ma, int ia[], int mfit)
Expand in storage the covariance matrix covar, so as to take into account parameters that are
being held fixed. (For the latter, return zero covariances.)
{

int i,j,k;
float swap;

for (i=mfit+1;i<=ma;i++)
for (j=1;j<=i;j++) covar[i][j]=covar[j][i]=0.0;

k=mfit;
for (j=ma;j>=1;j--) {

if (ia[j]) {
for (i=1;i<=ma;i++) SWAP(covar[i][k],covar[i][j])
for (i=1;i<=ma;i++) SWAP(covar[k][i],covar[j][i])
k--;

}
}

}

676 Chapter 15. Modeling of Data

Solution by Use of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate for linear
least-squares problems. However, in many cases the normal equations are very close
to singular. A zero pivot element may be encountered during the solution of the
linear equations (e.g., in gaussj), in which case you get no solution at all. Or a
very small pivot may occur, in which case you typically get fitted parameters ak
with very large magnitudes that are delicately (and unstably) balanced to cancel out
almost precisely when the fitted function is evaluated.

Why does this commonly occur? The reason is that, more often than experi-
menters would like to admit, data do not clearly distinguish between two or more of
the basis functions provided. If two such functions, or two different combinations
of functions, happen to fit the data about equally well — or equally badly — then
the matrix [α], unable to distinguish between them, neatly folds up its tent and
becomes singular. There is a certain mathematical irony in the fact that least-squares
problems are both overdetermined (number of data points greater than number of
parameters) and underdetermined (ambiguous combinations of parameters exist);
but that is how it frequently is. The ambiguities can be extremely hard to notice
a priori in complicated problems.

Enter singular value decomposition (SVD). This would be a good time for you
to review the material in §2.6, which we will not repeat here. In the case of an
overdetermined system, SVD produces a solution that is the best approximation in
the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In
the case of an underdetermined system, SVD produces a solution whose values (for
us, the ak’s) are smallest in the least-squares sense, cf. equation (2.6.8). That is
also what we want: When some combination of basis functions is irrelevant to the
fit, that combination will be driven down to a small, innocuous, value, rather than
pushed up to delicately canceling infinities.

In terms of the design matrix A (equation 15.4.4) and the vector b (equation
15.4.5), minimization of χ2 in (15.4.3) can be written as

find a that minimizes χ2 = |A · a− b|2 (15.4.16)

Comparing to equation (2.6.9), we see that this is precisely the problem that routines
svdcmp and svbksb are designed to solve. The solution, which is given by equation
(2.6.12), can be rewritten as follows: If U and V enter the SVD decomposition
of A according to equation (2.6.1), as computed by svdcmp, then let the vectors
U(i) i = 1, . . . ,M denote the columns of U (each one a vector of length N); and
let the vectors V(i); i = 1, . . . ,M denote the columns of V (each one a vector
of length M). Then the solution (2.6.12) of the least-squares problem (15.4.16)
can be written as

a =

M∑
i=1

(
U(i) · b
wi

)
V(i) (15.4.17)

where the wi are, as in §2.6, the singular values calculated by svdcmp.
Equation (15.4.17) says that the fitted parameters a are linear combinations of

the columns of V, with coefficients obtained by forming dot products of the columns

15.4 General Linear Least Squares 677

of U with the weighted data vector (15.4.5). Though it is beyond our scope to prove
here, it turns out that the standard (loosely, “probable”) errors in the fitted parameters
are also linear combinations of the columns of V. In fact, equation (15.4.17) can
be written in a form displaying these errors as

a =

[
M∑
i=1

(
U(i) · b
wi

)
V(i)

]
± 1

w1
V(1) ± · · · ± 1

wM
V(M) (15.4.18)

Here each ± is followed by a standard deviation. The amazing fact is that,
decomposed in this fashion, the standard deviations are all mutually independent
(uncorrelated). Therefore they can be added together in root-mean-square fashion.
What is going on is that the vectors V(i) are the principal axes of the error ellipsoid
of the fitted parameters a (see §15.6).

It follows that the variance in the estimate of a parameter aj is given by

σ2(aj) =

M∑
i=1

1

w2i
[V(i)]

2
j =

M∑
i=1

(
Vji
wi

)2
(15.4.19)

whose result should be identical with (15.4.14). As before, you should not be
surprised at the formula for the covariances, here given without proof,

Cov(aj , ak) =
M∑
i=1

(
VjiVki
w2i

)
(15.4.20)

We introduced this subsection by noting that the normal equations can fail
by encountering a zero pivot. We have not yet, however, mentioned how SVD
overcomes this problem. The answer is: If any singular value wi is zero, its
reciprocal in equation (15.4.18) should be set to zero, not infinity. (Compare the
discussion preceding equation 2.6.7.) This corresponds to adding to the fitted
parameters a a zero multiple, rather than some random large multiple, of any linear
combination of basis functions that are degenerate in the fit. It is a good thing to do!

Moreover, if a singular value wi is nonzero but very small, you should also
define its reciprocal to be zero, since its apparent value is probably an artifact of
roundoff error, not a meaningful number. A plausible answer to the question “how
small is small?” is to edit in this fashion all singular values whose ratio to the
largest singular value is less than N times the machine precision ε. (You might
argue for

√
N , or a constant, instead of N as the multiple; that starts getting into

hardware-dependent questions.)
There is another reason for editing even additional singular values, ones large

enough that roundoff error is not a question. Singular value decomposition allows
you to identify linear combinations of variables that just happen not to contribute
much to reducing the χ2 of your data set. Editing these can sometimes reduce the
probable error on your coefficients quite significantly, while increasing the minimum
χ2 only negligibly. We will learn more about identifying and treating such cases
in §15.6. In the following routine, the point at which this kind of editing would
occur is indicated.

Generally speaking, we recommend that you always use SVD techniques instead
of using the normal equations. SVD’s only significant disadvantage is that it requires

678 Chapter 15. Modeling of Data

an extra array of size N × M to store the whole design matrix. This storage
is overwritten by the matrix U. Storage is also required for the M × M matrix
V, but this is instead of the same-sized matrix for the coefficients of the normal
equations. SVD can be significantly slower than solving the normal equations;
however, its great advantage, that it (theoretically) cannot fail, more than makes
up for the speed disadvantage.

In the routine that follows, the matrices u,v and the vector w are input as
working space. The logical dimensions of the problem are ndata data points by ma

basis functions (and fitted parameters). If you care only about the values a of the
fitted parameters, then u,v,w contain no useful information on output. If you want
probable errors for the fitted parameters, read on.

#include "nrutil.h"
#define TOL 1.0e-5

void svdfit(float x[], float y[], float sig[], int ndata, float a[], int ma,
float **u, float **v, float w[], float *chisq,
void (*funcs)(float, float [], int))

Given a set of data points x[1..ndata],y[1..ndata] with individual standard deviations
sig[1..ndata], use χ2 minimization to determine the coefficients a[1..ma] of the fit-
ting function y =

∑
i ai × afunci(x). Here we solve the fitting equations using singular

value decomposition of the ndata by ma matrix, as in §2.6. Arrays u[1..ndata][1..ma],
v[1..ma][1..ma], and w[1..ma] provide workspace on input; on output they define the
singular value decomposition, and can be used to obtain the covariance matrix. The pro-
gram returns values for the ma fit parameters a, and χ2, chisq. The user supplies a routine
funcs(x,afunc,ma) that returns the ma basis functions evaluated at x = x in the array
afunc[1..ma].
{

void svbksb(float **u, float w[], float **v, int m, int n, float b[],
float x[]);

void svdcmp(float **a, int m, int n, float w[], float **v);
int j,i;
float wmax,tmp,thresh,sum,*b,*afunc;

b=vector(1,ndata);
afunc=vector(1,ma);
for (i=1;i<=ndata;i++) { Accumulate coefficients of the fitting ma-

trix.(*funcs)(x[i],afunc,ma);
tmp=1.0/sig[i];
for (j=1;j<=ma;j++) u[i][j]=afunc[j]*tmp;
b[i]=y[i]*tmp;

}
svdcmp(u,ndata,ma,w,v); Singular value decomposition.
wmax=0.0; Edit the singular values, given TOL from the

#define statement, between here ...for (j=1;j<=ma;j++)
if (w[j] > wmax) wmax=w[j];

thresh=TOL*wmax;
for (j=1;j<=ma;j++)

if (w[j] < thresh) w[j]=0.0; ...and here.
svbksb(u,w,v,ndata,ma,b,a);
*chisq=0.0; Evaluate chi-square.
for (i=1;i<=ndata;i++) {

(*funcs)(x[i],afunc,ma);
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]*afunc[j];
*chisq += (tmp=(y[i]-sum)/sig[i],tmp*tmp);

}
free_vector(afunc,1,ma);
free_vector(b,1,ndata);

}

15.4 General Linear Least Squares 679

Feeding the matrix v and vector w output by the above program into the
following short routine, you easily obtain variances and covariances of the fitted
parameters a. The square roots of the variances are the standard deviations of
the fitted parameters. The routine straightforwardly implements equation (15.4.20)
above, with the convention that singular values equal to zero are recognized as
having been edited out of the fit.

#include "nrutil.h"

void svdvar(float **v, int ma, float w[], float **cvm)
To evaluate the covariance matrix cvm[1..ma][1..ma] of the fit for ma parameters obtained
by svdfit, call this routine with matrices v[1..ma][1..ma], w[1..ma] as returned from
svdfit.
{

int k,j,i;
float sum,*wti;

wti=vector(1,ma);
for (i=1;i<=ma;i++) {

wti[i]=0.0;
if (w[i]) wti[i]=1.0/(w[i]*w[i]);

}
for (i=1;i<=ma;i++) { Sum contributions to covariance matrix (15.4.20).

for (j=1;j<=i;j++) {
for (sum=0.0,k=1;k<=ma;k++) sum += v[i][k]*v[j][k]*wti[k];
cvm[j][i]=cvm[i][j]=sum;

}
}
free_vector(wti,1,ma);

}

Examples

Be aware that some apparently nonlinear problems can be expressed so that
they are linear. For example, an exponential model with two parameters a and b,

y(x) = a exp(−bx) (15.4.21)

can be rewritten as
log[y(x)] = c− bx (15.4.22)

which is linear in its parameters c and b. (Of course you must be aware that such
transformations do not exactly take Gaussian errors into Gaussian errors.)

Also watch out for “non-parameters,” as in

y(x) = a exp(−bx + d) (15.4.23)

Here the parameters a and d are, in fact, indistinguishable. This is a good example of
where the normal equations will be exactly singular, and where SVD will find a zero
singular value. SVD will then make a “least-squares” choice for setting a balance
between a and d (or, rather, their equivalents in the linear model derived by taking the
logarithms). However — and this is true whenever SVD gives back a zero singular
value — you are better advised to figure out analytically where the degeneracy is
among your basis functions, and then make appropriate deletions in the basis set.

Here are two examples for user-supplied routines funcs. The first one is trivial
and fits a general polynomial to a set of data:

680 Chapter 15. Modeling of Data

void fpoly(float x, float p[], int np)
Fitting routine for a polynomial of degree np-1, with coefficients in the array p[1..np].
{

int j;

p[1]=1.0;
for (j=2;j<=np;j++) p[j]=p[j-1]*x;

}

The second example is slightly less trivial. It is used to fit Legendre polynomials
up to some order nl-1 through a data set.

void fleg(float x, float pl[], int nl)
Fitting routine for an expansion with nl Legendre polynomials pl, evaluated using the recurrence
relation as in §5.5.
{

int j;
float twox,f2,f1,d;

pl[1]=1.0;
pl[2]=x;
if (nl > 2) {

twox=2.0*x;
f2=x;
d=1.0;
for (j=3;j<=nl;j++) {

f1=d++;
f2 += twox;
pl[j]=(f2*pl[j-1]-f1*pl[j-2])/d;

}
}

}

Multidimensional Fits

If you are measuring a single variable y as a function of more than one variable
— say, a vector of variables x, then your basis functions will be functions of a vector,
X1(x), . . . , XM (x). The χ2 merit function is now

χ2 =

N∑
i=1

[
yi −

∑M
k=1 akXk(xi)
σi

]2
(15.4.24)

All of the preceding discussion goes through unchanged, with x replaced by x. In
fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In both lfit and svdfit, the only use made
of the array elements x[i] is that each element is in turn passed to the user-supplied
routine funcs, which duly gives back the values of the basis functions at that point.
If you set x[i]=i before calling lfit or svdfit, and independently provide funcs
with the true vector values of your data points (e.g., in global variables), then funcs

can translate from the fictitiousx[i]’s to the actual data points before doing its work.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 8–9.

15.5 Nonlinear Models 681

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

15.5 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of M
unknown parameters ak, k = 1, 2, . . . ,M . We use the same approach as in previous
sections, namely to define a χ2 merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we develop a procedure
that improves the trial solution. The procedure is then repeated until χ2 stops (or
effectively stops) decreasing.

How is this problem different from the general nonlinear function minimization
problem already dealt with in Chapter 10? Superficially, not at all: Sufficiently
close to the minimum, we expect the χ2 function to be well approximated by a
quadratic form, which we can write as

χ2(a) ≈ γ − d · a+
1

2
a · D · a (15.5.1)

where d is an M -vector and D is an M ×M matrix. (Compare equation 10.6.1.)
If the approximation is a good one, we know how to jump from the current trial
parameters acur to the minimizing ones amin in a single leap, namely

amin = acur + D−1 · [−∇χ2(acur)
]

(15.5.2)

(Compare equation 10.7.4.)
On the other hand, (15.5.1) might be a poor local approximation to the shape

of the function that we are trying to minimize at acur. In that case, about all we
can do is take a step down the gradient, as in the steepest descent method (§10.6).
In other words,

anext = acur − constant ×∇χ2(acur) (15.5.3)

where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient of the χ2

function at any set of parameters a. To use (15.5.2) we also need the matrixD, which
is the second derivative matrix (Hessian matrix) of the χ2 merit function, at any a.

Now, this is the crucial difference from Chapter 10: There, we had no way of
directly evaluating the Hessian matrix. We were given only the ability to evaluate
the function to be minimized and (in some cases) its gradient. Therefore, we had
to resort to iterative methods not just because our function was nonlinear, but also
in order to build up information about the Hessian matrix. Sections 10.7 and 10.6
concerned themselves with two different techniques for building up this information.

682 Chapter 15. Modeling of Data

Here, life is much simpler. We know exactly the form of χ2, since it is based
on a model function that we ourselves have specified. Therefore the Hessian matrix
is known to us. Thus we are free to use (15.5.2) whenever we care to do so. The
only reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling
failure of (15.5.1) as a good local approximation.

Calculation of the Gradient and Hessian

The model to be fitted is

y = y(x; a) (15.5.4)

and the χ2 merit function is

χ2(a) =
N∑
i=1

[
yi − y(xi; a)

σi

]2
(15.5.5)

The gradient of χ2 with respect to the parameters a, which will be zero at the χ2

minimum, has components

∂χ2

∂ak
= −2

N∑
i=1

[yi − y(xi; a)]
σ2i

∂y(xi; a)
∂ak

k = 1, 2, . . . ,M (15.5.6)

Taking an additional partial derivative gives

∂2χ2

∂ak∂al
= 2

N∑
i=1

1

σ2i

[
∂y(xi; a)
∂ak

∂y(xi; a)
∂al

− [yi − y(xi; a)]
∂2y(xi; a)
∂al∂ak

]
(15.5.7)

It is conventional to remove the factors of 2 by defining

βk ≡ −1

2

∂χ2

∂ak
αkl ≡ 1

2

∂2χ2

∂ak∂al
(15.5.8)

making [α] = 1
2D in equation (15.5.2), in terms of which that equation can be

rewritten as the set of linear equations

M∑
l=1

αkl δal = βk (15.5.9)

This set is solved for the increments δal that, added to the current approximation,
give the next approximation. In the context of least-squares, the matrix [α], equal to
one-half times the Hessian matrix, is usually called the curvature matrix.

Equation (15.5.3), the steepest descent formula, translates to

δal = constant × βl (15.5.10)

15.5 Nonlinear Models 683

Note that the componentsαkl of the Hessian matrix (15.5.7) depend both on the
first derivatives and on the second derivatives of the basis functions with respect to
their parameters. Some treatments proceed to ignore the second derivative without
comment. We will ignore it also, but only after a few comments.

Second derivatives occur because the gradient (15.5.6) already has a dependence
on ∂y/∂ak , so the next derivative simply must contain terms involving∂2y/∂al∂ak.
The second derivative term can be dismissed when it is zero (as in the linear case
of equation 15.4.8), or small enough to be negligible when compared to the term
involving the first derivative. It also has an additional possibility of being ignorably
small in practice: The term multiplying the second derivative in equation (15.5.7)
is [yi − y(xi; a)]. For a successful model, this term should just be the random
measurement error of each point. This error can have either sign, and should in
general be uncorrelated with the model. Therefore, the second derivative terms tend
to cancel out when summed over i.

Inclusion of the second-derivative term can in fact be destabilizing if the model
fits badly or is contaminated by outlier points that are unlikely to be offset by
compensating points of opposite sign. From this point on, we will always use as
the definition of αkl the formula

αkl =

N∑
i=1

1

σ2i

[
∂y(xi; a)
∂ak

∂y(xi; a)
∂al

]
(15.5.11)

This expression more closely resembles its linear cousin (15.4.8). You should
understand that minor (or even major) fiddling with [α] has no effect at all on
what final set of parameters a is reached, but affects only the iterative route that is
taken in getting there. The condition at the χ2 minimum, that βk = 0 for all k,
is independent of how [α] is defined.

Levenberg-Marquardt Method

Marquardt [1] has put forth an elegant method, related to an earlier suggestion
of Levenberg, for varying smoothly between the extremes of the inverse-Hessian
method (15.5.9) and the steepest descent method (15.5.10). The latter method is
used far from the minimum, switching continuously to the former as the minimum
is approached. This Levenberg-Marquardt method (also called Marquardt method)
works very well in practice and has become the standard of nonlinear least-squares
routines.

The method is based on two elementary, but important, insights. Consider the
“constant” in equation (15.5.10). What should it be, even in order of magnitude?
What sets its scale? There is no information about the answer in the gradient. That
tells only the slope, not how far that slope extends. Marquardt’s first insight is that
the components of the Hessian matrix, even if they are not usable in any precise
fashion, give some information about the order-of-magnitude scale of the problem.

The quantity χ2 is nondimensional, i.e., is a pure number; this is evident from
its definition (15.5.5). On the other hand, βk has the dimensions of 1/ak, which
may well be dimensional, i.e., have units like cm−1, or kilowatt-hours, or whatever.
(In fact, each component of βk can have different dimensions!) The constant of
proportionality between βk and δak must therefore have the dimensions of a2k . Scan

684 Chapter 15. Modeling of Data

the components of [α] and you see that there is only one obvious quantity with these
dimensions, and that is 1/αkk, the reciprocal of the diagonal element. So that must
set the scale of the constant. But that scale might itself be too big. So let’s divide
the constant by some (nondimensional) fudge factor λ, with the possibility of setting
λ � 1 to cut down the step. In other words, replace equation (15.5.10) by

δal =
1

λαll
βl or λαll δal = βl (15.5.12)

It is necessary that all be positive, but this is guaranteed by definition (15.5.11) —
another reason for adopting that equation.

Marquardt’s second insight is that equations (15.5.12) and (15.5.9) can be
combined if we define a new matrix α′ by the following prescription

α′jj ≡ αjj(1 + λ)

α′jk ≡ αjk (j �= k)
(15.5.13)

and then replace both (15.5.12) and (15.5.9) by

M∑
l=1

α′kl δal = βk (15.5.14)

When λ is very large, the matrix α′ is forced into being diagonally dominant, so
equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, as λ
approaches zero, equation (15.5.14) goes over to (15.5.9).

Given an initial guess for the set of fitted parameters a, the recommended
Marquardt recipe is as follows:

• Compute χ2(a).
• Pick a modest value for λ, say λ = 0.001.
• (†) Solve the linear equations (15.5.14) for δa and evaluate χ2(a+ δa).
• If χ2(a + δa) ≥χ2(a), increase λ by a factor of 10 (or any other

substantial factor) and go back to (†).
• If χ2(a + δa) < χ2(a), decrease λ by a factor of 10, update the trial

solution a ← a + δa, and go back to (†).
Also necessary is a condition for stopping. Iterating to convergence (to machine

accuracy or to the roundoff limit) is generally wasteful and unnecessary since the
minimum is at best only a statistical estimate of the parameters a. As we will see
in §15.6, a change in the parameters that changes χ2 by an amount � 1 is never
statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering
around near the minimum in a flat valley of complicated topography. The rea-
son is that Marquardt’s method generalizes the method of normal equations (§15.4),
hence has the same problem as that method with regard to near-degeneracy of the
minimum. Outright failure by a zero pivot is possible, but unlikely. More often,
a small pivot will generate a large correction which is then rejected, the value of
λ being then increased. For sufficiently large λ the matrix [α′] is positive definite
and can have no small pivots. Thus the method does tend to stay away from zero

15.5 Nonlinear Models 685

pivots, but at the cost of a tendency to wander around doing steepest descent in
very un-steep degenerate valleys.

These considerations suggest that, in practice, one might as well stop iterating
on the first or second occasion that χ2 decreases by a negligible amount, say either
less than 0.01 absolutely or (in case roundoff prevents that being reached) some
fractional amount like 10−3. Don’t stop after a step where χ2 increases: That only
shows that λ has not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to set λ = 0 and
compute the matrix

[C] ≡ [α]−1 (15.5.15)

which, as before, is the estimated covariance matrix of the standard errors in the
fitted parameters a (see next section).

The following pair of functions encodes Marquardt’s method for nonlinear
parameter estimation. Much of the organization matches that used in lfit of §15.4.
In particular the array ia[1..ma] must be input with components one or zero
corresponding to whether the respective parameter values a[1..ma] are to be fitted
for or held fixed at their input values, respectively.

The routine mrqmin performs one iteration of Marquardt’s method. It is first
called (once) with alamda < 0, which signals the routine to initialize. alamda is set
on the first and all subsequent calls to the suggested value of λ for the next iteration;
a and chisq are always given back as the best parameters found so far and their χ2.
When convergence is deemed satisfactory, set alamda to zero before a final call.
The matrices alpha and covar (which were used as workspace in all previous calls)
will then be set to the curvature and covariance matrices for the converged parameter
values. The arguments alpha, a, and chisq must not be modified between calls,
nor should alamda be, except to set it to zero for the final call. When an uphill
step is taken, chisq and a are given back with their input (best) values, but alamda
is set to an increased value.

The routine mrqmin calls the routine mrqcof for the computation of the matrix
[α] (equation 15.5.11) and vector β (equations 15.5.6 and 15.5.8). In turn mrqcof

calls the user-supplied routine funcs(x,a,y,dyda), which for input values x ≡ xi
and a ≡ a calculates the model function y ≡ y(xi; a) and the vector of derivatives
dyda ≡ ∂y/∂ak .

#include "nrutil.h"

void mrqmin(float x[], float y[], float sig[], int ndata, float a[], int ia[],
int ma, float **covar, float **alpha, float *chisq,
void (*funcs)(float, float [], float *, float [], int), float *alamda)

Levenberg-Marquardt method, attempting to reduce the value χ2 of a fit between a set of data
points x[1..ndata], y[1..ndata] with individual standard deviations sig[1..ndata],
and a nonlinear function dependent on ma coefficients a[1..ma]. The input array ia[1..ma]
indicates by nonzero entries those components of a that should be fitted for, and by zero
entries those components that should be held fixed at their input values. The program re-
turns current best-fit values for the parameters a[1..ma], and χ2 = chisq. The arrays
covar[1..ma][1..ma], alpha[1..ma][1..ma] are used as working space during most
iterations. Supply a routine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function
yfit, and its derivatives dyda[1..ma] with respect to the fitting parameters a at x. On
the first call provide an initial guess for the parameters a, and set alamda<0 for initialization
(which then sets alamda=.001). If a step succeeds chisq becomes smaller and alamda de-
creases by a factor of 10. If a step fails alamda grows by a factor of 10. You must call this

686 Chapter 15. Modeling of Data

routine repeatedly until convergence is achieved. Then, make one final call with alamda=0, so
that covar[1..ma][1..ma] returns the covariance matrix, and alpha the curvature matrix.
(Parameters held fixed will return zero covariances.)
{

void covsrt(float **covar, int ma, int ia[], int mfit);
void gaussj(float **a, int n, float **b, int m);
void mrqcof(float x[], float y[], float sig[], int ndata, float a[],

int ia[], int ma, float **alpha, float beta[], float *chisq,
void (*funcs)(float, float [], float *, float [], int));

int j,k,l;
static int mfit;
static float ochisq,*atry,*beta,*da,**oneda;

if (*alamda < 0.0) { Initialization.
atry=vector(1,ma);
beta=vector(1,ma);
da=vector(1,ma);
for (mfit=0,j=1;j<=ma;j++)

if (ia[j]) mfit++;
oneda=matrix(1,mfit,1,1);
*alamda=0.001;
mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,chisq,funcs);
ochisq=(*chisq);
for (j=1;j<=ma;j++) atry[j]=a[j];

}
for (j=1;j<=mfit;j++) { Alter linearized fitting matrix, by augmenting di-

agonal elements.for (k=1;k<=mfit;k++) covar[j][k]=alpha[j][k];
covar[j][j]=alpha[j][j]*(1.0+(*alamda));
oneda[j][1]=beta[j];

}
gaussj(covar,mfit,oneda,1); Matrix solution.
for (j=1;j<=mfit;j++) da[j]=oneda[j][1];
if (*alamda == 0.0) { Once converged, evaluate covariance matrix.

covsrt(covar,ma,ia,mfit);
covsrt(alpha,ma,ia,mfit); Spread out alpha to its full size too.
free_matrix(oneda,1,mfit,1,1);
free_vector(da,1,ma);
free_vector(beta,1,ma);
free_vector(atry,1,ma);
return;

}
for (j=0,l=1;l<=ma;l++) Did the trial succeed?

if (ia[l]) atry[l]=a[l]+da[++j];
mrqcof(x,y,sig,ndata,atry,ia,ma,covar,da,chisq,funcs);
if (*chisq < ochisq) { Success, accept the new solution.

*alamda *= 0.1;
ochisq=(*chisq);
for (j=1;j<=mfit;j++) {

for (k=1;k<=mfit;k++) alpha[j][k]=covar[j][k];
beta[j]=da[j];

}
for (l=1;l<=ma;l++) a[l]=atry[l];

} else { Failure, increase alamda and return.
*alamda *= 10.0;
*chisq=ochisq;

}
}

Notice the use of the routine covsrt from §15.4. This is merely for rearranging
the covariance matrix covar into the order of all ma parameters. The above routine
also makes use of

15.5 Nonlinear Models 687

#include "nrutil.h"

void mrqcof(float x[], float y[], float sig[], int ndata, float a[], int ia[],
int ma, float **alpha, float beta[], float *chisq,
void (*funcs)(float, float [], float *, float [], int))

Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in (15.5.8),
and calculate χ2.
{

int i,j,k,l,m,mfit=0;
float ymod,wt,sig2i,dy,*dyda;

dyda=vector(1,ma);
for (j=1;j<=ma;j++)

if (ia[j]) mfit++;
for (j=1;j<=mfit;j++) { Initialize (symmetric) alpha, beta.

for (k=1;k<=j;k++) alpha[j][k]=0.0;
beta[j]=0.0;

}
*chisq=0.0;
for (i=1;i<=ndata;i++) { Summation loop over all data.

(*funcs)(x[i],a,&ymod,dyda,ma);
sig2i=1.0/(sig[i]*sig[i]);
dy=y[i]-ymod;
for (j=0,l=1;l<=ma;l++) {

if (ia[l]) {
wt=dyda[l]*sig2i;
for (j++,k=0,m=1;m<=l;m++)

if (ia[m]) alpha[j][++k] += wt*dyda[m];
beta[j] += dy*wt;

}
}
*chisq += dy*dy*sig2i; And find χ2.

}
for (j=2;j<=mfit;j++) Fill in the symmetric side.

for (k=1;k<j;k++) alpha[k][j]=alpha[j][k];
free_vector(dyda,1,ma);

}

Example

The following function fgauss is an example of a user-supplied function
funcs. Used with the above routine mrqmin (in turn using mrqcof, covsrt, and
gaussj), it fits for the model

y(x) =

K∑
k=1

Bk exp

[
−
(
x−Ek
Gk

)2]
(15.5.16)

which is a sum of K Gaussians, each having a variable position, amplitude, and
width. We store the parameters in the order B1, E1, G1, B2, E2, G2, . . . , BK ,
EK , GK.

688 Chapter 15. Modeling of Data

#include <math.h>

void fgauss(float x, float a[], float *y, float dyda[], int na)
y(x; a) is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
Gaussians are stored in consecutive locations of a: a[i] = Bk, a[i+1] = Ek, a[i+2]= Gk ,
k = 1, ...,na/3. The dimensions of the arrays are a[1..na], dyda[1..na].
{

int i;
float fac,ex,arg;

*y=0.0;
for (i=1;i<=na-1;i+=3) {

arg=(x-a[i+1])/a[i+2];
ex=exp(-arg*arg);
fac=a[i]*ex*2.0*arg;
*y += a[i]*ex;
dyda[i]=ex;
dyda[i+1]=fac/a[i+2];
dyda[i+2]=fac*arg/a[i+2];

}
}

More Advanced Methods for Nonlinear Least Squares

The Levenberg-Marquardt algorithm can be implemented as a model-trust
region method for minimization (see §9.7 and ref. [2]) applied to the special case
of a least squares function. A code of this kind due to Moré [3] can be found in
MINPACK [4]. Another algorithm for nonlinear least-squares keeps the second-
derivative term we dropped in the Levenberg-Marquardt method whenever it would
be better to do so. These methods are called “full Newton-type” methods and are
reputed to be more robust than Levenberg-Marquardt, but more complex. One
implementation is the code NL2SOL [5].

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 11.

Marquardt, D.W. 1963, Journal of the Society for Industrial and Applied Mathematics, vol. 11,
pp. 431–441. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter III.2 (by J.E. Dennis).

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [2]

Moré, J.J. 1977, in Numerical Analysis, Lecture Notes in Mathematics, vol. 630, G.A. Watson,
ed. (Berlin: Springer-Verlag), pp. 105–116. [3]

Moré, J.J., Garbow, B.S., and Hillstrom, K.E. 1980, UserGuide for MINPACK-1, Argonne National
Laboratory Report ANL-80-74. [4]

Dennis, J.E., Gay, D.M, and Welsch, R.E. 1981, ACM Transactions on Mathematical Software,
vol. 7, pp. 348–368; op. cit., pp. 369–383. [5].

15.6 Confidence Limits on Estimated Model Parameters 689

15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the standard
errors, or uncertainties, in a set of M estimated parameters a. We have given some
formulas for computing standard deviations or variances of individual parameters
(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covariances
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15;
equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning
of these quantitative uncertainties, and to give further information about how
quantitative confidence limits on fitted parameters can be estimated. The subject
can get somewhat technical, and even somewhat confusing, so we will try to make
precise statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptual scheme of an experiment that “measures”
a set of parameters. There is some underlying true set of parameters atrue that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, which we will symbolize as D(0). The data set D(0) is known to the experimenter.
He or she fits the data to a model by χ2 minimization or some other technique, and
obtains measured, i.e., fitted, values for the parameters, which we here denote a(0).

Because measurement errors have a random component, D(0) is not a unique
realization of the true parameters atrue. Rather, there are infinitely many other
realizations of the true parameters as “hypothetical data sets” each of which could
have been the one measured, but happened not to be. Let us symbolize these
by D(1),D(2), Each one, had it been realized, would have given a slightly
different set of fitted parameters, a(1), a(2), . . . , respectively. These parameter sets
a(i) therefore occur with some probability distribution in the M -dimensional space
of all possible parameter sets a. The actual measured set a(0) is one member drawn
from this distribution.

Even more interesting than the probability distribution of a(i) would be the
distribution of the difference a(i) − atrue. This distribution differs from the former
one by a translation that puts Mother Nature’s true value at the origin. If we knew this
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurement a(0).

So the name of the game is to find some way of estimating or approximating
the probability distribution of a(i)− atrue without knowing atrue and without having
available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter set a(0) is not the true one, let us consider
a fictitious world in which it was the true one. Since we hope that our measured
parameters are not too wrong, we hope that that fictitious world is not too different
from the actual world with parameters atrue. In particular, let us hope — no, let us
assume — that the shape of the probability distribution a(i) − a(0) in the fictitious
world is the same, or very nearly the same, as the shape of the probability distribution

690 Chapter 15. Modeling of Data

actual data set

hypothetical
data set

hypothetical
data set

hypothetical
data set

a3

a2

a1

fitted
parameters
a0

χ2

min

true parameters
atrue

ex
pe

rim
en

tal
 re

ali
za

tio
n

.

.

.
.
.
.

Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters a true are
realized in a data set, from which fitted (observed) parameters a 0 are obtained. If the experiment were
repeated many times, new data sets and new values of the fitted parameters would be obtained.

a(i)− atrue in the real world. Notice that we are not assuming that a(0) and atrue are
equal; they are certainly not. We are only assuming that the way in which random
errors enter the experiment and data analysis does not vary rapidly as a function of
atrue, so that a(0) can serve as a reasonable surrogate.

Now, often, the distribution of a(i) − a(0) in the fictitious world is within our
power to calculate (see Figure 15.6.2). If we know something about the process
that generated our data, given an assumed set of parameters a(0), then we can
usually figure out how to simulate our own sets of “synthetic” realizations of these
parameters as “synthetic data sets.” The procedure is to draw random numbers from
appropriate distributions (cf. §7.2–§7.3) so as to mimic our best understanding of
the underlying process and measurement errors in our apparatus. With such random
draws, we construct data sets with exactly the same numbers of measured points,
and precisely the same values of all control (independent) variables, as our actual
data set D(0). Let us call these simulated data sets DS(1),DS(2), By construction
these are supposed to have exactly the same statistical relationship to a(0) as the
D(i)’s have to atrue. (For the case where you don’t know enough about what you
are measuring to do a credible job of simulating it, see below.)

Next, for each DS(j), perform exactly the same procedure for estimation of

parameters, e.g., χ2 minimization, as was performed on the actual data to get
the parameters a(0), giving simulated measured parameters aS(1), a

S
(2), Each

simulated measured parameter set yields a point aS(i) − a(0). Simulate enough data
sets and enough derived simulated measured parameters, and you map out the desired
probability distribution in M dimensions.

In fact, the ability to do Monte Carlo simulations in this fashion has revo-

15.6 Confidence Limits on Estimated Model Parameters 691

synthetic
data set 1

synthetic
data set 2

synthetic
data set 3

synthetic
data set 4

a2

χ2

min

χ2

min

(s)

a1
(s)

a3
(s)

a4
(s)

Monte Carlo
parameters

M
on

te
 C

ar
lo

 re
al

iz
at

io
n

fitted
parameters

a0

actual
data set

Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters from an actual experiment
are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parameters is thus studied.

lutionized many fields of modern experimental science. Not only is one able to
characterize the errors of parameter estimation in a very precise way; one can also
try out on the computer different methods of parameter estimation, or different data
reduction techniques, and seek to minimize the uncertainty of the result according
to any desired criteria. Offered the choice between mastery of a five-foot shelf of
analytical statistics books and middling ability at performing statistical Monte Carlo
simulations, we would surely choose to have the latter skill.

Quick-and-Dirty Monte Carlo: The Bootstrap Method

Here is a powerful technique that can often be used when you don’t know
enough about the underlying process, or the nature of your measurement errors,
to do a credible Monte Carlo simulation. Suppose that your data set consists of
N independent and identically distributed (or iid) “data points.” Each data point
probably consists of several numbers, e.g., one or more control variables (uniformly
distributed, say, in the range that you have decided to measure) and one or more
associated measured values (each distributed however Mother Nature chooses).
“Iid” means that the sequential order of the data points is not of consequence to
the process that you are using to get the fitted parameters a. For example, a χ2

sum like (15.5.5) does not care in what order the points are added. Even simpler
examples are the mean value of a measured quantity, or the mean of some function
of the measured quantities.

The bootstrapmethod [1] uses the actual data set DS(0), with its N data points, to

generate any number of synthetic data sets DS(1),DS(2), . . . , also with N data points.
The procedure is simply to draw N data points at a time with replacement from the

692 Chapter 15. Modeling of Data

set DS(0). Because of the replacement, you do not simply get back your original
data set each time. You get sets in which a random fraction of the original points,
typically ∼ 1/e ≈ 37%, are replaced by duplicated original points. Now, exactly
as in the previous discussion, you subject these data sets to the same estimation
procedure as was performed on the actual data, giving a set of simulated measured
parameters aS(1), a

S
(2), These will be distributed around a(0) in close to the same

way that a(0) is distributed around atrue.
Sounds like getting something for nothing, doesn’t it? In fact, it has taken more

than a decade for the bootstrap method to become accepted by statisticians. By now,
however, enough theorems have been proved to render the bootstrap reputable (see [2]
for references). The basic idea behind the bootstrap is that the actual data set, viewed
as a probability distribution consisting of delta functions at the measured values, is
in most cases the best — or only — available estimator of the underlying probability
distribution. It takes courage, but one can often simply use that distribution as the
basis for Monte Carlo simulations.

Watch out for cases where the bootstrap’s “iid” assumption is violated. For
example, if you have made measurements at evenly spaced intervals of some control
variable, then you can usuallyget away with pretending that these are “iid,” uniformly
distributed over the measured range. However, some estimators of a (e.g., ones
involving Fourier methods) might be particularly sensitive to all the points on a grid
being present. In that case, the bootstrap is going to give a wrong distribution. Also
watch out for estimators that look at anything like small-scale clumpiness within the
N data points, or estimators that sort the data and look at sequential differences.
Obviously the bootstrap will fail on these, too. (The theorems justifying the method
are still true, but some of their technical assumptions are violated by these examples.)

For a large class of problems, however, the bootstrap does yield easy, very
quick, Monte Carlo estimates of the errors in an estimated parameter set.

Confidence Limits

Rather than present all details of the probability distribution of errors in
parameter estimation, it is common practice to summarize the distribution in the
form of confidence limits. The full probability distribution is a function defined
on the M -dimensional space of parameters a. A confidence region (or confidence
interval) is just a region of that M -dimensional space (hopefully a small region) that
contains a certain (hopefully large) percentage of the total probability distribution.
You point to a confidence region and say, e.g., “there is a 99 percent chance that the
true parameter values fall within this region around the measured value.”

It is worth emphasizing that you, the experimenter, get to pick both the
confidence level (99 percent in the above example), and the shape of the confidence
region. The only requirement is that your region does include the stated percentage
of probability. Certain percentages are, however, customary in scientific usage:
68.3 percent (the lowest confidence worthy of quoting), 90 percent, 95.4 percent, 99
percent, and 99.73 percent. Higher confidence levels are conventionally “ninety-nine
point nine . . . nine.” As for shape, obviously you want a region that is compact
and reasonably centered on your measurement a(0), since the whole purpose of a
confidence limit is to inspire confidence in that measured value. In one dimension,
the convention is to use a line segment centered on the measured value; in higher
dimensions, ellipses or ellipsoids are most frequently used.

15.6 Confidence Limits on Estimated Model Parameters 693

68% confidence interval on a2

68% confidence
interval on a1

68% confidence region
on a1 and a2 jointly

bias

a(i)1 − a(0)1
(s)

a(i)2 − a(0)2
(s)

Figure 15.6.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measured points (here
68%) lies (i) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the ellipse.

You might suspect, correctly, that the numbers 68.3 percent, 95.4 percent,
and 99.73 percent, and the use of ellipsoids, have some connection with a normal
distribution. That is true historically, but not always relevant nowadays. In general,
the probability distribution of the parameters will not be normal, and the above
numbers, used as levels of confidence, are purely matters of convention.

Figure 15.6.3 sketches a possible probability distribution for the case M = 2.
Shown are three different confidence regions which might usefully be given, all at the
same confidence level. The two vertical lines enclose a band (horizontal inverval)
which represents the 68 percent confidence interval for the variablea1 without regard
to the value of a2. Similarly the horizontal lines enclose a 68 percent confidence
interval for a2. The ellipse shows a 68 percent confidence interval for a1 and a2
jointly. Notice that to enclose the same probability as the two bands, the ellipse must
necessarily extend outside of both of them (a point we will return to below).

Constant Chi-Square Boundaries as Confidence Limits

When the method used to estimate the parameters a(0) is chi-square minimiza-
tion, as in the previous sections of this chapter, then there is a natural choice for the
shape of confidence intervals, whose use is almost universal. For the observed data
set D(0), the value of χ2 is a minimum at a(0). Call this minimum value χ2min. If

694 Chapter 15. Modeling of Data

C

B

A

Z ′

Z

C ′

Δχ2= 6.63

Δχ2= 2.71

Δχ2= 1.00

Δχ2= 2.30A′

B ′

Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted
minimum. The solid curves, with Δχ2 = 1.00,2.71,6.63 project onto one-dimensional intervalsAA′ ,
BB′, CC′ . These intervals — not the ellipses themselves — contain 68.3%, 90%, and 99% of normally
distributed data. The ellipse that contains 68.3% of normally distributed data is shown dashed, and has
Δχ2 = 2.30. For additional numerical values, see accompanying table.

the vector a of parameter values is perturbed away from a(0), then χ2 increases. The
region within which χ2 increases by no more than a set amount Δχ2 defines some
M -dimensional confidence region around a(0). If Δχ2 is set to be a large number,
this will be a big region; if it is small, it will be small. Somewhere in between there
will be choices of Δχ2 that cause the region to contain, variously, 68 percent, 90
percent, etc. of probability distribution for a’s, as defined above. These regions are
taken as the confidence regions for the parameters a(0).

Very frequently one is interested not in the full M -dimensional confidence
region, but in individual confidence regions for some smaller number ν of parameters.
For example, one might be interested in the confidence interval of each parameter
taken separately (the bands in Figure 15.6.3), in which case ν = 1. In that case,
the natural confidence regions in the ν-dimensional subspace of the M -dimensional
parameter space are the projections of the M -dimensional regions defined by fixed
Δχ2 into the ν-dimensional spaces of interest. In Figure 15.6.4, for the caseM = 2,
we show regions corresponding to several values of Δχ2. The one-dimensional
confidence interval in a2 corresponding to the region bounded by Δχ2 = 1 lies
between the lines A and A′.

Notice that the projection of the higher-dimensional region on the lower-
dimension space is used, not the intersection. The intersection would be the band
between Z and Z′. It is never used. It is shown in the figure only for the purpose of
making this cautionary point, that it should not be confused with the projection.

15.6 Confidence Limits on Estimated Model Parameters 695

Probability Distribution of Parameters in the Normal Case

You may be wondering why we have, in this section up to now, made no
connection at all with the error estimates that come out of the χ2 fitting procedure,
most notably the covariance matrix Cij . The reason is this: χ2 minimization
is a useful means for estimating parameters even if the measurement errors are
not normally distributed. While normally distributed errors are required if the χ2

parameter estimate is to be a maximum likelihood estimator (§15.1), one is often
willing to give up that property in return for the relative convenience of the χ2

procedure. Only in extreme cases, measurement error distributions with very large
“tails,” is χ2 minimization abandoned in favor of more robust techniques, as will
be discussed in §15.7.

However, the formal covariance matrix that comes out of a χ2 minimization has
a clear quantitative interpretation only if (or to the extent that) the measurement errors
actually are normally distributed. In the case of nonnormal errors, you are “allowed”

• to fit for parameters by minimizing χ2

• to use a contour of constant Δχ2 as the boundary of your confidence region
• to use Monte Carlo simulation or detailed analytic calculation in deter-

mining which contour Δχ2 is the correct one for your desired confidence
level

• to give the covariance matrix Cij as the “formal covariance matrix of
the fit.”

You are not allowed
• to use formulas that we now give for the case of normal errors, which

establish quantitative relationships among Δχ2, Cij , and the confidence
level.

Here are the key theorems that hold when (i) the measurement errors are
normally distributed, and either (ii) the model is linear in its parameters or (iii) the
sample size is large enough that the uncertainties in the fitted parameters a do not
extend outside a region in which the model could be replaced by a suitable linearized
model. [Note that condition (iii) does not preclude your use of a nonlinear routine
like mqrfit to find the fitted parameters.]

Theorem A. χ2min is distributed as a chi-square distribution with N − M
degrees of freedom, where N is the number of data points and M is the number of
fitted parameters. This is the basic theorem that lets you evaluate the goodness-of-fit
of the model, as discussed above in §15.1. We list it first to remind you that unless
the goodness-of-fit is credible, the whole estimation of parameters is suspect.

Theorem B. If aS(j) is drawn from the universe of simulated data sets with

actual parameters a(0), then the probability distribution of δa ≡ aS(j) − a(0) is the
multivariate normal distribution

P (δa) da1 . . . daM = const. × exp

(
−1

2
δa · [α] · δa

)
da1 . . . daM

where [α] is the curvature matrix defined in equation (15.5.8).
Theorem C. If aS(j) is drawn from the universe of simulated data sets with

actual parameters a(0), then the quantity Δχ2 ≡ χ2(a(j)) − χ2(a(0)) is distributed
as a chi-square distribution with M degrees of freedom. Here the χ2’s are all

696 Chapter 15. Modeling of Data

evaluated using the fixed (actual) data set D(0). This theorem makes the connection
between particular values of Δχ2 and the fraction of the probability distribution
that they enclose as an M -dimensional region, i.e., the confidence level of the
M -dimensional confidence region.

Theorem D. Suppose that aS(j) is drawn from the universe of simulated data
sets (as above), that its first ν components a1, . . . , aν are held fixed, and that its
remaining M − ν components are varied so as to minimize χ2. Call this minimum
value χ2ν . Then Δχ2ν ≡ χ2ν − χ2min is distributed as a chi-square distribution with
ν degrees of freedom. If you consult Figure 15.6.4, you will see that this theorem
connects the projectedΔχ2 region with a confidence level. In the figure, a point that
is held fixed in a2 and allowed to vary in a1 minimizing χ2 will seek out the ellipse
whose top or bottom edge is tangent to the line of constant a2, and is therefore the
line that projects it onto the smaller-dimensional space.

As a first example, let us consider the case ν = 1, where we want to find
the confidence interval of a single parameter, say a1. Notice that the chi-square
distributionwith ν = 1 degree of freedom is the same distributionas that of the square
of a single normally distributed quantity. Thus Δχ2ν < 1 occurs 68.3 percent of the
time (1-σ for the normal distribution), Δχ2ν < 4 occurs 95.4 percent of the time (2-σ
for the normal distribution), Δχ2ν < 9 occurs 99.73 percent of the time (3-σ for the
normal distribution), etc. In this manner you find the Δχ2ν that corresponds to your
desired confidence level. (Additional values are given in the accompanying table.)

Let δa be a change in the parameters whose first component is arbitrary, δa1,
but the rest of whose components are chosen to minimize the Δχ2. Then Theorem
D applies. The value of Δχ2 is given in general by

Δχ2 = δa · [α] · δa (15.6.1)

which follows from equation (15.5.8) applied at χ2min where βk = 0. Since δa
by hypothesis minimizes χ2 in all but its first component, the second through M th
components of the normal equations (15.5.9) continue to hold. Therefore, the
solution of (15.5.9) is

δa = [α]−1 ·

⎛
⎜⎜⎝
c
0
...
0

⎞
⎟⎟⎠ = [C] ·

⎛
⎜⎜⎝
c
0
...
0

⎞
⎟⎟⎠ (15.6.2)

where c is one arbitrary constant that we get to adjust to make (15.6.1) give the
desired left-hand value. Plugging (15.6.2) into (15.6.1) and using the fact that [C]
and [α] are inverse matrices of one another, we get

c = δa1/C11 and Δχ2ν = (δa1)
2/C11 (15.6.3)

or

δa1 = ±
√

Δχ2ν
√
C11 (15.6.4)

At last! A relation between the confidence interval ±δa1 and the formal
standard error σ1 ≡

√
C11. Not unreasonably, we find that the 68 percent confidence

interval is ±σ1, the 95 percent confidence interval is ±2σ1, etc.

15.6 Confidence Limits on Estimated Model Parameters 697

Δχ2 as a Function of Confidence Level and Degrees of Freedom

ν

p 1 2 3 4 5 6

68.3% 1.00 2.30 3.53 4.72 5.89 7.04

90% 2.71 4.61 6.25 7.78 9.24 10.6

95.4% 4.00 6.17 8.02 9.70 11.3 12.8

99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1

99.99% 15.1 18.4 21.1 23.5 25.7 27.8

These considerations hold not just for the individual parameters ai, but also
for any linear combination of them: If

b ≡
M∑
k=1

ciai = c · a (15.6.5)

then the 68 percent confidence interval on b is

δb = ±
√
c · [C] · c (15.6.6)

However, these simple, normal-sounding numerical relationships do not hold
in the case ν > 1 [3]. In particular, Δχ2 = 1 is not the boundary, nor does it project
onto the boundary, of a 68.3 percent confidence region when ν > 1. If you want
to calculate not confidence intervals in one parameter, but confidence ellipses in
two parameters jointly, or ellipsoids in three, or higher, then you must follow the
following prescription for implementing Theorems C and D above:

• Let ν be the number of fitted parameters whose joint confidence region you
wish to display, ν ≤M . Call these parameters the “parameters of interest.”

• Let p be the confidence limit desired, e.g., p = 0.68 or p = 0.95.
• Find Δ (i.e., Δχ2) such that the probability of a chi-square variable with
ν degrees of freedom being less than Δ is p. For some useful values of p
and ν , Δ is given in the table. For other values, you can use the routine
gammq and a simple root-finding routine (e.g., bisection) to find Δ such
that gammq(ν/2, Δ/2) = 1 − p.

• Take the M × M covariance matrix [C] = [α]−1 of the chi-square fit.
Copy the intersection of the ν rows and columns corresponding to the
parameters of interest into a ν × ν matrix denoted [Cproj].

• Invert the matrix [Cproj]. (In the one-dimensional case this was just taking
the reciprocal of the element C11.)

• The equation for the elliptical boundary of your desired confidence region
in the ν-dimensional subspace of interest is

Δ = δa′ · [Cproj]
−1 · δa′ (15.6.7)

where δa′ is the ν-dimensional vector of parameters of interest.

698 Chapter 15. Modeling of Data

1
w2

V(2)

V(1)

Δχ2 = 1

a2

a1

length

length
1
w1

Figure 15.6.5. Relation of the confidence region ellipse Δχ2 = 1 to quantities computed by singular
value decomposition. The vectorsV(i) are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular values wi . If the axes are all scaled
by some constant factor α, Δχ2 is scaled by the factor α2.

If you are confused at this point, you may find it helpful to compare Figure
15.6.4 and the accompanying table, considering the case M = 2 with ν = 1 and
ν = 2. You should be able to verify the following statements: (i) The horizontal
band between C and C ′ contains 99 percent of the probability distribution, so it
is a confidence limit on a2 alone at this level of confidence. (ii) Ditto the band
between B and B′ at the 90 percent confidence level. (iii) The dashed ellipse,
labeled by Δχ2 = 2.30, contains 68.3 percent of the probability distribution, so it is
a confidence region for a1 and a2 jointly, at this level of confidence.

Confidence Limits from Singular Value Decomposition

When you have obtained yourχ2 fit by singular value decomposition (§15.4), the
information about the fit’s formal errors comes packaged in a somewhat different, but
generally more convenient, form. The columns of the matrix V are an orthonormal
set of M vectors that are the principal axes of the Δχ2 = constant ellipsoids.
We denote the columns as V(1) . . .V(M). The lengths of those axes are inversely
proportional to the corresponding singular values w1 . . .wM ; see Figure 15.6.5. The
boundaries of the ellipsoids are thus given by

Δχ2 = w21(V(1) · δa)2 + · · ·+ w2M (V(M) · δa)2 (15.6.8)

which is the justification for writing equation (15.4.18) above. Keep in mind that
it is much easier to plot an ellipsoid given a list of its vector principal axes, than
given its matrix quadratic form!

The formula for the covariance matrix [C] in terms of the columns V(i) is

[C] =

M∑
i=1

1

w2i
V(i) ⊗V(i) (15.6.9)

or, in components,

15.7 Robust Estimation 699

Cjk =

M∑
i=1

1

w2i
VjiVki (15.6.10)

CITED REFERENCES AND FURTHER READING:

Efron, B. 1982, The Jackknife, the Bootstrap, and Other Resampling Plans (Philadelphia:
S.I.A.M.). [1]

Efron, B., and Tibshirani, R. 1986, Statistical Science vol. 1, pp. 54–77. [2]
Avni, Y. 1976, Astrophysical Journal, vol. 210, pp. 642–646. [3]

Lampton, M., Margon, M., and Bowyer, S. 1976, Astrophysical Journal, vol. 208, pp. 177–190.

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

15.7 Robust Estimation

The concept of robustness has been mentioned in passing several times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in §14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in §15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized.” [1,2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for all data points, or else fractionally large departures for a small
number of data points. It is the latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much as equa-
tions (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typical” L-estimates will give you the general idea. They are (i) the median, and
(ii) Tukey’s trimean, defined as the weighted average of the first, second, and third
quartile points in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimates are estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by the Wilcoxon test of computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order

700 Chapter 15. Modeling of Data

narrow
central peak

tail of
outliers

least squares fit

robust straight-line fit

(a)

(b)

Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A one-dimensional
distribution with a tail of outliers; statistical fluctuations in these outliers can preventaccurate determination
of the position of the central peak. (b) A distribution in two dimensions fitted to a straight line; non-robust
techniques such as least-squares fitting can have undesired sensitivity to outlying points.

correlation coefficient (14.6.1) are R-estimates in essence, if not always by formal
definition.

Some other kinds of robust techniques, coming from the fields of optimal control
and filtering rather than from the field of mathematical statistics, are mentioned at the
end of this section. Some examples where robust statistical methods are desirable
are shown in Figure 15.7.1.

Estimation of Parameters by Local M-Estimates

Suppose we know that our measurement errors are not normally distributed.
Then, in deriving a maximum-likelihood formula for the estimated parameters a in a
model y(x; a), we would write instead of equation (15.1.3)

P =

N∏
i=1

{exp [−ρ(yi, y {xi; a})] Δy} (15.7.1)

15.7 Robust Estimation 701

where the function ρ is the negative logarithm of the probability density. Taking the
logarithm of (15.7.1) analogously with (15.1.4), we find that we want to minimize
the expression

N∑
i=1

ρ(yi, y {xi; a}) (15.7.2)

Very often, it is the case that the function ρ depends not independently on its
two arguments, measured yi and predicted y(xi), but only on their difference, at least
if scaled by some weight factors σi which we are able to assign to each point. In this
case the M-estimate is said to be local, and we can replace (15.7.2) by the prescription

minimize over a
N∑
i=1

ρ

(
yi − y(xi; a)

σi

)
(15.7.3)

where the function ρ(z) is a function of a single variable z ≡ [yi − y(xi)]/σi.
If we now define the derivative of ρ(z) to be a function ψ(z),

ψ(z) ≡ dρ(z)

dz
(15.7.4)

then the generalization of (15.1.7) to the case of a general M-estimate is

0 =

N∑
i=1

1

σi
ψ

(
yi − y(xi)

σi

)(
∂y(xi; a)
∂ak

)
k = 1, . . . ,M (15.7.5)

If you compare (15.7.3) to (15.1.3), and (15.7.5) to (15.1.7), you see at once
that the specialization for normally distributed errors is

ρ(z) =
1

2
z2 ψ(z) = z (normal) (15.7.6)

If the errors are distributed as a double or two-sided exponential, namely

Prob {yi − y(xi)} ∼ exp

(
−
∣∣∣∣yi − y(xi)

σi

∣∣∣∣
)

(15.7.7)

then, by contrast,

ρ(x) = |z| ψ(z) = sgn(z) (double exponential) (15.7.8)

Comparing to equation (15.7.3), we see that in this case the maximum likelihood
estimator is obtained by minimizing the mean absolute deviation, rather than the
mean square deviation. Here the tails of the distribution, although exponentially
decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive — therefore sometimes even more
realistic — tails is the Cauchy or Lorentzian distribution,

Prob {yi − y(xi)} ∼ 1

1 +
1

2

(
yi − y(xi)

σi

)2 (15.7.9)

702 Chapter 15. Modeling of Data

This implies

ρ(z) = log

(
1 +

1

2
z2
)

ψ(z) =
z

1 + 1
2
z2

(Lorentzian) (15.7.10)

Notice that the ψ function occurs as a weighting function in the generalized
normal equations (15.7.5). For normally distributed errors, equation (15.7.6) says
that the more deviant the points, the greater the weight. By contrast, when tails are
somewhat more prominent, as in (15.7.7), then (15.7.8) says that all deviant points
get the same relative weight, with only the sign information used. Finally, when
the tails are even larger, (15.7.10) says the ψ increases with deviation, then starts
decreasing, so that very deviant points — the true outliers — are not counted at all
in the estimation of the parameters.

This general idea, that the weight given individual points should first increase
with deviation, then decrease, motivates some additional prescriptions for ψ which
do not especially correspond to standard, textbook probability distributions. Two
examples are

Andrew’s sine

ψ(z) =

{
sin(z/c)

0
|z| < cπ
|z| > cπ

(15.7.11)

If the measurement errors happen to be normal after all, with standard deviations σi,
then it can be shown that the optimal value for the constant c is c = 2.1.

Tukey’s biweight

ψ(z) =

{
z(1 − z2/c2)2

0
|z| < c
|z| > c

(15.7.12)

where the optimal value of c for normal errors is c = 6.0.

Numerical Calculation of M-Estimates

To fit a model by means of an M-estimate, you first decide which M-estimate
you want, that is, which matching pair ρ, ψ you want to use. We rather like
(15.7.8) or (15.7.10).

You then have to make an unpleasant choice between two fairly difficult
problems. Either find the solution of the nonlinear set of M equations (15.7.5), or
else minimize the single function in M variables (15.7.3).

Notice that the function (15.7.8) has a discontinuous ψ, and a discontinuous
derivative for ρ. Such discontinuities frequently wreak havoc on both general
nonlinear equation solvers and general function minimizing routines. You might
now think of rejecting (15.7.8) in favor of (15.7.10), which is smoother. However,
you will find that the latter choice is also bad news for many general equation solving
or minimization routines: small changes in the fitted parameters can drive ψ(z)
off its peak into one or the other of its asymptotically small regimes. Therefore,
different terms in the equation spring into or out of action (almost as bad as analytic
discontinuities).

Don’t despair. If your computer budget (or, for personal computers, patience)
is up to it, this is an excellent application for the downhill simplex minimization

15.7 Robust Estimation 703

algorithm exemplified in amoeba §10.4 or amebsa in §10.9. Those algorithms make
no assumptions about continuity; they just ooze downhill and will work for virtually
any sane choice of the function ρ.

It is very much to your (financial) advantage to find good starting values,
however. Often this is done by first fitting the model by the standard χ2 (nonrobust)
techniques, e.g., as described in §15.4 or §15.5. The fitted parameters thus obtained
are then used as starting values in amoeba, now using the robust choice of ρ and
minimizing the expression (15.7.3).

Fitting a Line by Minimizing Absolute Deviation

Occasionally there is a special case that happens to be much easier than is
suggested by the general strategy outlined above. The case of equations (15.7.7)–
(15.7.8), when the model is a simple straight line

y(x; a, b) = a + bx (15.7.13)

and where the weights σi are all equal, happens to be such a case. The problem is
precisely the robust version of the problem posed in equation (15.2.1) above, namely
fit a straight line through a set of data points. The merit function to be minimized is

N∑
i=1

|yi − a− bxi| (15.7.14)

rather than the χ2 given by equation (15.2.2).
The key simplification is based on the following fact: The median cM of a set

of numbers ci is also that value which minimizes the sum of the absolute deviations∑
i

|ci − cM |

(Proof: Differentiate the above expression with respect to cM and set it to zero.)
It follows that, for fixed b, the value of a that minimizes (15.7.14) is

a = median {yi − bxi} (15.7.15)

Equation (15.7.5) for the parameter b is

0 =

N∑
i=1

xi sgn(yi − a− bxi) (15.7.16)

(where sgn(0) is to be interpreted as zero). If we replace a in this equation by the
implied function a(b) of (15.7.15), then we are left with an equation in a single
variable which can be solved by bracketing and bisection, as described in §9.1.
(In fact, it is dangerous to use any fancier method of root-finding, because of the
discontinuities in equation 15.7.16.)

Here is a routine that does all this. It calls select (§8.5) to find the median.
The bracketing and bisection are built in to the routine, as is the χ2 solution that
generates the initial guesses for a and b. Notice that the evaluation of the right-hand
side of (15.7.16) occurs in the function rofunc, with communication via global
(top-level) variables.

704 Chapter 15. Modeling of Data

#include <math.h>
#include "nrutil.h"
int ndatat;
float *xt,*yt,aa,abdevt;

void medfit(float x[], float y[], int ndata, float *a, float *b, float *abdev)
Fits y = a + bx by the criterion of least absolute deviations. The arrays x[1..ndata] and
y[1..ndata] are the input experimental points. The fitted parameters a and b are output,
along with abdev, which is the mean absolute deviation (in y) of the experimental points from
the fitted line. This routine uses the routine rofunc, with communication via global variables.
{

float rofunc(float b);
int j;
float bb,b1,b2,del,f,f1,f2,sigb,temp;
float sx=0.0,sy=0.0,sxy=0.0,sxx=0.0,chisq=0.0;

ndatat=ndata;
xt=x;
yt=y;
for (j=1;j<=ndata;j++) { As a first guess for a and b, we will find the least-

squares fitting line.sx += x[j];
sy += y[j];
sxy += x[j]*y[j];
sxx += x[j]*x[j];

}
del=ndata*sxx-sx*sx;
aa=(sxx*sy-sx*sxy)/del; Least-squares solutions.
bb=(ndata*sxy-sx*sy)/del;
for (j=1;j<=ndata;j++)

chisq += (temp=y[j]-(aa+bb*x[j]),temp*temp);
sigb=sqrt(chisq/del); The standard deviation will give some idea of how

big an iteration step to take.b1=bb;
f1=rofunc(b1);
b2=bb+SIGN(3.0*sigb,f1);
Guess bracket as 3-σ away, in the downhill direction known from f1.
f2=rofunc(b2);
if (b2 == b1) {

*a=aa;
*b=bb;
*abdev=abdevt/ndata;
return;

}
while (f1*f2 > 0.0) { Bracketing.

bb=b2+1.6*(b2-b1);
b1=b2;
f1=f2;
b2=bb;
f2=rofunc(b2);

}
sigb=0.01*sigb; Refine until error a negligible number of standard

deviations.while (fabs(b2-b1) > sigb) {
bb=b1+0.5*(b2-b1); Bisection.
if (bb == b1 || bb == b2) break;
f=rofunc(bb);
if (f*f1 >= 0.0) {

f1=f;
b1=bb;

} else {
f2=f;
b2=bb;

}
}
*a=aa;
*b=bb;

15.7 Robust Estimation 705

*abdev=abdevt/ndata;
}

#include <math.h>
#include "nrutil.h"
#define EPS 1.0e-7

extern int ndatat; Defined in medfit.
extern float *xt,*yt,aa,abdevt;

float rofunc(float b)
Evaluates the right-hand side of equation (15.7.16) for a given value of b. Communication with
the routine medfit is through global variables.
{

float select(unsigned long k, unsigned long n, float arr[]);
int j;
float *arr,d,sum=0.0;

arr=vector(1,ndatat);
for (j=1;j<=ndatat;j++) arr[j]=yt[j]-b*xt[j];
if (ndatat & 1) {

aa=select((ndatat+1)>>1,ndatat,arr);
}
else {

j=ndatat >> 1;
aa=0.5*(select(j,ndatat,arr)+select(j+1,ndatat,arr));

}
abdevt=0.0;
for (j=1;j<=ndatat;j++) {

d=yt[j]-(b*xt[j]+aa);
abdevt += fabs(d);
if (yt[j] != 0.0) d /= fabs(yt[j]);
if (fabs(d) > EPS) sum += (d >= 0.0 ? xt[j] : -xt[j]);

}
free_vector(arr,1,ndatat);
return sum;

}

Other Robust Techniques

Sometimes you may have a priori knowledge about the probable values and
probable uncertainties of some parameters that you are trying to estimate from a data
set. In such cases you may want to perform a fit that takes this advance information
properly into account, neither completely freezing a parameter at a predetermined
value (as in lfit §15.4) nor completely leaving it to be determined by the data set.
The formalism for doing this is called “use of a priori covariances.”

A related problem occurs in signal processing and control theory, where it is
sometimes desired to “track” (i.e., maintain an estimate of) a time-varying signal in
the presence of noise. If the signal is known to be characterized by some number
of parameters that vary only slowly, then the formalism of Kalman filtering tells
how the incoming, raw measurements of the signal should be processed to produce
best parameter estimates as a function of time. For example, if the signal is a
frequency-modulated sine wave, then the slowly varying parameter might be the
instantaneous frequency. The Kalman filter for this case is called a phase-locked
loop and is implemented in the circuitry of good radio receivers [3,4].

706 Chapter 15. Modeling of Data

CITED REFERENCES AND FURTHER READING:

Huber, P.J. 1981, Robust Statistics (New York: Wiley). [1]

Launer, R.L., and Wilkinson, G.N. (eds.) 1979, Robustness in Statistics (New York: Academic
Press). [2]

Bryson, A. E., and Ho, Y.C. 1969, Applied Optimal Control (Waltham, MA: Ginn). [3]

Jazwinski, A. H. 1970, Stochastic Processes and Filtering Theory (New York: Academic
Press). [4]

Chapter 16. Integration of Ordinary
Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x) − q(x)z(x)

(16.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of N coupled first-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)

dx
= fi(x, y1, . . . , yN), i = 1, . . . , N (16.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions

707

