Chapter 14. Statistical Description of Data

14.0 Introduction

In this chapter and the next, the concept of data enters the discussion more prominently than before.

Data consist of numbers, of course. But these numbers are fed into the computer, not produced by it. These are numbers to be treated with considerable respect, neither to be tampered with, nor subjected to a numerical process whose character you do not completely understand. You are well advised to acquire a reverence for data that is rather different from the "sporty" attitude that is sometimes allowable, or even commendable, in other numerical tasks.

The analysis of data inevitably involves some trafficking with the field of statistics, that gray area which is not quite a branch of mathematics - and just as surely not quite a branch of science. In the following sections, you will repeatedly encounter the following paradigm:

- apply some formula to the data to compute "a statistic"
- compute where the value of that statistic falls in a probability distribution that is computed on the basis of some "null hypothesis"
- if it falls in a very unlikely spot, way out on a tail of the distribution, conclude that the null hypothesis is false for your data set
If a statistic falls in a reasonable part of the distribution, you must not make the mistake of concluding that the null hypothesis is "verified" or "proved." That is the curse of statistics, that it can never prove things, only disprove them! At best, you can substantiate a hypothesis by ruling out, statistically, a whole long list of competing hypotheses, every one that has ever been proposed. After a while your adversaries and competitors will give up trying to think of alternative hypotheses, or else they will grow old and die, and then your hypothesis will become accepted. Sounds crazy, we know, but that's how science works!

In this book we make a somewhat arbitrary distinction between data analysis procedures that are model-independent and those that are model-dependent. In the former category, we include so-called descriptive statistics that characterize a data set in general terms: its mean, variance, and so on. We also include statistical tests that seek to establish the "sameness" or "differentness" of two or more data sets, or that seek to establish and measure a degree of correlation between two data sets. These subjects are discussed in this chapter.

In the other category, model-dependent statistics, we lump the whole subject of fitting data to a theory, parameter estimation, least-squares fits, and so on. Those subjects are introduced in Chapter 15.

Section 14.1 deals with so-called measures of central tendency, the moments of a distribution, the median and mode. In $\S 14.2$ we learn to test whether different data sets are drawn from distributions with different values of these measures of central tendency. This leads naturally, in $\S 14.3$, to the more general question of whether two distributions can be shown to be (significantly) different.

In $\S 14.4-\S 14.7$, we deal with measures of association for two distributions. We want to determine whether two variables are "correlated" or "dependent" on one another. If they are, we want to characterize the degree of correlation in some simple ways. The distinction between parametric and nonparametric (rank) methods is emphasized.

Section 14.8 introduces the concept of data smoothing, and discusses the particular case of Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that was presented in Chapter 6, especially $\S 6.1-\S 6.4$. You may wish, at this point, to review those sections.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill).
Stuart, A., and Ord, J.K. 1987, Kendall's Advanced Theory of Statistics, 5th ed. (London: Griffin and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory of Statistics].
Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSSX Advanced Statistics Guide (New York: McGraw-Hill).
Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New York: Wiley).

14.1 Moments of a Distribution: Mean, Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a tendency to cluster around some particular value, then it may be useful to characterize the set by a few numbers that are related to its moments, the sums of integer powers of the values.

Best known is the mean of the values x_{1}, \ldots, x_{N},

$$
\begin{equation*}
\bar{x}=\frac{1}{N} \sum_{j=1}^{N} x_{j} \tag{14.1.1}
\end{equation*}
$$

which estimates the value around which central clustering occurs. Note the use of an overbar to denote the mean; angle brackets are an equally common notation, e.g., $\langle x\rangle$. You should be aware that the mean is not the only available estimator of this
quantity, nor is it necessarily the best one. For values drawn from a probability distribution with very broad "tails," the mean may converge poorly, or not at all, as the number of sampled points is increased. Alternative estimators, the median and the mode, are mentioned at the end of this section.

Having characterized a distribution's central value, one conventionally next characterizes its "width" or "variability" around that value. Here again, more than one measure is available. Most common is the variance,

$$
\begin{equation*}
\operatorname{Var}\left(x_{1} \ldots x_{N}\right)=\frac{1}{N-1} \sum_{j=1}^{N}\left(x_{j}-\bar{x}\right)^{2} \tag{14.1.2}
\end{equation*}
$$

or its square root, the standard deviation,

$$
\begin{equation*}
\sigma\left(x_{1} \ldots x_{N}\right)=\sqrt{\operatorname{Var}\left(x_{1} \ldots x_{N}\right)} \tag{14.1.3}
\end{equation*}
$$

Equation (14.1.2) estimates the mean squared deviation of x from its mean value. There is a long story about why the denominator of (14.1.2) is $N-1$ instead of N. If you have never heard that story, you may consult any good statistics text. Here we will be content to note that the $N-1$ should be changed to N if you are ever in the situation of measuring the variance of a distribution whose mean \bar{x} is known a priori rather than being estimated from the data. (We might also comment that if the difference between N and $N-1$ ever matters to you, then you are probably up to no good anyway - e.g., trying to substantiate a questionable hypothesis with marginal data.)

As the mean depends on the first moment of the data, so do the variance and standard deviation depend on the second moment. It is not uncommon, in real life, to be dealing with a distribution whose second moment does not exist (i.e., is infinite). In this case, the variance or standard deviation is useless as a measure of the data's width around its central value: The values obtained from equations (14.1.2) or (14.1.3) will not converge with increased numbers of points, nor show any consistency from data set to data set drawn from the same distribution. This can occur even when the width of the peak looks, by eye, perfectly finite. A more robust estimator of the width is the average deviation or mean absolute deviation, defined by

$$
\begin{equation*}
\operatorname{ADev}\left(x_{1} \ldots x_{N}\right)=\frac{1}{N} \sum_{j=1}^{N}\left|x_{j}-\bar{x}\right| \tag{14.1.4}
\end{equation*}
$$

One often substitutes the sample median $x_{\text {med }}$ for \bar{x} in equation (14.1.4). For any fixed sample, the median in fact minimizes the mean absolute deviation.

Statisticians have historically sniffed at the use of (14.1.4) instead of (14.1.2), since the absolute value brackets in (14.1.4) are "nonanalytic" and make theoremproving difficult. In recent years, however, the fashion has changed, and the subject of robust estimation (meaning, estimation for broad distributions with significant numbers of "outlier" points) has become a popular and important one. Higher moments, or statistics involving higher powers of the input data, are almost always less robust than lower moments or statistics that involve only linear sums or (the lowest moment of all) counting.

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal (Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

That being the case, the skewness or third moment, and the kurtosis or fourth moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its mean. While the mean, standard deviation, and average deviation are dimensional quantities, that is, have the same units as the measured quantities x_{j}, the skewness is conventionally defined in such a way as to make it nondimensional. It is a pure number that characterizes only the shape of the distribution. The usual definition is

$$
\begin{equation*}
\operatorname{Skew}\left(x_{1} \ldots x_{N}\right)=\frac{1}{N} \sum_{j=1}^{N}\left[\frac{x_{j}-\bar{x}}{\sigma}\right]^{3} \tag{14.1.5}
\end{equation*}
$$

where $\sigma=\sigma\left(x_{1} \ldots x_{N}\right)$ is the distribution's standard deviation (14.1.3). A positive value of skewness signifies a distribution with an asymmetric tail extending out towards more positive x; a negative value signifies a distribution whose tail extends out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value for (14.1.5), even if the underlying distribution is in fact symmetrical (has zero skewness). For (14.1.5) to be meaningful, we need to have some idea of its standard deviation as an estimator of the skewness of the underlying distribution. Unfortunately, that depends on the shape of the underlying distribution, and rather critically on its tails! For the idealized case of a normal (Gaussian) distribution, the standard deviation of (14.1.5) is approximately $\sqrt{15 / N}$. In real life it is good practice to believe in skewnesses only when they are several or many times as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative peakedness or flatness of a distribution. Relative to what? A normal distribution, what else! A distribution with positive kurtosis is termed leptokurtic; the outline of the Matterhorn is an example. A distribution with negative kurtosis is termed platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And, as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

$$
\begin{equation*}
\operatorname{Kurt}\left(x_{1} \ldots x_{N}\right)=\left\{\frac{1}{N} \sum_{j=1}^{N}\left[\frac{x_{j}-\bar{x}}{\sigma}\right]^{4}\right\}-3 \tag{14.1.6}
\end{equation*}
$$

where the -3 term makes the value zero for a normal distribution.

The standard deviation of (14.1.6) as an estimator of the kurtosis of an underlying normal distribution is $\sqrt{96 / N}$. However, the kurtosis depends on such a high moment that there are many real-life distributions for which the standard deviation of (14.1.6) as an estimator is effectively infinite.

Calculation of the quantities defined in this section is perfectly straightforward. Many textbooks use the binomial theorem to expand out the definitions into sums of various powers of the data, e.g., the familiar

$$
\begin{equation*}
\operatorname{Var}\left(x_{1} \ldots x_{N}\right)=\frac{1}{N-1}\left[\left(\sum_{j=1}^{N} x_{j}^{2}\right)-N \bar{x}^{2}\right] \approx \overline{x^{2}}-\bar{x}^{2} \tag{14.1.7}
\end{equation*}
$$

but this can magnify the roundoff error by a large factor and is generally unjustifiable in terms of computing speed. A clever way to minimize roundoff error, especially for large samples, is to use the corrected two-pass algorithm [1]: First calculate \bar{x}, then calculate $\operatorname{Var}\left(x_{1} \ldots x_{N}\right)$ by

$$
\begin{equation*}
\operatorname{Var}\left(x_{1} \ldots x_{N}\right)=\frac{1}{N-1}\left\{\sum_{j=1}^{N}\left(x_{j}-\bar{x}\right)^{2}-\frac{1}{N}\left[\sum_{j=1}^{N}\left(x_{j}-\bar{x}\right)\right]^{2}\right\} \tag{14.1.8}
\end{equation*}
$$

The second sum would be zero if \bar{x} were exact, but otherwise it does a good job of correcting the roundoff error in the first term.

```
#include <math.h>
void moment(float data[], int n, float *ave, float *adev, float *sdev,
    float *var, float *skew, float *curt)
Given an array of data[1..n], this routine returns its mean ave, average deviation adev,
standard deviation sdev, variance var, skewness skew, and kurtosis curt.
{
    void nrerror(char error_text[]);
    int j;
    float ep=0.0,s,p;
    if (n <= 1) nrerror("n must be at least 2 in moment");
    s=0.0; First pass to get the mean.
    for (j=1;j<=n;j++) s += data[j];
    *ave=s/n;
    *adev}=(*\operatorname{var})=(*\mathrm{ skew })=(*\operatorname{curt})=0.0; Second pass to get the first (absolute), sec-
    for (j=1;j<=n;j++) {
        *adev += fabs(s=data[j]-(*ave)); ond, third, and fourth moments of the
        deviation from the mean.
        ep += s;
        *var += (p=s*s);
        *skew += (p *= s);
        *curt += (p *= s);
    }
    *adev /= n;
    *var=(*var-ep*ep/n)/(n-1); Corrected two-pass formula.
    *sdev=sqrt(*var); Put the pieces together according to the con-
    if (*var) {
                                ventional definitions.
        *skew /= (n*(*var)*(*sdev));
        *curt=(*curt)/(n*(*var)*(*var))-3.0;
    } else nrerror("No skew/kurtosis when variance = 0 (in moment)");
}
```


Semi-Invariants

The mean and variance of independent random variables are additive: If x and y are drawn independently from two, possibly different, probability distributions, then

$$
\begin{equation*}
\overline{(x+y)}=\bar{x}+\bar{y} \quad \operatorname{Var}(x+y)=\operatorname{Var}(x)+\operatorname{Var}(x) \tag{14.1.9}
\end{equation*}
$$

Higher moments are not, in general, additive. However, certain combinations of them, called semi-invariants, are in fact additive. If the centered moments of a distribution are denoted M_{k},

$$
\begin{equation*}
M_{k} \equiv\left\langle\left(x_{i}-\bar{x}\right)^{k}\right\rangle \tag{14.1.10}
\end{equation*}
$$

so that, e.g., $M_{2}=\operatorname{Var}(x)$, then the first few semi-invariants, denoted I_{k} are given by

$$
\begin{align*}
& I_{2}=M_{2} \quad I_{3}=M_{3} \quad I_{4}=M_{4}-3 M_{2}^{2} \\
& I_{5}=M_{5}-10 M_{2} M_{3} \quad I_{6}=M_{6}-15 M_{2} M_{4}-10 M_{3}^{2}+30 M_{2}^{3} \tag{14.1.11}
\end{align*}
$$

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6) are simple powers of the semi-invariants,

$$
\begin{equation*}
\operatorname{Skew}(x)=I_{3} / I_{2}^{3 / 2} \quad \operatorname{Kurt}(x)=I_{4} / I_{2}^{2} \tag{14.1.12}
\end{equation*}
$$

A Gaussian distribution has all its semi-invariants higher than I_{2} equal to zero. A Poisson distribution has all of its semi-invariants equal to its mean. For more details, see [2].

Median and Mode

The median of a probability distribution function $p(x)$ is the value $x_{\text {med }}$ for which larger and smaller values of x are equally probable:

$$
\begin{equation*}
\int_{-\infty}^{x_{\mathrm{med}}} p(x) d x=\frac{1}{2}=\int_{x_{\mathrm{med}}}^{\infty} p(x) d x \tag{14.1.13}
\end{equation*}
$$

The median of a distribution is estimated from a sample of values x_{1}, \ldots, x_{N} by finding that value x_{i} which has equal numbers of values above it and below it. Of course, this is not possible when N is even. In that case it is conventional to estimate the median as the mean of the unique two central values. If the values $x_{j} j=1, \ldots, N$ are sorted into ascending (or, for that matter, descending) order, then the formula for the median is

$$
x_{\mathrm{med}}= \begin{cases}x_{(N+1) / 2}, & N \text { odd } \tag{14.1.14}\\ \frac{1}{2}\left(x_{N / 2}+x_{(N / 2)+1}\right), & N \text { even }\end{cases}
$$

If a distribution has a strong central tendency, so that most of its area is under a single peak, then the median is an estimator of the central value. It is a more robust estimator than the mean is: The median fails as an estimator only if the area in the tails is large, while the mean fails if the first moment of the tails is large; it is easy to construct examples where the first moment of the tails is large even though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and then applying (14.1.14). This is a process of order $N \log N$. You might rightly think
that this is wasteful, since it yields much more information than just the median (e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in $\S 8.5$ that the element $x_{(N+1) / 2}$ can be located in of order N operations. Consult that section for routines.

The mode of a probability distribution function $p(x)$ is the value of x where it takes on a maximum value. The mode is useful primarily when there is a single, sharp maximum, in which case it estimates the central value. Occasionally, a distribution will be bimodal, with two relative maxima; then one may wish to know the two modes individually. Note that, in such cases, the mean and median are not very useful, since they will give only a "compromise" value between the two peaks.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapter 2.
Stuart, A., and Ord, J.K. 1987, Kendall's Advanced Theory of Statistics, 5th ed. (London: Griffin and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory of Statistics], vol. 1, §10.15
Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSSX Advanced Statistics Guide (New York: McGraw-Hill).
Chan, T.F., Golub, G.H., and LeVeque, R.J. 1983, American Statistician, vol. 37, pp. 242-247. [1]
Cramér, H. 1946, Mathematical Methods of Statistics (Princeton: Princeton University Press), $\oint 15.10$. [2]

14.2 Do Two Distributions Have the Same Means or Variances?

Not uncommonly we want to know whether two distributions have the same mean. For example, a first set of measured values may have been gathered before some event, a second set after it. We want to know whether the event, a "treatment" or a "change in a control parameter," made a difference.

Our first thought is to ask "how many standard deviations" one sample mean is from the other. That number may in fact be a useful thing to know. It does relate to the strength or "importance" of a difference of means if that difference is genuine. However, by itself, it says nothing about whether the difference is genuine, that is, statistically significant. A difference of means can be very small compared to the standard deviation, and yet very significant, if the number of data points is large. Conversely, a difference may be moderately large but not significant, if the data are sparse. We will be meeting these distinct concepts of strength and significance several times in the next few sections.

A quantity that measures the significance of a difference of means is not the number of standard deviations that they are apart, but the number of so-called standard errors that they are apart. The standard error of a set of values measures the accuracy with which the sample mean estimates the population (or "true") mean. Typically the standard error is equal to the sample's standard deviation divided by the square root of the number of points in the sample.

Student's t-test for Significantly Different Means

Applying the concept of standard error, the conventional statistic for measuring the significance of a difference of means is termed Student's t. When the two distributions are thought to have the same variance, but possibly different means, then Student's t is computed as follows: First, estimate the standard error of the difference of the means, s_{D}, from the "pooled variance" by the formula

$$
\begin{equation*}
s_{D}=\sqrt{\frac{\sum_{i \in A}\left(x_{i}-\overline{x_{A}}\right)^{2}+\sum_{i \in B}\left(x_{i}-\overline{x_{B}}\right)^{2}}{N_{A}+N_{B}-2}\left(\frac{1}{N_{A}}+\frac{1}{N_{B}}\right)} \tag{14.2.1}
\end{equation*}
$$

where each sum is over the points in one sample, the first or second, each mean likewise refers to one sample or the other, and N_{A} and N_{B} are the numbers of points in the first and second samples, respectively. Second, compute t by

$$
\begin{equation*}
t=\frac{\overline{x_{A}}-\overline{x_{B}}}{s_{D}} \tag{14.2.2}
\end{equation*}
$$

Third, evaluate the significance of this value of t for Student's distribution with $N_{A}+N_{B}-2$ degrees of freedom, by equations (6.4.7) and (6.4.9), and by the routine betai (incomplete beta function) of $\S 6.4$.

The significance is a number between zero and one, and is the probability that $|t|$ could be this large or larger just by chance, for distributions with equal means. Therefore, a small numerical value of the significance (0.05 or 0.01) means that the observed difference is "very significant." The function $A(t \mid \nu)$ in equation (6.4.7) is one minus the significance.

As a routine, we have

```
#include <math.h>
void ttest(float data1[], unsigned long n1, float data2[], unsigned long n2,
    float *t, float *prob)
Given the arrays data1[1..n1] and data2[1..n2], this routine returns Student's t as t,
and its significance as prob, small values of prob indicating that the arrays have significantly
different means. The data arrays are assumed to be drawn from populations with the same
true variance.
{
    void avevar(float data[], unsigned long n, float *ave, float *var);
    float betai(float a, float b, float x);
    float var1,var2,svar,df,ave1,ave2;
    avevar(data1,n1,&ave1,&var1);
    avevar(data2,n2,&ave2,&var2);
    df=n1+n2-2; Degrees of freedom.
    svar=((n1-1)*var1+(n2-1)*var2)/df; Pooled variance.
    *t=(ave1-ave2)/sqrt(svar*(1.0/n1+1.0/n2));
    *prob=betai(0.5*df,0.5,df/(df+(*t)*(*t)));
}
```

which makes use of the following routine for computing the mean and variance of a set of numbers,

```
void avevar(float data[], unsigned long n, float *ave, float *var)
Given array data[1..n], returns its mean as ave and its variance as var.
{
    unsigned long j;
    float s,ep;
    for (*ave=0.0,j=1;j<=n;j++) *ave += data[j];
    *ave /= n;
    *var=ep=0.0;
    for (j=1;j<=n;j++) {
        s=data[j]-(*ave);
        ep += s;
        *var += s*s;
    }
    *var=(*\operatorname{var-ep*ep/n)/(n-1); Corrected two-pass formula (14.1.8).}
}
```

The next case to consider is where the two distributions have significantly different variances, but we nevertheless want to know if their means are the same or different. (A treatment for baldness has caused some patients to lose all their hair and turned others into werewolves, but we want to know if it helps cure baldness on the average!) Be suspicious of the unequal-variance t-test: If two distributions have very different variances, then they may also be substantially different in shape; in that case, the difference of the means may not be a particularly useful thing to know.

To find out whether the two data sets have variances that are significantly different, you use the F-test, described later on in this section.

The relevant statistic for the unequal variance t-test is

$$
\begin{equation*}
t=\frac{\overline{x_{A}}-\overline{x_{B}}}{\left[\operatorname{Var}\left(x_{A}\right) / N_{A}+\operatorname{Var}\left(x_{B}\right) / N_{B}\right]^{1 / 2}} \tag{14.2.3}
\end{equation*}
$$

This statistic is distributed approximately as Student's t with a number of degrees of freedom equal to

$$
\begin{equation*}
\frac{\left[\frac{\operatorname{Var}\left(x_{A}\right)}{N_{A}}+\frac{\operatorname{Var}\left(x_{B}\right)}{N_{B}}\right]^{2}}{\frac{\left[\operatorname{Var}\left(x_{A}\right) / N_{A}\right]^{2}}{N_{A}-1}+\frac{\left[\operatorname{Var}\left(x_{B}\right) / N_{B}\right]^{2}}{N_{B}-1}} \tag{14.2.4}
\end{equation*}
$$

Expression (14.2.4) is in general not an integer, but equation (6.4.7) doesn't care.
The routine is

```
#include <math.h>
#include "nrutil.h"
void tutest(float data1[], unsigned long n1, float data2[], unsigned long n2,
    float *t, float *prob)
Given the arrays data1[1..n1] and data2[1..n2], this routine returns Student's t as t, and
its significance as prob, small values of prob indicating that the arrays have significantly differ-
ent means. The data arrays are allowed to be drawn from populations with unequal variances.
{
    void avevar(float data[], unsigned long n, float *ave, float *var);
    float betai(float a, float b, float x);
    float var1,var2,df,ave1,ave2;
```

```
    avevar(data1,n1,&ave1,&var1);
    avevar(data2,n2, &ave2, &var2);
    *t=(ave1-ave2)/sqrt(var1/n1+var2/n2);
    df=SQR(var1/n1+var2/n2)/(SQR(var1/n1)/(n1-1)+SQR(var2/n2)/(n2-1));
    *prob=betai(0.5*df,0.5,df/(df+SQR(*t)));
```

\}

Our final example of a Student's t test is the case of paired samples. Here we imagine that much of the variance in both samples is due to effects that are point-by-point identical in the two samples. For example, we might have two job candidates who have each been rated by the same ten members of a hiring committee. We want to know if the means of the ten scores differ significantly. We first try ttest above, and obtain a value of prob that is not especially significant (e.g., $>0.05)$. But perhaps the significance is being washed out by the tendency of some committee members always to give high scores, others always to give low scores, which increases the apparent variance and thus decreases the significance of any difference in the means. We thus try the paired-sample formulas,

$$
\begin{align*}
\operatorname{Cov}\left(x_{A}, x_{B}\right) & \equiv \frac{1}{N-1} \sum_{i=1}^{N}\left(x_{A i}-\overline{x_{A}}\right)\left(x_{B i}-\overline{x_{B}}\right) \tag{14.2.5}\\
s_{D} & =\left[\frac{\operatorname{Var}\left(x_{A}\right)+\operatorname{Var}\left(x_{B}\right)-2 \operatorname{Cov}\left(x_{A}, x_{B}\right)}{N}\right]^{1 / 2} \tag{14.2.6}\\
t & =\frac{\overline{x_{A}}-\overline{x_{B}}}{s_{D}} \tag{14.2.7}
\end{align*}
$$

where N is the number in each sample (number of pairs). Notice that it is important that a particular value of i label the corresponding points in each sample, that is, the ones that are paired. The significance of the t statistic in (14.2.7) is evaluated for $N-1$ degrees of freedom.

The routine is

```
#include <math.h>
void tptest(float data1[], float data2[], unsigned long n, float *t,
    float *prob)
Given the paired arrays data1[1..n] and data2[1..n], this routine returns Student's t for
paired data as t, and its significance as prob, small values of prob indicating a significant
difference of means.
{
    void avevar(float data[], unsigned long n, float *ave, float *var);
    float betai(float a, float b, float x);
    unsigned long j;
    float var1,var2,ave1,ave2,sd,df,cov=0.0;
    avevar(data1,n,&ave1,&var1);
    avevar(data2,n,&ave2,&var2);
    for ( }j=1;j<=n;j++
        cov += (data1[j]-ave1)*(data2[j]-ave2);
    cov /= df=n-1;
    sd=sqrt((var1+var2-2.0*cov)/n);
    *t=(ave1-ave2)/sd;
    *prob=betai(0.5*df,0.5,df/(df+(*t)*(*t)));
}
```


F-Test for Significantly Different Variances

The F-test tests the hypothesis that two samples have different variances by trying to reject the null hypothesis that their variances are actually consistent. The statistic F is the ratio of one variance to the other, so values either $\gg 1$ or $\ll 1$ will indicate very significant differences. The distribution of F in the null case is given in equation (6.4.11), which is evaluated using the routine betai. In the most common case, we are willing to disprove the null hypothesis (of equal variances) by either very large or very small values of F, so the correct significance is two-tailed, the sum of two incomplete beta functions. It turns out, by equation (6.4.3), that the two tails are always equal; we need compute only one, and double it. Occasionally, when the null hypothesis is strongly viable, the identity of the two tails can become confused, giving an indicated probability greater than one. Changing the probability to two minus itself correctly exchanges the tails. These considerations and equation (6.4.3) give the routine

```
void ftest(float data1[], unsigned long n1, float data2[], unsigned long n2,
    float *f, float *prob)
Given the arrays data1[1..n1] and data2[1..n2], this routine returns the value of f, and
its significance as prob. Small values of prob indicate that the two arrays have significantly
different variances.
{
    void avevar(float data[], unsigned long n, float *ave, float *var);
    float betai(float a, float b, float x);
    float var1,var2,ave1,ave2,df1,df2;
    avevar(data1,n1,&ave1,&var1);
    avevar(data2, n2,&ave2,&var2);
    if (var1 > var2) {
        *f=var1/var2;
        df1=n1-1;
        df2=n2-1;
    } else {
        *f=var2/var1;
        df1=n2-1;
        df2=n1-1;
    }
    *prob = 2.0*betai(0.5*df2,0.5*df1,df2/(df2+df1*(*f)));
    if (*prob > 1.0) *prob=2.0-*prob;
}
```


CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), Chapter IX(B).
Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSSX Advanced Statistics Guide (New York: McGraw-Hill).

14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous section and ask the single question: Are the two sets drawn from the same distribution function, or from different distribution functions? Equivalently, in proper statistical language, "Can we disprove, to a certain required level of significance, the null hypothesis that two data sets are drawn from the same population distribution function?" Disproving the null hypothesis in effect proves that the data sets are from different distributions. Failing to disprove the null hypothesis, on the other hand, only shows that the data sets can be consistent with a single distribution function. One can never prove that two data sets come from a single distribution, since (e.g.) no practical amount of data can distinguish between two distributions which differ only by one part in 10^{10}.

Proving that two distributions are different, or showing that they are consistent, is a task that comes up all the time in many areas of research: Are the visible stars distributed uniformly in the sky? (That is, is the distribution of stars as a function of declination - position in the sky - the same as the distribution of sky area as a function of declination?) Are educational patterns the same in Brooklyn as in the Bronx? (That is, are the distributions of people as a function of last-grade-attended the same?) Do two brands of fluorescent lights have the same distribution of burn-out times? Is the incidence of chicken pox the same for first-born, second-born, third-born children, etc.?

These four examples illustrate the four combinations arising from two different dichotomies: (1) The data are either continuous or binned. (2) Either we wish to compare one data set to a known distribution, or we wish to compare two equally unknown data sets. The data sets on fluorescent lights and on stars are continuous, since we can be given lists of individual burnout times or of stellar positions. The data sets on chicken pox and educational level are binned, since we are given tables of numbers of events in discrete categories: first-born, second-born, etc.; or 6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the property that the null hypothesis is a known distribution (distribution of area in the sky, or incidence of chicken pox in the general population). Fluorescent lights and educational level involve the comparison of two equally unknown data sets (the two brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events into specified ranges of the continuous variable(s): declinations between 0 and 10 degrees, 10 and 20, 20 and 30 , etc. Binning involves a loss of information, however. Also, there is often considerable arbitrariness as to how the bins should be chosen. Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is the chi-square test. For continuous data as a function of a single variable, the most generally accepted test is the Kolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose that N_{i} is the number of events observed in the i th bin, and that n_{i} is the number expected according to some known distribution. Note that the N_{i} 's are
integers, while the n_{i} 's may not be. Then the chi-square statistic is

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(N_{i}-n_{i}\right)^{2}}{n_{i}} \tag{14.3.1}
\end{equation*}
$$

where the sum is over all bins. A large value of χ^{2} indicates that the null hypothesis (that the N_{i} 's are drawn from the population represented by the n_{i} 's) is rather unlikely.

Any term j in (14.3.1) with $0=n_{j}=N_{j}$ should be omitted from the sum. A term with $n_{j}=0, N_{j} \neq 0$ gives an infinite χ^{2}, as it should, since in this case the N_{i} 's cannot possibly be drawn from the n_{i} 's!

The chi-square probability function $Q\left(\chi^{2} \mid \nu\right)$ is an incomplete gamma function, and was already discussed in $\S 6.2$ (see equation 6.2 .18). Strictly speaking $Q\left(\chi^{2} \mid \nu\right)$ is the probability that the sum of the squares of ν random normal variables of unit variance (and zero mean) will be greater than χ^{2}. The terms in the sum (14.3.1) are not individually normal. However, if either the number of bins is large ($\gg 1$), or the number of events in each bin is large ($\gg 1$), then the chi-square probability function is a good approximation to the distribution of (14.3.1) in the case of the null hypothesis. Its use to estimate the significance of the chi-square test is standard.

The appropriate value of ν, the number of degrees of freedom, bears some additional discussion. If the data are collected with the model n_{i} 's fixed - that is, not later renormalized to fit the total observed number of events ΣN_{i} - then ν equals the number of bins N_{B}. (Note that this is not the total number of events!) Much more commonly, the n_{i} 's are normalized after the fact so that their sum equals the sum of the N_{i} 's. In this case the correct value for ν is $N_{B}-1$, and the model is said to have one constraint (knstrn=1 in the program below). If the model that gives the n_{i} 's has additional free parameters that were adjusted after the fact to agree with the data, then each of these additional "fitted" parameters decreases ν (and increases knstrn) by one additional unit.

We have, then, the following program:

```
void chsone(float bins[], float ebins[], int nbins, int knstrn, float *df,
    float *chsq, float *prob)
Given the array bins[1..nbins] containing the observed numbers of events, and an array
ebins[1..nbins] containing the expected numbers of events, and given the number of con-
straints knstrn (normally one), this routine returns (trivially) the number of degrees of freedom
df, and (nontrivially) the chi-square chsq and the significance prob. A small value of prob
indicates a significant difference between the distributions bins and ebins. Note that bins
and ebins are both float arrays, although bins will normally contain integer values.
{
    float gammq(float a, float x);
    void nrerror(char error_text[]);
    int j;
    float temp;
    *df=nbins-knstrn;
    *chsq=0.0;
    for ( }\textrm{j}=1;\textrm{j}<=n\mp@code{=nins;j++) {
        if (ebins[j] <= 0.0) nrerror("Bad expected number in chsone");
        temp=bins[j]-ebins[j];
        *chsq += temp*temp/ebins[j];
    }
    *prob=gammq(0.5*(*df),0.5*(*chsq)); Chi-square probability function. See §6.2.
}
```

Next we consider the case of comparing two binned data sets. Let R_{i} be the number of events in bin i for the first data set, S_{i} the number of events in the same bin i for the second data set. Then the chi-square statistic is

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(R_{i}-S_{i}\right)^{2}}{R_{i}+S_{i}} \tag{14.3.2}
\end{equation*}
$$

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is not just the average of R_{i} and S_{i} (which would be an estimator of n_{i} in 14.3.1). Rather, it is twice the average, the sum. The reason is that each term in a chi-square sum is supposed to approximate the square of a normally distributed quantity with unit variance. The variance of the difference of two normal quantities is the sum of their individual variances, not the average.

If the data were collected in such a way that the sum of the R_{i} 's is necessarily equal to the sum of S_{i} 's, then the number of degrees of freedom is equal to one less than the number of bins, $N_{B}-1$ (that is, knstrn $=1$), the usual case. If this requirement were absent, then the number of degrees of freedom would be N_{B}. Example: A birdwatcher wants to know whether the distribution of sighted birds as a function of species is the same this year as last. Each bin corresponds to one species. If the birdwatcher takes his data to be the first 1000 birds that he saw in each year, then the number of degrees of freedom is $N_{B}-1$. If he takes his data to be all the birds he saw on a random sample of days, the same days in each year, then the number of degrees of freedom is $N_{B}($ knstrn $=0)$. In this latter case, note that he is also testing whether the birds were more numerous overall in one year or the other: That is the extra degree of freedom. Of course, any additional constraints on the data set lower the number of degrees of freedom (i.e., increase knstrn to more positive values) in accordance with their number.

The program is

```
void chstwo(float bins1[], float bins2[], int nbins, int knstrn, float *df,
    float *chsq, float *prob)
Given the arrays bins1[1..nbins] and bins2[1..nbins], containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns the
number of degrees of freedom df, the chi-square chsq, and the significance prob. A small value
of prob indicates a significant difference between the distributions bins1 and bins2. Note that
bins1 and bins2 are both float arrays, although they will normally contain integer values.
{
    float gammq(float a, float x);
    int j;
    float temp;
    *df=nbins-knstrn;
    *chsq=0.0;
    for (j=1;j<=nbins;j++)
        if (bins1[j] == 0.0 && bins2[j] == 0.0)
            --(*df); No data means one less degree of free-
        else {
            temp=bins1[j]-bins2[j];
            *chsq += temp*temp/(bins1[j]+bins2[j]);
        }
    *prob=gammq}(0.5*(*df),0.5*(*chsq)); Chi-square probability function. See §6.2
}
```

Equation (14.3.2) and the routine chstwo both apply to the case where the total number of data points is the same in the two binned sets. For unequal numbers of data points, the formula analogous to (14.3.2) is

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(\sqrt{S / R} R_{i}-\sqrt{R / S} S_{i}\right)^{2}}{R_{i}+S_{i}} \tag{14.3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
R \equiv \sum_{i} R_{i} \quad S \equiv \sum_{i} S_{i} \tag{14.3.4}
\end{equation*}
$$

are the respective numbers of data points. It is straightforward to make the corresponding change in chstwo.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (or $K-S$) test is applicable to unbinned distributions that are functions of a single independent variable, that is, to data sets where each data point can be associated with a single number (lifetime of each lightbulb when it burns out, or declination of each star). In such cases, the list of data points can be easily converted to an unbiased estimator $S_{N}(x)$ of the cumulative distribution function of the probability distribution from which it was drawn: If the N events are located at values $x_{i}, i=1, \ldots, N$, then $S_{N}(x)$ is the function giving the fraction of data points to the left of a given value x. This function is obviously constant between consecutive (i.e., sorted into ascending order) x_{i} 's, and jumps by the same constant $1 / N$ at each x_{i}. (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative distribution function estimates by the above procedure. However, all cumulative distribution functions agree at the smallest allowable value of x (where they are zero), and at the largest allowable value of x (where they are unity). (The smallest and largest values might of course be $\pm \infty$.) So it is the behavior between the largest and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference between two cumulative distribution functions: the absolute value of the area between them, for example. Or their integrated mean square difference. The KolmogorovSmirnov D is a particularly simple measure: It is defined as the maximum value of the absolute difference between two cumulative distribution functions. Thus, for comparing one data set's $S_{N}(x)$ to a known cumulative distribution function $P(x)$, the K-S statistic is

$$
\begin{equation*}
D=\max _{-\infty<x<\infty}\left|S_{N}(x)-P(x)\right| \tag{14.3.5}
\end{equation*}
$$

while for comparing two different cumulative distribution functions $S_{N_{1}}(x)$ and $S_{N_{2}}(x)$, the $\mathrm{K}-\mathrm{S}$ statistic is

$$
\begin{equation*}
D=\max _{-\infty<x<\infty}\left|S_{N_{1}}(x)-S_{N_{2}}(x)\right| \tag{14.3.6}
\end{equation*}
$$

Figure 14.3.1. Kolmogorov-Smirnov statistic D. A measured distribution of values in x (shown as N dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative probability distribution is plotted as $P(x)$. A step-function cumulative probability distribution $S_{N}(x)$ is constructed, one that rises an equal amount at each measured point. D is the greatest distance between the two cumulative distributions.

What makes the $\mathrm{K}-\mathrm{S}$ statistic useful is that its distribution in the case of the null hypothesis (data sets drawn from the same distribution) can be calculated, at least to useful approximation, thus giving the significance of any observed nonzero value of D. A central feature of the $\mathrm{K}-\mathrm{S}$ test is that it is invariant under reparametrization of x; in other words, you can locally slide or stretch the x axis in Figure 14.3.1, and the maximum distance D remains unchanged. For example, you will get the same significance using x as using $\log x$.

The function that enters into the calculation of the significance can be written as the following sum:

$$
\begin{equation*}
Q_{K S}(\lambda)=2 \sum_{j=1}^{\infty}(-1)^{j-1} e^{-2 j^{2} \lambda^{2}} \tag{14.3.7}
\end{equation*}
$$

which is a monotonic function with the limiting values

$$
\begin{equation*}
Q_{K S}(0)=1 \quad Q_{K S}(\infty)=0 \tag{14.3.8}
\end{equation*}
$$

In terms of this function, the significance level of an observed value of D (as a disproof of the null hypothesis that the distributions are the same) is given approximately [1] by the formula

$$
\begin{equation*}
\operatorname{Probability}(D>\text { observed })=Q_{K S}\left(\left[\sqrt{N_{e}}+0.12+0.11 / \sqrt{N_{e}}\right] D\right) \tag{14.3.9}
\end{equation*}
$$

where N_{e} is the effective number of data points, $N_{e}=N$ for the case (14.3.5) of one distribution, and

$$
\begin{equation*}
N_{e}=\frac{N_{1} N_{2}}{N_{1}+N_{2}} \tag{14.3.10}
\end{equation*}
$$

for the case (14.3.6) of two distributions, where N_{1} is the number of data points in the first distribution, N_{2} the number in the second.

The nature of the approximation involved in (14.3.9) is that it becomes asymptotically accurate as the N_{e} becomes large, but is already quite good for $N_{e} \geq 4$, as small a number as one might ever actually use. (See [1].)

So, we have the following routines for the cases of one and two distributions:

```
```

\#include <math.h>

```
```

\#include <math.h>
\#include "nrutil.h"
\#include "nrutil.h"
void ksone(float data[], unsigned long n, float (*func)(float), float *d,
void ksone(float data[], unsigned long n, float (*func)(float), float *d,
float *prob)
float *prob)
Given an array data[1..n], and given a user-supplied function of a single variable func which
Given an array data[1..n], and given a user-supplied function of a single variable func which
is a cumulative distribution function ranging from 0 (for smallest values of its argument) to 1
is a cumulative distribution function ranging from 0 (for smallest values of its argument) to 1
(for largest values of its argument), this routine returns the K-S statistic d, and the significance
(for largest values of its argument), this routine returns the K-S statistic d, and the significance
level prob. Small values of prob show that the cumulative distribution function of data is
level prob. Small values of prob show that the cumulative distribution function of data is
significantly different from func. The array data is modified by being sorted into ascending
significantly different from func. The array data is modified by being sorted into ascending
order.
order.
_ {
_ {
float probks(float alam);
float probks(float alam);
void sort(unsigned long n, float arr[]);
void sort(unsigned long n, float arr[]);
unsigned long j;
unsigned long j;
float dt,en,ff,fn,fo=0.0;
float dt,en,ff,fn,fo=0.0;
sort(n,data); If the data are already sorted into as-
sort(n,data); If the data are already sorted into as-
en=n;
en=n;
*d=0.0;
*d=0.0;
for (j=1;j<=n;j++) {
for (j=1;j<=n;j++) {
fn=j/en;
fn=j/en;
ff=(*func)(data[j]);
ff=(*func)(data[j]);
dt=FMAX(fabs(fo-ff),fabs(fn-ff));
dt=FMAX(fabs(fo-ff),fabs(fn-ff));
if (dt > *d) *d=dt;
if (dt > *d) *d=dt;
fo=fn;
fo=fn;
}
}
en=sqrt(en);
en=sqrt(en);
prob=probks ((en+0.12+0.11/en)(*d)); Compute significance.
prob=probks ((en+0.12+0.11/en)(*d)); Compute significance.
}

```
}
```

Compute significance.

```

\section*{\#include <math.h>}
```

void kstwo(float data1[], unsigned long n1, float data2[], unsigned long n2, float *d, float *prob)
Given an array data1[1..n1], and an array data2[1..n2], this routine returns the KS statistic d, and the significance level prob for the null hypothesis that the data sets are drawn from the same distribution. Small values of prob show that the cumulative distribution function of data1 is significantly different from that of data2. The arrays data1 and data2 are modified by being sorted into ascending order.
\{
float probks(float alam);
void sort(unsigned long n, float arr []);
unsigned long $\mathrm{j} 1=1, \mathrm{j} 2=1$;
float d1,d2,dt,en1,en2,en,fn1=0.0,fn2=0.0;

```
```

 cending order, then this call can be
    ```
    cending order, then this call can be
    omitted.
    omitted.
Loop over the sorted data points.
Loop over the sorted data points.
Data's c.d.f. after this step.
Data's c.d.f. after this step.
Compare to the user-supplied function.
Compare to the user-supplied function.
Maximum distance.
```

Maximum distance.

```
```

sort(n1,data1);
sort(n2,data2);
en1=n1;
en2=n2;
*d=0.0;
while (j1 <= n1 \&\& j2 <= n2) { If we are not done...
if ((d1=data1[j1]) <= (d2=data2[j2])) fn1=j1++/en1; Next step is in data1.
if (d2 <= d1) fn2=j2+ (d2=
if ((dt=fabs(fn2-fn1)) > *d) *d=dt;
}
en=sqrt(en1*en2/(en1+en2));
prob=probks ((en+0.12+0.11/en)(*d)); Compute significance.

```
\}

Both of the above routines use the following routine for calculating the function \(Q_{K S}\) :
```

\#include <math.h>
\#define EPS1 0.001
\#define EPS2 1.0e-8
float probks(float alam)
Kolmogorov-Smirnov probability function.
{
int j;
float a2,fac=2.0,sum=0.0,term,termbf=0.0;
a2 = -2.0*alam*alam;
for (}\textrm{j}=1;\textrm{j}<=100;j++)
term=fac*exp(a2*j*j);
sum += term;
if (fabs(term) <= EPS1*termbf || fabs(term) <= EPS2*sum) return sum;
fac = -fac; Alternating signs in sum.
termbf=fabs(term);
}
return 1.0; Get here only by failing to converge.
}

```

\section*{Variants on the K-S Test}

The sensitivity of the \(\mathrm{K}-\mathrm{S}\) test to deviations from a cumulative distribution function \(P(x)\) is not independent of \(x\). In fact, the \(\mathrm{K}-\mathrm{S}\) test tends to be most sensitive around the median value, where \(P(x)=0.5\), and less sensitive at the extreme ends of the distribution, where \(P(x)\) is near 0 or 1 . The reason is that the difference \(\left|S_{N}(x)-P(x)\right|\) does not, in the null hypothesis, have a probability distribution that is independent of \(x\). Rather, its variance is proportional to \(P(x)[1-P(x)]\), which is largest at \(P=0.5\). Since the K-S statistic (14.3.5) is the maximum difference over all \(x\) of two cumulative distribution functions, a deviation that might be statistically significant at its own value of \(x\) gets compared to the expected chance deviation at \(P=0.5\), and is thus discounted. A result is that, while the \(\mathrm{K}-\mathrm{S}\) test is good at finding shifts in a probability distribution, especially changes in the median value, it is not always so good at finding spreads, which more affect the tails of the probability distribution, and which may leave the median unchanged.

One way of increasing the power of the \(\mathrm{K}-\mathrm{S}\) statistic out on the tails is to replace \(D\) (equation 14.3.5) by a so-called stabilized or weighted statistic [2-4], for example the Anderson-Darling statistic,
\[
\begin{equation*}
D^{*}=\max _{-\infty<x<\infty} \frac{\left|S_{N}(x)-P(x)\right|}{\sqrt{P(x)[1-P(x)]}} \tag{14.3.11}
\end{equation*}
\]

Unfortunately, there is no simple formula analogous to equations (14.3.7) and (14.3.9) for this statistic, although Noé [5] gives a computational method using a recursion relation and provides a graph of numerical results. There are many other possible similar statistics, for example
\[
\begin{equation*}
D^{* *}=\int_{P=0}^{1} \frac{\left|S_{N}(x)-P(x)\right|}{\sqrt{P(x)[1-P(x)]}} d P(x) \tag{14.3.12}
\end{equation*}
\]
which is also discussed by Anderson and Darling (see [3]).
Another approach, which we prefer as simpler and more direct, is due to Kuiper [6,7]. We already mentioned that the standard K-S test is invariant under reparametrizations of the variable \(x\). An even more general symmetry, which guarantees equal sensitivities at all values of \(x\), is to wrap the \(x\) axis around into a circle (identifying the points at \(\pm \infty\) ), and to look for a statistic that is now invariant under all shifts and parametrizations on the circle. This allows, for example, a probability distribution to be "cut" at some central value of \(x\), and the left and right halves to be interchanged, without altering the statistic or its significance.

Kuiper's statistic, defined as
\[
\begin{equation*}
V=D_{+}+D_{-}=\max _{-\infty<x<\infty}\left[S_{N}(x)-P(x)\right]+\max _{-\infty<x<\infty}\left[P(x)-S_{N}(x)\right] \tag{14.3.13}
\end{equation*}
\]
is the sum of the maximum distance of \(S_{N}(x)\) above and below \(P(x)\). You should be able to convince yourself that this statistic has the desired invariance on the circle: Sketch the indefinite integral of two probability distributions defined on the circle as a function of angle around the circle, as the angle goes through several times \(360^{\circ}\). If you change the starting point of the integration, \(D_{+}\)and \(D_{-}\)change individually, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statistic \(V\), directly analogous to equations (14.3.7)-(14.3.10). Let
\[
\begin{equation*}
Q_{K P}(\lambda)=2 \sum_{j=1}^{\infty}\left(4 j^{2} \lambda^{2}-1\right) e^{-2 j^{2} \lambda^{2}} \tag{14.3.14}
\end{equation*}
\]
which is monotonic and satisfies
\[
\begin{equation*}
Q_{K P}(0)=1 \quad Q_{K P}(\infty)=0 \tag{14.3.15}
\end{equation*}
\]

In terms of this function the significance level is [1]
\[
\begin{equation*}
\text { Probability }(V>\text { observed })=Q_{K P}\left(\left[\sqrt{N_{e}}+0.155+0.24 / \sqrt{N_{e}}\right] D\right) \tag{14.3.16}
\end{equation*}
\]

Here \(N_{e}\) is \(N\) in the one-sample case, or is given by equation (14.3.10) in the case of two samples.

Of course, Kuiper's test is ideal for any problem originally defined on a circle, for example, to test whether the distribution in longitude of something agrees with some theory, or whether two somethings have different distributions in longitude. (See also [8].)

We will leave to you the coding of routines analogous to ksone, kstwo, and probks, above. (For \(\lambda<0.4\), don't try to do the sum 14.3.14. Its value is 1 , to 7 figures, but the series can require many terms to converge, and loses accuracy to roundoff.)

Two final cautionary notes: First, we should mention that all varieties of K-S test lack the ability to discriminate some kinds of distributions. A simple example is a probability distribution with a narrow "notch" within which the probability falls to zero. Such a distribution is of course ruled out by the existence of even one data point within the notch, but, because of its cumulative nature, a \(\mathrm{K}-\mathrm{S}\) test would require many data points in the notch before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean and variance), then the distribution of the \(\mathrm{K}-\mathrm{S}\) statistic \(D\) for a cumulative distribution function \(P(x)\) that uses the estimated parameters is no longer given by equation (14.3.9). In general, you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.

CITED REFERENCES AND FURTHER READING:
von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), Chapters IX(C) and IX(E).

Stephens, M.A. 1970, Journal of the Royal Statistical Society, ser. B, vol. 32, pp. 115-122. [1]
Anderson, T.W., and Darling, D.A. 1952, Annals of Mathematical Statistics, vol. 23, pp. 193-212. [2]
Darling, D.A. 1957, Annals of Mathematical Statistics, vol. 28, pp. 823-838. [3]
Michael, J.R. 1983, Biometrika, vol. 70, no. 1, pp. 11-17. [4]
Noé, M. 1972, Annals of Mathematical Statistics, vol. 43, pp. 58-64. [5]
Kuiper, N.H. 1962, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, ser. A., vol. 63, pp. 38-47. [6]
Stephens, M.A. 1965, Biometrika, vol. 52, pp. 309-321. [7]
Fisher, N.I., Lewis, T., and Embleton, B.J.J. 1987, Statistical Analysis of Spherical Data (New York: Cambridge University Press). [8]

\subsection*{14.4 Contingency Table Analysis of Two Distributions}

In this section, and the next two sections, we deal with measures of association for two distributions. The situation is this: Each data point has two or more different quantities associated with it, and we want to know whether knowledge of one quantity gives us any demonstrable advantage in predicting the value of another quantity. In many cases, one variable will be an "independent" or "control" variable, and another will be a "dependent" or "measured" variable. Then, we want to know if the latter variable is in fact dependent on or associated with the former variable. If it is, we want to have some quantitative measure of the strength of the association. One often hears this loosely stated as the question of whether two variables are correlated or uncorrelated, but we will reserve those terms for a particular kind of association (linear, or at least monotonic), as discussed in \(\S 14.5\) and \(\S 14.6\).

Notice that, as in previous sections, the different concepts of significance and strength appear: The association between two distributions may be very significant even if that association is weak - if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with different categories forming a loose hierarchy.
- A variable is called nominal if its values are the members of some unordered set. For example, "state of residence" is a nominal variable that (in the U.S.) takes on one of 50 values; in astrophysics, "type of galaxy" is a nominal variable with the three values "spiral," "elliptical," and "irregular."
- A variable is termed ordinal if its values are the members of a discrete, but ordered, set. Examples are: grade in school, planetary order from the Sun (Mercury \(=1\), Venus \(=2, \ldots\) ), number of offspring. There need not be any concept of "equal metric distance" between the values of an ordinal variable, only that they be intrinsically ordered.
- We will call a variable continuous if its values are real numbers, as are times, distances, temperatures, etc. (Social scientists sometimes distinguish between interval and ratio continuous variables, but we do not find that distinction very compelling.)
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{gathered}
1 . \\
\text { red }
\end{gathered}
\] & 2. green & - • & \\
\hline 1. male & \[
\begin{gathered}
\text { \# of } \\
\text { red males } \\
N_{11}
\end{gathered}
\] & \# of green males \(N_{12}\) & - • & \begin{tabular}{l}
\# of \\
males \\
\(N_{1}\).
\end{tabular} \\
\hline 2. female & \[
\begin{gathered}
\# \text { of } \\
\text { red females } \\
N_{21}
\end{gathered}
\] & \# of green females \(N_{22}\) & - • - & \# of females \(N_{2}\). \\
\hline \(:\) & \(:\) & \(:\) & - • & \(:\) \\
\hline & \# of red \(N \cdot 1\) & \[
\begin{gathered}
\text { \# of green } \\
N_{\cdot 2}
\end{gathered}
\] & - & \begin{tabular}{l}
total \# \\
\(N\)
\end{tabular} \\
\hline
\end{tabular}

Figure 14.4.1. Example of a contingency table for two nominal variables, here sex and color. The row and column marginals (totals) are shown. The variables are "nominal," i.e., the order in which their values are listed is arbitrary and does not affect the result of the contingency table analysis. If the ordering of values has some intrinsic meaning, then the variables are "ordinal" or "continuous," and correlation techniques ( \(\S 14.5-\S 14.6\) ) can be utilized.

A continuous variable can always be made into an ordinal one by binning it into ranges. If we choose to ignore the ordering of the bins, then we can turn it into a nominal variable. Nominal variables constitute the lowest type of the hierarchy, and therefore the most general. For example, a set of several continuous or ordinal variables can be turned, if crudely, into a single nominal variable, by coarsely binning each variable and then taking each distinct combination of bin assignments as a single nominal value. When multidimensional data are sparse, this is often the only sensible way to proceed.

The remainder of this section will deal with measures of association between nominal variables. For any pair of nominal variables, the data can be displayed as a contingency table, a table whose rows are labeled by the values of one nominal variable, whose columns are labeled by the values of the other nominal variable, and whose entries are nonnegative integers giving the number of observed events for each combination of row and column (see Figure 14.4.1). The analysis of association between nominal variables is thus called contingency table analysis or crosstabulation analysis.

We will introduce two different approaches. The first approach, based on the chi-square statistic, does a good job of characterizing the significance of association, but is only so-so as a measure of the strength (principally because its numerical values have no very direct interpretations). The second approach, based on the information-theoretic concept of entropy, says nothing at all about the significance of association (use chi-square for that!), but is capable of very elegantly characterizing the strength of an association already known to be significant.

\section*{Measures of Association Based on Chi-Square}

Some notation first: Let \(N_{i j}\) denote the number of events that occur with the first variable \(x\) taking on its \(i\) th value, and the second variable \(y\) taking on its \(j\) th value. Let \(N\) denote the total number of events, the sum of all the \(N_{i j}\) 's. Let \(N_{i}\). denote the number of events for which the first variable \(x\) takes on its \(i\) th value regardless of the value of \(y ; N_{\cdot j}\) is the number of events with the \(j\) th value of \(y\) regardless of \(x\). So we have
\[
\begin{align*}
& N_{i} .=\sum_{j} N_{i j} \quad N_{\cdot j}=\sum_{i} N_{i j} \\
& N=\sum_{i} N_{i} .=\sum_{j} N_{\cdot j} \tag{14.4.1}
\end{align*}
\]
\(N_{\cdot j}\) and \(N_{i}\). are sometimes called the row and column totals or marginals, but we will use these terms cautiously since we can never keep straight which are the rows and which are the columns!

The null hypothesis is that the two variables \(x\) and \(y\) have no association. In this case, the probability of a particular value of \(x\) given a particular value of \(y\) should be the same as the probability of that value of \(x\) regardless of \(y\). Therefore, in the null hypothesis, the expected number for any \(N_{i j}\), which we will denote \(n_{i j}\), can be calculated from only the row and column totals,
\[
\begin{equation*}
\frac{n_{i j}}{N_{\cdot j}}=\frac{N_{i \cdot}}{N} \quad \text { which implies } \quad n_{i j}=\frac{N_{i \cdot} N_{\cdot j}}{N} \tag{14.4.2}
\end{equation*}
\]

Notice that if a column or row total is zero, then the expected number for all the entries in that column or row is also zero; in that case, the never-occurring bin of \(x\) or \(y\) should simply be removed from the analysis.

The chi-square statistic is now given by equation (14.3.1), which, in the present case, is summed over all entries in the table,
\[
\begin{equation*}
\chi^{2}=\sum_{i, j} \frac{\left(N_{i j}-n_{i j}\right)^{2}}{n_{i j}} \tag{14.4.3}
\end{equation*}
\]

The number of degrees of freedom is equal to the number of entries in the table (product of its row size and column size) minus the number of constraints that have arisen from our use of the data themselves to determine the \(n_{i j}\). Each row total and column total is a constraint, except that this overcounts by one, since the total of the column totals and the total of the row totals both equal \(N\), the total number of data points. Therefore, if the table is of size \(I\) by \(J\), the number of degrees of freedom is \(I J-I-J+1\). Equation (14.4.3), along with the chi-square probability function (§6.2), now give the significance of an association between the variables \(x\) and \(y\).

Suppose there is a significant association. How do we quantify its strength, so that (e.g.) we can compare the strength of one association with another? The idea here is to find some reparametrization of \(\chi^{2}\) which maps it into some convenient interval, like 0 to 1 , where the result is not dependent on the quantity of data that we happen to sample, but rather depends only on the underlying population from which
the data were drawn. There are several different ways of doing this. Two of the more common are called Cramer's \(V\) and the contingency coefficient \(C\).

The formula for Cramer's \(V\) is
\[
\begin{equation*}
V=\sqrt{\frac{\chi^{2}}{N \min (I-1, J-1)}} \tag{14.4.4}
\end{equation*}
\]
where \(I\) and \(J\) are again the numbers of rows and columns, and \(N\) is the total number of events. Cramer's \(V\) has the pleasant property that it lies between zero and one inclusive, equals zero when there is no association, and equals one only when the association is perfect: All the events in any row lie in one unique column, and vice versa. (In chess parlance, no two rooks, placed on a nonzero table entry, can capture each other.)

In the case of \(I=J=2\), Cramer's \(V\) is also referred to as the phi statistic.
The contingency coefficient \(C\) is defined as
\[
\begin{equation*}
C=\sqrt{\frac{\chi^{2}}{\chi^{2}+N}} \tag{14.4.5}
\end{equation*}
\]

It also lies between zero and one, but (as is apparent from the formula) it can never achieve the upper limit. While it can be used to compare the strength of association of two tables with the same \(I\) and \(J\), its upper limit depends on \(I\) and \(J\). Therefore it can never be used to compare tables of different sizes.

The trouble with both Cramer's \(V\) and the contingency coefficient \(C\) is that, when they take on values in between their extremes, there is no very direct interpretation of what that value means. For example, you are in Las Vegas, and a friend tells you that there is a small, but significant, association between the color of a croupier's eyes and the occurrence of red and black on his roulette wheel. Cramer's \(V\) is about 0.028 , your friend tells you. You know what the usual odds against you are (because of the green zero and double zero on the wheel). Is this association sufficient for you to make money? Don't ask us!
```

\#include <math.h>
\#include "nrutil.h"
\#define TINY 1.0e-30 A small number.
void cntab1(int **nn, int ni, int nj, float *chisq, float *df, float *prob,
float *cramrv, float *ccc)
Given a two-dimensional contingency table in the form of an integer array nn [1..ni] [1..nj],
this routine returns the chi-square chisq, the number of degrees of freedom df, the significance
level prob (small values indicating a significant association), and two measures of association,
Cramer's V (cramrv) and the contingency coefficient C (ccc).
{
float gammq(float a, float x);
int nnj,nni,j,i,minij;
float sum=0.0,expctd,*sumi,*sumj,temp;
sumi=vector(1,ni);
sumj=vector(1,nj);
nni=ni; Number of rows
nnj=nj; and columns.
for (i=1;i<=ni;i++) { Get the row totals.
sumi[i]=0.0;

```

Number of rows
and columns.
Get the row totals.
```

 for (j=1;j<=nj;j++) {
 sumi[i] += nn[i][j];
 sum += nn[i][j];
 }
 if (sumi[i] == 0.0) --nni; Eliminate any zero rows by reducing the num-
 }
 for (j=1;j<=nj;j++) {
 sumj[j]=0.0;
 for (i=1;i<=ni;i++) sumj[j] += nn[i][j];
 if (sumj[j] == 0.0) --nnj; Eliminate any zero columns.
 }
 *df=nni*nnj-nni-nnj+1; Corrected number of degrees of freedom.
 *chisq=0.0;
 for (i=1;i<=ni;i++) { Do the chi-square sum.
 for (j=1;j<=nj;j++) {
 expctd=sumj[j]*sumi[i]/sum;
 temp=nn[i][j]-expctd;
 *chisq += temp*temp/(expctd+TINY); Here TINY guarantees that any
 }
 }
prob=gammq(0.5(*df),0.5*(*chisq));
minij = nni < nnj ? nni-1 : nnj-1;
*cramrv=sqrt(*chisq/(sum*minij));
*ccc=sqrt(*chisq/(*chisq+sum));
free_vector(sumj,1,nj);
free_vector(sumi,1,ni);

```
\}

\section*{Measures of Association Based on Entropy}

Consider the game of "twenty questions," where by repeated yes/no questions you try to eliminate all except one correct possibility for an unknown object. Better yet, consider a generalization of the game, where you are allowed to ask multiple choice questions as well as binary (yes/no) ones. The categories in your multiple choice questions are supposed to be mutually exclusive and exhaustive (as are "yes" and "no").

The value to you of an answer increases with the number of possibilities that it eliminates. More specifically, an answer that eliminates all except a fraction \(p\) of the remaining possibilities can be assigned a value \(-\ln p\) (a positive number, since \(p<1\) ). The purpose of the logarithm is to make the value additive, since (e.g.) one question that eliminates all but \(1 / 6\) of the possibilities is considered as good as two questions that, in sequence, reduce the number by factors \(1 / 2\) and \(1 / 3\).

So that is the value of an answer; but what is the value of a question? If there are \(I\) possible answers to the question \((i=1, \ldots, I)\) and the fraction of possibilities consistent with the \(i\) th answer is \(p_{i}\) (with the sum of the \(p_{i}\) 's equal to one), then the value of the question is the expectation value of the value of the answer, denoted \(H\),
\[
\begin{equation*}
H=-\sum_{i=1}^{I} p_{i} \ln p_{i} \tag{14.4.6}
\end{equation*}
\]

In evaluating (14.4.6), note that
\[
\begin{equation*}
\lim _{p \rightarrow 0} p \ln p=0 \tag{14.4.7}
\end{equation*}
\]

The value \(H\) lies between 0 and \(\ln I\). It is zero only when one of the \(p_{i}\) 's is one, all the others zero: In this case, the question is valueless, since its answer is preordained. \(H\) takes on its maximum value when all the \(p_{i}\) 's are equal, in which case the question is sure to eliminate all but a fraction \(1 / I\) of the remaining possibilities.

The value \(H\) is conventionally termed the entropy of the distribution given by the \(p_{i}\) 's, a terminology borrowed from statistical physics.

So far we have said nothing about the association of two variables; but suppose we are deciding what question to ask next in the game and have to choose between two candidates, or possibly want to ask both in one order or another. Suppose that one question, \(x\), has \(I\) possible answers, labeled by \(i\), and that the other question, \(y\), as \(J\) possible answers, labeled by \(j\). Then the possible outcomes of asking both questions form a contingency table whose entries \(N_{i j}\), when normalized by dividing by the total number of remaining possibilities \(N\), give all the information about the \(p\) 's. In particular, we can make contact with the notation (14.4.1) by identifying
\[
\begin{align*}
& p_{i j}=\frac{N_{i j}}{N} \\
& p_{i \cdot}=\frac{N_{i \cdot}}{N}  \tag{14.4.8}\\
& p_{\cdot j}=\frac{N_{\cdot j}}{N} \quad(\text { outcomes of question } x \text { alone) } \\
& \text { (outcomes of question } y \text { alone) }
\end{align*}
\]

The entropies of the questions \(x\) and \(y\) are, respectively,
\[
\begin{equation*}
H(x)=-\sum_{i} p_{i \cdot} \cdot \ln p_{i} . \quad H(y)=-\sum_{j} p_{\cdot j} \ln p_{\cdot j} \tag{14.4.9}
\end{equation*}
\]

The entropy of the two questions together is
\[
\begin{equation*}
H(x, y)=-\sum_{i, j} p_{i j} \ln p_{i j} \tag{14.4.10}
\end{equation*}
\]

Now what is the entropy of the question \(y\) given \(x\) (that is, if \(x\) is asked first)? It is the expectation value over the answers to \(x\) of the entropy of the restricted \(y\) distribution that lies in a single column of the contingency table (corresponding to the \(x\) answer):
\[
\begin{equation*}
H(y \mid x)=-\sum_{i} p_{i} . \sum_{j} \frac{p_{i j}}{p_{i}} \ln \frac{p_{i j}}{p_{i} .}=-\sum_{i, j} p_{i j} \ln \frac{p_{i j}}{p_{i} .} \tag{14.4.11}
\end{equation*}
\]

Correspondingly, the entropy of \(x\) given \(y\) is
\[
\begin{equation*}
H(x \mid y)=-\sum_{j} p_{\cdot j} \sum_{i} \frac{p_{i j}}{p \cdot j} \ln \frac{p_{i j}}{p \cdot j}=-\sum_{i, j} p_{i j} \ln \frac{p_{i j}}{p \cdot j} \tag{14.4.12}
\end{equation*}
\]

We can readily prove that the entropy of \(y\) given \(x\) is never more than the entropy of \(y\) alone, i.e., that asking \(x\) first can only reduce the usefulness of asking
\(y\) (in which case the two variables are associated!):
\[
\begin{align*}
H(y \mid x)-H(y) & =-\sum_{i, j} p_{i j} \ln \frac{p_{i j} / p_{i} .}{p_{\cdot j}} \\
& =\sum_{i, j} p_{i j} \ln \frac{p_{\cdot j} p_{i .}}{p_{i j}} \\
& \leq \sum_{i, j} p_{i j}\left(\frac{p_{\cdot j} p_{i \cdot}}{p_{i j}}-1\right)  \tag{14.4.13}\\
& =\sum_{i, j} p_{i \cdot p} p_{\cdot j}-\sum_{i, j} p_{i j} \\
& =1-1=0
\end{align*}
\]
where the inequality follows from the fact
\[
\begin{equation*}
\ln w \leq w-1 \tag{14.4.14}
\end{equation*}
\]

We now have everything we need to define a measure of the "dependency" of \(y\) on \(x\), that is to say a measure of association. This measure is sometimes called the uncertainty coefficient of \(y\). We will denote it as \(U(y \mid x)\),
\[
\begin{equation*}
U(y \mid x) \equiv \frac{H(y)-H(y \mid x)}{H(y)} \tag{14.4.15}
\end{equation*}
\]

This measure lies between zero and one, with the value 0 indicating that \(x\) and \(y\) have no association, the value 1 indicating that knowledge of \(x\) completely predicts \(y\). For in-between values, \(U(y \mid x)\) gives the fraction of \(y\) 's entropy \(H(y)\) that is lost if \(x\) is already known (i.e., that is redundant with the information in \(x\) ). In our game of "twenty questions," \(U(y \mid x)\) is the fractional loss in the utility of question \(y\) if question \(x\) is to be asked first.

If we wish to view \(x\) as the dependent variable, \(y\) as the independent one, then interchanging \(x\) and \(y\) we can of course define the dependency of \(x\) on \(y\),
\[
\begin{equation*}
U(x \mid y) \equiv \frac{H(x)-H(x \mid y)}{H(x)} \tag{14.4.16}
\end{equation*}
\]

If we want to treat \(x\) and \(y\) symmetrically, then the useful combination turns out to be
\[
\begin{equation*}
U(x, y) \equiv 2\left[\frac{H(y)+H(x)-H(x, y)}{H(x)+H(y)}\right] \tag{14.4.17}
\end{equation*}
\]

If the two variables are completely independent, then \(H(x, y)=H(x)+H(y)\), so (14.4.17) vanishes. If the two variables are completely dependent, then \(H(x)=\) \(H(y)=H(x, y)\), so (14.4.16) equals unity. In fact, you can use the identities (easily proved from equations 14.4.9-14.4.12)
\[
\begin{equation*}
H(x, y)=H(x)+H(y \mid x)=H(y)+H(x \mid y) \tag{14.4.18}
\end{equation*}
\]
to show that
\[
\begin{equation*}
U(x, y)=\frac{H(x) U(x \mid y)+H(y) U(y \mid x)}{H(x)+H(y)} \tag{14.4.19}
\end{equation*}
\]
i.e., that the symmetrical measure is just a weighted average of the two asymmetrical measures (14.4.15) and (14.4.16), weighted by the entropy of each variable separately.

Here is a program for computing all the quantities discussed, \(H(x), H(y)\), \(H(x \mid y), H(y \mid x), H(x, y), U(x \mid y), U(y \mid x)\), and \(U(x, y)\) :
```

\#include <math.h>
\#include "nrutil.h"
\#define TINY 1.0e-30
A small number.
void cntab2(int **nn, int ni, int nj, float *h, float *hx, float *hy,
float *hygx, float *hxgy, float *uygx, float *uxgy, float *uxy)

```
Given a two-dimensional contingency table in the form of an integer array nn [i] [j], where i
labels the \(x\) variable and ranges from 1 to ni, j labels the \(y\) variable and ranges from 1 to nj ,
this routine returns the entropy h of the whole table, the entropy hx of the \(x\) distribution, the
entropy hy of the \(y\) distribution, the entropy hygx of \(y\) given \(x\), the entropy hxgy of \(x\) given \(y\),
the dependency uygx of \(y\) on \(x\) (eq. 14.4.15), the dependency uxgy of \(x\) on \(y\) (eq. 14.4.16),
and the symmetrical dependency uxy (eq. 14.4.17)
\{
    int i,j;
    float sum=0.0,p,*sumi,*sumj;
    sumi=vector(1,ni);
    sumj=vector (1, nj);
    for ( \(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{ni} ; \mathrm{i}++\) ) \{ Get the row totals.
    sumi[i]=0.0;
    for ( \(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{nj} ; \mathrm{j}+\mathrm{+}\) ) \{
        sumi[i] += nn[i][j];
        sum \(+=n n[i][j] ;\)
        \}
    \}
    for ( \(j=1 ; j<=n j ; j++\) ) \{ Get the column totals.
    \(\operatorname{sumj}[j]=0.0\);
    for ( \(i=1 ; i<=n i ; i++\) )
        sumj[j] += nn[i][j];
    \}
    *hx=0.0; Entropy of the \(x\) distribution,
    for (i=1;i<=ni;i++)
        if (sumi[i]) \{
            p=sumi[i]/sum;
            *hx \(-=\mathrm{p} * \log (\mathrm{p})\);
        \}
    *hy=0.0; and of the \(y\) distribution.
    for ( \(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{nj} ; \mathrm{j}++\) )
        if (sumj[j]) \{
            p=sumj[j]/sum;
            *hy \(-=p * \log (p)\);
        \}
    *h=0.0;
    for (i=1;i<=ni;i++) Total entropy: loop over both \(x\)
        for ( \(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{nj} ; \mathrm{j}++\) )
            if (nn[i][j]) \{
                \(p=n n[i][j] /\) sum;
                *h -= \(\mathrm{p} * \log (\mathrm{p})\);
        \}
    *hygx \(=(* \mathrm{~h})-(* \mathrm{hx})\); Uses equation (14.4.18),
    *hxgy=(*h)-(*hy); as does this.
    \(\begin{array}{ll}* \mathrm{uygx}=(* \mathrm{hy}-* \mathrm{hygx}) /(* \mathrm{hy}+\text { TINY }) ; & \text { Equation (14.4.15). } \\ * \mathrm{uxgy}=(* \mathrm{hx}-* \mathrm{hxgy}) /(* \mathrm{hx}+\text { TINY }) ; & \text { Equation (14.4.16) }\end{array}\)
    *uxgy \(=(* \mathrm{hx}-* \mathrm{hxgy}) /(* \mathrm{hx}+\mathrm{TINY})\);
    *uxy \(=2.0 *(* h x+* h y-* h) /(* h x+* h y+\) TINY \()\);
    Equation (14.4.17).
    free_vector (sumj, \(1, \mathrm{nj}\) ) ;
    free_vector(sumi,1,ni);
\}

CITED REFERENCES AND FURTHER READING:
Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New York: Wiley).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSSX Advanced Statistics Guide (New York: McGraw-Hill).
Fano, R.M. 1961, Transmission of Information (New York: Wiley and MIT Press), Chapter 2.

\subsection*{14.5 Linear Correlation}

We next turn to measures of association between variables that are ordinal or continuous, rather than nominal. Most widely used is the linear correlation coefficient. For pairs of quantities \(\left(x_{i}, y_{i}\right), i=1, \ldots, N\), the linear correlation coefficient \(r\) (also called the product-moment correlation coefficient, or Pearson's \(r\) ) is given by the formula
\[
\begin{equation*}
r=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}} \tag{14.5.1}
\end{equation*}
\]
where, as usual, \(\bar{x}\) is the mean of the \(x_{i}{ }^{\prime}\) s, \(\bar{y}\) is the mean of the \(y_{i}\) 's.
The value of \(r\) lies between -1 and 1 , inclusive. It takes on a value of 1 , termed "complete positive correlation," when the data points lie on a perfect straight line with positive slope, with \(x\) and \(y\) increasing together. The value 1 holds independent of the magnitude of the slope. If the data points lie on a perfect straight line with negative slope, \(y\) decreasing as \(x\) increases, then \(r\) has the value -1 ; this is called "complete negative correlation." A value of \(r\) near zero indicates that the variables \(x\) and \(y\) are uncorrelated.

When a correlation is known to be significant, \(r\) is one conventional way of summarizing its strength. In fact, the value of \(r\) can be translated into a statement about what residuals (root mean square deviations) are to be expected if the data are fitted to a straight line by the least-squares method (see \(\S 15.2\), especially equations 15.2.13-15.2.14). Unfortunately, \(r\) is a rather poor statistic for deciding whether an observed correlation is statistically significant, and/or whether one observed correlation is significantly stronger than another. The reason is that \(r\) is ignorant of the individual distributions of \(x\) and \(y\), so there is no universal way to compute its distribution in the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis is that \(x\) and \(y\) are uncorrelated, and if the distributions for \(x\) and \(y\) each have enough convergent moments ("tails" die off sufficiently rapidly), and if \(N\) is large (typically \(>500\) ), then \(r\) is distributed approximately normally, with a mean of zero and a standard deviation of \(1 / \sqrt{N}\). In that case, the (double-sided) significance of the correlation, that is, the probability that \(|r|\) should be larger than its observed value in the null hypothesis, is
\[
\begin{equation*}
\operatorname{erfc}\left(\frac{|r| \sqrt{N}}{\sqrt{2}}\right) \tag{14.5.2}
\end{equation*}
\]
where \(\operatorname{erfc}(x)\) is the complementary error function, equation (6.2.8), computed by the routines erffc or erfcc of \(\S 6.2\). A small value of (14.5.2) indicates that the
two distributions are significantly correlated. (See expression 14.5.9 below for a more accurate test.)

Most statistics books try to go beyond (14.5.2) and give additional statistical tests that can be made using \(r\). In almost all cases, however, these tests are valid only for a very special class of hypotheses, namely that the distributions of \(x\) and \(y\) jointly form a binormal or two-dimensional Gaussian distribution around their mean values, with joint probability density
\[
\begin{equation*}
p(x, y) d x d y=\text { const. } \times \exp \left[-\frac{1}{2}\left(a_{11} x^{2}-2 a_{12} x y+a_{22} y^{2}\right)\right] d x d y \tag{14.5.3}
\end{equation*}
\]
where \(a_{11}, a_{12}\), and \(a_{22}\) are arbitrary constants. For this distribution \(r\) has the value
\[
\begin{equation*}
r=-\frac{a_{12}}{\sqrt{a_{11} a_{22}}} \tag{14.5.4}
\end{equation*}
\]

There are occasions when (14.5.3) may be known to be a good model of the data. There may be other occasions when we are willing to take (14.5.3) as at least a rough and ready guess, since many two-dimensional distributions do resemble a binormal distribution, at least not too far out on their tails. In either situation, we can use (14.5.3) to go beyond (14.5.2) in any of several directions:

First, we can allow for the possibility that the number \(N\) of data points is not large. Here, it turns out that the statistic
\[
\begin{equation*}
t=r \sqrt{\frac{N-2}{1-r^{2}}} \tag{14.5.5}
\end{equation*}
\]
is distributed in the null case (of no correlation) like Student's \(t\)-distribution with \(\nu=N-2\) degrees of freedom, whose two-sided significance level is given by \(1-A(t \mid \nu)\) (equation 6.4.7). As \(N\) becomes large, this significance and (14.5.2) become asymptotically the same, so that one never does worse by using (14.5.5), even if the binormal assumption is not well substantiated.

Second, when \(N\) is only moderately large ( \(\geq 10\) ), we can compare whether the difference of two significantly nonzero \(r\) 's, e.g., from different experiments, is itself significant. In other words, we can quantify whether a change in some control variable significantly alters an existing correlation between two other variables. This is done by using Fisher's \(z\)-transformation to associate each measured \(r\) with a corresponding \(z\),
\[
\begin{equation*}
z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right) \tag{14.5.6}
\end{equation*}
\]

Then, each \(z\) is approximately normally distributed with a mean value
\[
\begin{equation*}
\bar{z}=\frac{1}{2}\left[\ln \left(\frac{1+r_{\text {true }}}{1-r_{\text {true }}}\right)+\frac{r_{\text {true }}}{N-1}\right] \tag{14.5.7}
\end{equation*}
\]
where \(r_{\text {true }}\) is the actual or population value of the correlation coefficient, and with a standard deviation
\[
\begin{equation*}
\sigma(z) \approx \frac{1}{\sqrt{N-3}} \tag{14.5.8}
\end{equation*}
\]

Equations (14.5.7) and (14.5.8), when they are valid, give several useful statistical tests. For example, the significance level at which a measured value of \(r\) differs from some hypothesized value \(r_{\text {true }}\) is given by
\[
\begin{equation*}
\operatorname{erfc}\left(\frac{|z-\bar{z}| \sqrt{N-3}}{\sqrt{2}}\right) \tag{14.5.9}
\end{equation*}
\]
where \(z\) and \(\bar{z}\) are given by (14.5.6) and (14.5.7), with small values of (14.5.9) indicating a significant difference. (Setting \(\bar{z}=0\) makes expression 14.5.9 a more accurate replacement for expression 14.5.2 above.) Similarly, the significance of a difference between two measured correlation coefficients \(r_{1}\) and \(r_{2}\) is
\[
\begin{equation*}
\operatorname{erfc}\left(\frac{\left|z_{1}-z_{2}\right|}{\sqrt{2} \sqrt{\frac{1}{N_{1}-3}+\frac{1}{N_{2}-3}}}\right) \tag{14.5.10}
\end{equation*}
\]
where \(z_{1}\) and \(z_{2}\) are obtained from \(r_{1}\) and \(r_{2}\) using (14.5.6), and where \(N_{1}\) and \(N_{2}\) are, respectively, the number of data points in the measurement of \(r_{1}\) and \(r_{2}\).

All of the significances above are two-sided. If you wish to disprove the null hypothesis in favor of a one-sided hypothesis, such as that \(r_{1}>r_{2}\) (where the sense of the inequality was decided a priori), then (i) if your measured \(r_{1}\) and \(r_{2}\) have the wrong sense, you have failed to demonstrate your one-sided hypothesis, but (ii) if they have the right ordering, you can multiply the significances given above by 0.5 , which makes them more significant.

But keep in mind: These interpretations of the \(r\) statistic can be completely meaningless if the joint probability distribution of your variables \(x\) and \(y\) is too different from a binormal distribution.
```

\#include <math.h>
\#define TINY 1.0e-20 Will regularize the unusual case of complete correlation.
void pearsn(float x[], float y[], unsigned long n, float *r, float *prob,
float *z)
Given two arrays x[1..n] and y[1..n], this routine computes their correlation coefficient
r (returned as r), the significance level at which the null hypothesis of zero correlation is
disproved (prob whose small value indicates a significant correlation), and Fisher's z (returned
as z), whose value can be used in further statistical tests as described above.
{
float betai(float a, float b, float x);
float erfcc(float x);
unsigned long j;
float yt,xt,t,df;
float syy=0.0,sxy=0.0,sxx=0.0,ay=0.0,ax=0.0;
for (}j=1;j<=n;j++) { Find the means
ax += x[j];
ay += y[j];
}
ax /= n;
ay /= n;
for (}\textrm{j}=1;\textrm{j}<=n;j++) { Compute the correlation coefficient
xt=x[j]-ax;
yt=y[j]-ay;
sxx += xt*xt;
syy += yt*yt;

```
```

 sxy += xt*yt;
 }
 *r=sxy/(sqrt(sxx*syy)+TINY);
 *z=0.5*log((1.0+(*r)+TINY)/(1.0-(*r)+TINY)); Fisher's z transformation.
 df=n-2;
 t=(*r)*sqrt (df/((1.0-(*r)+TINY)*(1.0+(*r)+TINY))); Equation (14.5.5).
 *prob=betai(0.5*df,0.5,df/(df+t*t));
 Student's t probability.
 /* *prob=betai(0.5*df,0.5,df/(df+t*t));
 For large n, this easier computation of prob, using the short routine erfcc, would give approx-
imately the same value.
}

```

\section*{CITED REFERENCES AND FURTHER READING:}

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New York: Wiley).
Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7. von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), Chapters IX(A) and IX(B).
Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed. (New York: McGraw-Hill), §19.7.
Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS\(X\) Advanced Statistics Guide (New York: McGraw-Hill).

\subsection*{14.6 Nonparametric or Rank Correlation}

It is precisely the uncertainty in interpreting the significance of the linear correlation coefficient \(r\) that leads us to the important concepts of nonparametric or rank correlation. As before, we are given \(N\) pairs of measurements \(\left(x_{i}, y_{i}\right)\). Before, difficulties arose because we did not necessarily know the probability distribution function from which the \(x_{i}\) 's or \(y_{i}\) 's were drawn.

The key concept of nonparametric correlation is this: If we replace the value of each \(x_{i}\) by the value of its rank among all the other \(x_{i}\) 's in the sample, that is, \(1,2,3, \ldots, N\), then the resulting list of numbers will be drawn from a perfectly known distribution function, namely uniformly from the integers between 1 and \(N\), inclusive. Better than uniformly, in fact, since if the \(x_{i}\) 's are all distinct, then each integer will occur precisely once. If some of the \(x_{i}\) 's have identical values, it is conventional to assign to all these "ties" the mean of the ranks that they would have had if their values had been slightly different. This midrank will sometimes be an integer, sometimes a half-integer. In all cases the sum of all assigned ranks will be the same as the sum of the integers from 1 to \(N\), namely \(\frac{1}{2} N(N+1)\).

Of course we do exactly the same procedure for the \(y_{i}\) 's, replacing each value by its rank among the other \(y_{i}\) 's in the sample.

Now we are free to invent statistics for detecting correlation between uniform sets of integers between 1 and \(N\), keeping in mind the possibility of ties in the ranks. There is, of course, some loss of information in replacing the original numbers by ranks. We could construct some rather artificial examples where a correlation could be detected parametrically (e.g., in the linear correlation coefficient \(r\) ), but could not
be detected nonparametrically. Such examples are very rare in real life, however, and the slight loss of information in ranking is a small price to pay for a very major advantage: When a correlation is demonstrated to be present nonparametrically, then it is really there! (That is, to a certainty level that depends on the significance chosen.) Nonparametric correlation is more robust than linear correlation, more resistant to unplanned defects in the data, in the same sort of sense that the median is more robust than the mean. For more on the concept of robustness, see \(\S 15.7\).

As always in statistics, some particular choices of a statistic have already been invented for us and consecrated, if not beatified, by popular use. We will discuss two, the Spearman rank-order correlation coefficient \(\left(r_{s}\right)\), and Kendall's tau ( \(\tau\) ).

\section*{Spearman Rank-Order Correlation Coefficient}

Let \(R_{i}\) be the rank of \(x_{i}\) among the other \(x\) 's, \(S_{i}\) be the rank of \(y_{i}\) among the other \(y\) 's, ties being assigned the appropriate midrank as described above. Then the rank-order correlation coefficient is defined to be the linear correlation coefficient of the ranks, namely,
\[
\begin{equation*}
r_{s}=\frac{\sum_{i}\left(R_{i}-\bar{R}\right)\left(S_{i}-\bar{S}\right)}{\sqrt{\sum_{i}\left(R_{i}-\bar{R}\right)^{2}} \sqrt{\sum_{i}\left(S_{i}-\bar{S}\right)^{2}}} \tag{14.6.1}
\end{equation*}
\]

The significance of a nonzero value of \(r_{s}\) is tested by computing
\[
\begin{equation*}
t=r_{s} \sqrt{\frac{N-2}{1-r_{s}^{2}}} \tag{14.6.2}
\end{equation*}
\]
which is distributed approximately as Student's distribution with \(N-2\) degrees of freedom. A key point is that this approximation does not depend on the original distribution of the \(x\) 's and \(y\) 's; it is always the same approximation, and always pretty good.

It turns out that \(r_{s}\) is closely related to another conventional measure of nonparametric correlation, the so-called sum squared difference of ranks, defined as
\[
\begin{equation*}
D=\sum_{i=1}^{N}\left(R_{i}-S_{i}\right)^{2} \tag{14.6.3}
\end{equation*}
\]
(This \(D\) is sometimes denoted \(D^{* *}\), where the asterisks are used to indicate that ties are treated by midranking.)

When there are no ties in the data, then the exact relation between \(D\) and \(r_{s}\) is
\[
\begin{equation*}
r_{s}=1-\frac{6 D}{N^{3}-N} \tag{14.6.4}
\end{equation*}
\]

When there are ties, then the exact relation is slightly more complicated: Let \(f_{k}\) be the number of ties in the \(k\) th group of ties among the \(R_{i}\) 's, and let \(g_{m}\) be the number of ties in the \(m\) th group of ties among the \(S_{i}\) 's. Then it turns out that
\[
\begin{equation*}
r_{s}=\frac{1-\frac{6}{N^{3}-N}\left[D+\frac{1}{12} \sum_{k}\left(f_{k}^{3}-f_{k}\right)+\frac{1}{12} \sum_{m}\left(g_{m}^{3}-g_{m}\right)\right]}{\left[1-\frac{\sum_{k}\left(f_{k}^{3}-f_{k}\right)}{N^{3}-N}\right]^{1 / 2}\left[1-\frac{\sum_{m}\left(g_{m}^{3}-g_{m}\right)}{N^{3}-N}\right]^{1 / 2}} \tag{14.6.5}
\end{equation*}
\]
holds exactly. Notice that if all the \(f_{k}\) 's and all the \(g_{m}\) 's are equal to one, meaning that there are no ties, then equation (14.6.5) reduces to equation (14.6.4).

In (14.6.2) we gave a \(t\)-statistic that tests the significance of a nonzero \(r_{s}\). It is also possible to test the significance of \(D\) directly. The expectation value of \(D\) in the null hypothesis of uncorrelated data sets is
\[
\begin{equation*}
\bar{D}=\frac{1}{6}\left(N^{3}-N\right)-\frac{1}{12} \sum_{k}\left(f_{k}^{3}-f_{k}\right)-\frac{1}{12} \sum_{m}\left(g_{m}^{3}-g_{m}\right) \tag{14.6.6}
\end{equation*}
\]
its variance is
\[
\begin{align*}
\operatorname{Var}(D)= & \frac{(N-1) N^{2}(N+1)^{2}}{36} \\
& \times\left[1-\frac{\sum_{k}\left(f_{k}^{3}-f_{k}\right)}{N^{3}-N}\right]\left[1-\frac{\sum_{m}\left(g_{m}^{3}-g_{m}\right)}{N^{3}-N}\right] \tag{14.6.7}
\end{align*}
\]
and it is approximately normally distributed, so that the significance level is a complementary error function (cf. equation 14.5.2). Of course, (14.6.2) and (14.6.7) are not independent tests, but simply variants of the same test. In the program that follows, we calculate both the significance level obtained by using (14.6.2) and the significance level obtained by using (14.6.7); their discrepancy will give you an idea of how good the approximations are. You will also notice that we break off the task of assigning ranks (including tied midranks) into a separate function, crank.
```

\#include <math.h>
\#include "nrutil.h"
void spear(float data1[], float data2[], unsigned long n, float *d, float *zd,
float *probd, float *rs, float *probrs)
Given two data arrays, data1[1..n] and data2[1..n], this routine returns their sum-squared
difference of ranks as D, the number of standard deviations by which D deviates from its null-
hypothesis expected value as zd, the two-sided significance level of this deviation as probd,
Spearman's rank correlation rs as rs, and the two-sided significance level of its deviation from
zero as probrs. The external routines crank (below) and sort2 (§8.2) are used. A small value
of either probd or probrs indicates a significant correlation (rs positive) or anticorrelation
(rs negative).
{
float betai(float a, float b, float x);
void crank(unsigned long n, float w[], float *s);
float erfcc(float x);
void sort2(unsigned long n, float arr[], float brr[]);
unsigned long j;
float vard,t,sg,sf,fac,en3n,en,df,aved,*wksp1,*wksp2;
wksp1=vector(1,n);
wksp2=vector(1,n);
for (j=1;j<=n;j++) {
wksp1[j]=data1[j];
wksp2[j]=data2[j];
}
sort2(n,wksp1,wksp2); Sort each of the data arrays, and convert the entries to
crank(n,wksp1,\&sf);
sort2(n,wksp2,wksp1);
crank(n,wksp2,\&sg);
*d=0.0;
for (j=1;j<=n;j++) Sum the squared difference of ranks.
*d += SQR(wksp1[j]-wksp2[j]);

```
```

 n=n;
 en3n=en*en*en-en;
 aved=en3n/6.0-(sf+sg)/12.0; Expectation value of D,
 fac=(1.0-sf/en3n)*(1.0-sg/en3n);
 vard=((en-1.0)*en*en*SQR (en+1.0)/36.0)*fac; and variance of D give
 *zd=(*d-aved)/sqrt (vard);
 *probd=erfcc(fabs(*zd)/1.4142136);
 rs=(1.0-(6.0/en3n)(*d+(sf+sg)/12.0))/sqrt(fac); Rank correlation coefficient
 fac=(*rs+1.0)*(1.0-(*rs));
 if (fac > 0.0) {
 t=(*rs)*sqrt((en-2.0)/fac); and its t value,
 df=en-2.0;
 *probrs=betai (0.5*df,0.5,df/(df+t*t)); give its significance.
 } else
 *probrs=0.0;
 free_vector(wksp2,1,n);
 free_vector(wksp1,1,n);
    ```
\}
void crank(unsigned long n, float w[], float *s)
Given a sorted array w [1..n], replaces the elements by their rank, including midranking of ties, and returns as \(s\) the sum of \(f^{3}-f\), where \(f\) is the number of elements in each tie.
\{
    unsigned long \(j=1, j i, j t ;\)
    float t,rank;
    *s=0.0;
    while ( \(\mathrm{j}<\mathrm{n}\) ) \{
        if \((w[j+1]\) ! \(=w[j])\) Not a tie.
                \(\mathrm{w}[\mathrm{j}]=\mathrm{j}\);
                \(++j\);
                for ( \(j t=j+1 ; j t<=n\) \&\& \(w[j t]==w[j] ; j t++\) ); How far does it go?
            \} else \{ A tie
                rank \(=0.5 *(j+j t-1)\); \(\quad\) This is the mean rank of the tie,
                for (ji=j;ji<=(jt-1);ji++) w[ji]=rank; so enter it into all the tied
                \(t=j t-j\);
                    entries,
                *s += t*t*t-t; and update s
                \(j=j t ;\)
        \}
    \}
    if ( \(\mathrm{j}=\mathrm{n}\) ) w \([\mathrm{n}]=\mathrm{n}\); If the last element was not tied, this is its rank.
\}

\section*{Kendall's Tau}

Kendall's \(\tau\) is even more nonparametric than Spearman's \(r_{s}\) or \(D\). Instead of using the numerical difference of ranks, it uses only the relative ordering of ranks: higher in rank, lower in rank, or the same in rank. But in that case we don't even have to rank the data! Ranks will be higher, lower, or the same if and only if the values are larger, smaller, or equal, respectively. On balance, we prefer \(r_{s}\) as being the more straightforward nonparametric test, but both statistics are in general use. In fact, \(\tau\) and \(r_{s}\) are very strongly correlated and, in most applications, are effectively the same test.

To define \(\tau\), we start with the \(N\) data points \(\left(x_{i}, y_{i}\right)\). Now consider all \(\frac{1}{2} N(N-1)\) pairs of data points, where a data point cannot be paired with itself, and where the points in either order count as one pair. We call a pair concordant
if the relative ordering of the ranks of the two \(x\) 's (or for that matter the two \(x\) 's themselves) is the same as the relative ordering of the ranks of the two \(y\) 's (or for that matter the two \(y\) 's themselves). We call a pair discordant if the relative ordering of the ranks of the two \(x\) 's is opposite from the relative ordering of the ranks of the two \(y\) 's. If there is a tie in either the ranks of the two \(x\) 's or the ranks of the two \(y\) 's, then we don't call the pair either concordant or discordant. If the tie is in the \(x\) 's, we will call the pair an "extra \(y\) pair." If the tie is in the \(y\) 's, we will call the pair an "extra \(x\) pair." If the tie is in both the \(x\) 's and the \(y\) 's, we don't call the pair anything at all. Are you still with us?

Kendall's \(\tau\) is now the following simple combination of these various counts:
\[
\begin{equation*}
\tau=\frac{\text { concordant }- \text { discordant }}{\sqrt{\text { concordant }+ \text { discordant }+ \text { extra }-y} \sqrt{\text { concordant }+ \text { discordant }+ \text { extra }-x}} \tag{14.6.8}
\end{equation*}
\]

You can easily convince yourself that this must lie between 1 and -1 , and that it takes on the extreme values only for complete rank agreement or complete rank reversal, respectively.

More important, Kendall has worked out, from the combinatorics, the approximate distribution of \(\tau\) in the null hypothesis of no association between \(x\) and \(y\). In this case \(\tau\) is approximately normally distributed, with zero expectation value and a variance of
\[
\begin{equation*}
\operatorname{Var}(\tau)=\frac{4 N+10}{9 N(N-1)} \tag{14.6.9}
\end{equation*}
\]

The following program proceeds according to the above description, and therefore loops over all pairs of data points. Beware: This is an \(O\left(N^{2}\right)\) algorithm, unlike the algorithm for \(r_{s}\), whose dominant sort operations are of order \(N \log N\). If you are routinely computing Kendall's \(\tau\) for data sets of more than a few thousand points, you may be in for some serious computing. If, however, you are willing to bin your data into a moderate number of bins, then read on.
```

\#include <math.h>
void kendl1(float data1[], float data2[], unsigned long n, float *tau,
float *z, float *prob)
Given data arrays data1[1..n] and data2[1..n], this program returns Kendall's }\tau\mathrm{ as tau,
its number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
negative).
{
float erfcc(float x);
unsigned long n2=0,n1=0,k,j;
long is=0;
float svar,aa,a2,a1;
for (j=1;j<n;j++) { Loop over first member of pair,
for (k=(j+1);k<=n;k++) { and second member.
a1=data1[j]-data1[k];
a2=data2[j]-data2[k];
aa=a1*a2;
if (aa) { Neither array has a tie.
++n1;

```
```

 ++n2
 aa > 0.0 ? ++is : --is;
 } else {
 One or both arrays have ties.
 if (a1) ++n1; An "extra x" event
 if (a2) ++n2; An "extra y" event.
 }
 }
 }
 *tau=is/(sqrt((double) n1)*sqrt((double) n2)); Equation (14.6.8)
 svar=(4.0*n+10.0)/(9.0*n*(n-1.0)); Equation (14.6.9)
 *z=(*tau)/sqrt(svar);
*prob=erfcc(fabs(*z)/1.4142136); Significance.
}

```

Sometimes it happens that there are only a few possible values each for \(x\) and \(y\). In that case, the data can be recorded as a contingency table (see §14.4) that gives the number of data points for each contingency of \(x\) and \(y\).

Spearman's rank-order correlation coefficient is not a very natural statistic under these circumstances, since it assigns to each \(x\) and \(y\) bin a not-very-meaningful midrank value and then totals up vast numbers of identical rank differences. Kendall's tau, on the other hand, with its simple counting, remains quite natural. Furthermore, its \(O\left(N^{2}\right)\) algorithm is no longer a problem, since we can arrange for it to loop over pairs of contingency table entries (each containing many data points) instead of over pairs of data points. This is implemented in the program that follows.

Note that Kendall's tau can be applied only to contingency tables where both variables are ordinal, i.e., well-ordered, and that it looks specifically for monotonic correlations, not for arbitrary associations. These two properties make it less general than the methods of \(\S 14.4\), which applied to nominal, i.e., unordered, variables and arbitrary associations.

Comparing kendl1 above with kendl2 below, you will see that we have "floated" a number of variables. This is because the number of events in a contingency table might be sufficiently large as to cause overflows in some of the integer arithmetic, while the number of individual data points in a list could not possibly be that large [for an \(O\left(N^{2}\right)\) routine!].
```

\#include <math.h>
void kendl2(float **tab, int i, int j, float *tau, float *z, float *prob)
Given a two-dimensional table tab[1..i] [1..j], such that tab[k][l] contains the number
of events falling in bin k of one variable and bin l of another, this program returns Kendall's }
as tau, its number of standard deviations from zero as z
prob. Small values of prob indicate a significant correlation (tau positive) or anticorrelation
(tau negative) between the two variables. Although tab is a float array, it will normally
contain integral values.
{
float erfcc(float x);
long nn,mm,m2,m1,lj,li,l,kj,ki,k;
float svar,s=0.0,points,pairs,en2=0.0,en1=0.0;
nn=i*j; Total number of entries in contingency table.
points=tab[i][j];
for (k=0;k<=nn-2;k++) { Loop over entries in table,
ki=(k/j); decoding a row,
kj=k-j*ki;
points += tab[ki+1][kj+1]; Increment the total count of events.
for (l=k+1;1<=nn-1;1++) { Loop over other member of the pair,

```
```

 li=l/j; decoding its row
 lj=l-j*li; and column.
 mm=(m1=li-ki)*(m2=lj-kj);
 pairs=tab[ki+1][kj+1]*tab[li+1][lj+1];
 if (mm) { Not a tie.
 en1 += pairs;
 en2 += pairs;
 s += (mm > 0 ? pairs : -pairs); Concordant, or discordant.
 } else {
 if (m1) en1 += pairs;
 if (m2) en2 += pairs;
 }
 }
 }
 *tau=s/sqrt(en1*en2);
 svar=(4.0*points+10.0)/(9.0*points*(points-1.0));
 *z=(*tau)/sqrt(svar);
 *prob=erfcc(fabs(*z)/1.4142136);
    ```
\}

CITED REFERENCES AND FURTHER READING:
Lehmann, E.L. 1975, Nonparametrics: Statistical Methods Based on Ranks (San Francisco: Holden-Day).
Downie, N.M., and Heath, R.W. 1965, Basic Statistical Methods, 2nd ed. (New York: Harper \& Row), pp. 206-209.
Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSSX Advanced Statistics Guide (New York: McGraw-Hill).

\subsection*{14.7 Do Two-Dimensional Distributions Differ?}

We here discuss a useful generalization of the \(\mathrm{K}-\mathrm{S}\) test (§14.3) to two-dimensional distributions. This generalization is due to Fasano and Franceschini [1], a variant on an earlier idea due to Peacock [2].

In a two-dimensional distribution, each data point is characterized by an \((x, y)\) pair of values. An example near to our hearts is that each of the 19 neutrinos that were detected from Supernova 1987A is characterized by a time \(t_{i}\) and by an energy \(E_{i}\) (see [3]). We might wish to know whether these measured pairs \(\left(t_{i}, E_{i}\right), i=1 \ldots 19\) are consistent with a theoretical model that predicts neutrino flux as a function of both time and energy - that is, a two-dimensional probability distribution in the \((x, y)\) [here, \((t, E)\) ] plane. That would be a one-sample test. Or, given two sets of neutrino detections, from two comparable detectors, we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional \(\mathrm{K}-\mathrm{S}\) test, we want to range over the \((x, y)\) plane in search of some kind of maximum cumulative difference between two two-dimensional distributions. Unfortunately, cumulative probability distribution is not well-defined in more than one dimension! Peacock's insight was that a good surrogate is the integrated probability in each of four natural quadrants around a given point \(\left(x_{i}, y_{i}\right)\), namely the total probabilities (or fraction of data) in \(\left(x>x_{i}, y>y_{i}\right),\left(x<x_{i}, y>y_{i}\right)\), \(\left(x<x_{i}, y<y_{i}\right),\left(x>x_{i}, y<y_{i}\right)\). The two-dimensional \(\mathrm{K}-\mathrm{S}\) statistic \(D\) is now taken to be the maximum difference (ranging both over data points and over quadrants) of the corresponding integrated probabilities. When comparing two data sets, the value of \(D\) may depend on which data set is ranged over. In that case, define an effective \(D\) as the average


Figure 14.7.1. Two-dimensional distributions of 65 triangles and 35 squares. The two-dimensional \(\mathrm{K}-\mathrm{S}\) test finds that point one of whose quadrants (shown by dotted lines) maximizes the difference between fraction of triangles and fraction of squares. Then, equation (14.7.1) indicates whether the difference is statistically significant, i.e., whether the triangles and squares must have different underlying distributions.
of the two values obtained. If you are confused at this point about the exact definition of \(D\), don't fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem to have somewhat different distributions in the plane. The dotted lines are centered on the triangle that maximizes the \(D\) statistic; the maximum occurs in the upper-left quadrant. That quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The value of \(D\) is thus 0.44 . Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution of \(D\) in the null hypothesis is independent of the shape of the two-dimensional distribution. In this respect the two-dimensional \(\mathrm{K}-\mathrm{S}\) test is not as natural as its one-dimensional parent. However, extensive Monte Carlo integrations have shown that the distribution of the twodimensional \(D\) is very nearly identical for even quite different distributions, as long as they have the same coefficient of correlation \(r\), defined in the usual way by equation (14.5.1). In their paper, Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the distribution of \(D\) as a function of (of course) \(D\), sample size \(N\), and coefficient of correlation \(r\). Analyzing their results, one finds that the significance levels for the two-dimensional \(\mathrm{K}-\mathrm{S}\) test can be summarized by the simple, though approximate, formulas,
\[
\begin{equation*}
\operatorname{Probability}(D>\text { observed })=Q_{K S}\left(\frac{\sqrt{N} D}{1+\sqrt{1-r^{2}}(0.25-0.75 / \sqrt{N})}\right) \tag{14.7.1}
\end{equation*}
\]
for the one-sample case, and the same for the two-sample case, but with
\[
\begin{equation*}
N=\frac{N_{1} N_{2}}{N_{1}+N_{2}} \tag{14.7.2}
\end{equation*}
\]

The above formulas are accurate enough when \(N \gtrsim 20\), and when the indicated probability (significance level) is less than (more significant than) 0.20 or so. When the indicated probability is \(>0.20\), its value may not be accurate, but the implication that the data and model (or two data sets) are not significantly different is certainly correct. Notice that in the limit of \(r \rightarrow 1\) (perfect correlation), equations (14.7.1) and (14.7.2) reduce to equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and the two-dimensional K-S test becomes a one-dimensional K-S test.

The significance level for the data in Figure 14.7.1, by the way, is about 0.001 . This establishes to a near-certainty that the triangles and squares were drawn from different distributions. (As in fact they were.)

Of course, if you do not want to rely on the Monte Carlo experiments embodied in equation (14.7.1), you can do your own: Generate a lot of synthetic data sets from your model, each one with the same number of points as the real data set. Compute \(D\) for each synthetic data set, using the accompanying computer routines (but ignoring their calculated probabilities), and count what fraction of the time these synthetic \(D\) 's exceed the \(D\) from the real data. That fraction is your significance.

One disadvantage of the two-dimensional tests, by comparison with their onedimensional progenitors, is that the two-dimensional tests require of order \(N^{2}\) operations: Two nested loops of order \(N\) take the place of an \(N \log N\) sort. For small computers, this restricts the usefulness of the tests to \(N\) less than several thousand.

We now give computer implementations. The one-sample case is embodied in the routine ks2d1s (that is, 2-dimensions, 1-sample). This routine calls a straightforward utility routine quadct to count points in the four quadrants, and it calls a user-supplied routine quadvl that must be capable of returning the integrated probability of an analytic model in each of four quadrants around an arbitrary \((x, y)\) point. A trivial sample quadvl is shown; realistic quadvls can be quite complicated, often incorporating numerical quadratures over analytic two-dimensional distributions.
```

\#include <math.h>
\#include "nrutil.h"
void ks2d1s(float x1[], float y1[], unsigned long n1,
void (*quadvl)(float, float, float *, float *, float *, float *),
float *d1, float *prob)
Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x and y
coordinates of n1 data points in arrays x1[1..n1] and y1[1..n1], and given a user-supplied
function quadvl that exemplifies the model, this routine returns the two-dimensional K-S
statistic as d1, and its significance level as prob. Small values of prob show that the sample
is significantly different from the model. Note that the test is slightly distribution-dependent,
so prob is only an estimate.
{
void pearsn(float x[], float y[], unsigned long n, float *r, float *prob,
float *z);
float probks(float alam);
void quadct(float x, float y, float xx[], float yy[], unsigned long nn,
float *fa, float *fb, float *fc, float *fd);
unsigned long j;
float dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen;
*d1=0.0;
for (j=1;j<=n1;j++) { Loop over the data points.
quadct(x1[j],y1[j],x1,y1,n1,\&fa,\&fb,\&fc,\&fd);
(*quadvl)(x1[j],y1[j],\&ga,\&gb,\&gc,\&gd);
*d1=FMAX(*d1,fabs(fa-ga));
*d1=FMAX(*d1,fabs(fb-gb));
*d1=FMAX(*d1,fabs(fc-gc));

```
```

*d1=FMAX(*d1,fabs(fd-gd));
For both the sample and the model, the distribution is integrated in each of four
quadrants, and the maximum difference is saved
}
pearsn(x1,y1,n1,\&r1,\&dum,\&dumm); Get the linear correlation coefficient r1.
sqen=sqrt((double)n1);
rr=sqrt(1.0-r1*r1);
Estimate the probability using the K-S probability function probks.
*prob=probks(*d1*sqen/(1.0+rr*(0.25-0.75/sqen)));
}

```
```

 float *fa, float *fb, float *fc, float *fd)
 by ks2d1s and ks2d2s.
{
unsigned long k,na,nb,nc,nd;
float ff;
na=nb=nc=nd=0;
for (k=1;k<=nn;k++) {
if (yy[k] > y) {
xx[k] > x ? ++na : ++nb;
} else {
xx[k] > x ? ++nd : ++nc;
}
}
ff=1.0/nn;
*fa=ff*na;
*fb=ff*nb;
*fc=ff*nc;
*fd=ff*nd;
}

```
void quadct(float \(x\), float \(y\), float \(x\) [], float yy [], unsigned long nn
Given an origin ( \(\mathrm{x}, \mathrm{y}\) ), and an array of nn points with coordinates xx [1..nn] and yy [1..nn],
count how many of them are in each quadrant around the origin, and return the normalized
fractions. Quadrants are labeled alphabetically, counterclockwise from the upper right. Used
\#include "nrutil.h"
void quadvl(float \(x\), float \(y\), float \(* f a\), float \(* f b\), float \(* f c\), float \(* f d\) )
This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square \(-1<x<1,-1<y<1\). In general this routine
should return, for any point ( \(\mathrm{x}, \mathrm{y}\) ), the fraction of the total distribution in each of the four
quadrants around that point. The fractions, \(f a, f b, f c\), and \(f d\), must add up to 1. Quadrants
are alphabetical, counterclockwise from the upper right.
\{
    float qa,qb,qc,qd;
    qa \(=\operatorname{FMIN}(2.0, \operatorname{FMAX}(0.0,1.0-x))\);
    \(\mathrm{qb}=\operatorname{FMIN}(2.0, \operatorname{FMAX}(0.0,1.0-\mathrm{y}))\);
    \(\mathrm{qc}=\operatorname{FMIN}(2.0, \operatorname{FMAX}(0.0, \mathrm{x}+1.0))\);
    qd=FMIN(2.0, \(\operatorname{FMAX}(0.0, \mathrm{y}+1.0)\) );
    *fa=0.25*qa*qb;
    *fb=0.25*qb*qc;
    *fc=0.25*qc*qd;
    \(* f d=0.25 * q d * q a ;\)
\}

The routine ks2d2s is the two-sample case of the two-dimensional \(\mathrm{K}-\mathrm{S}\) test. It also calls quadct, pearsn, and probks. Being a two-sample test, it does not need an analytic model.
```

\#include <math.h>
\#include "nrutil.h"
void ks2d2s(float x1[], float y1[], unsigned long n1, float x2[], float y2[],
unsigned long n2, float *d, float *prob)
Two-dimensional Kolmogorov-Smirnov test on two samples. Given the }x\mathrm{ and }y\mathrm{ coordinates of
the first sample as n1 values in arrays x1[1..n1] and y1[1..n1], and likewise for the second
sample, n2 values in arrays x2 and y2, this routine returns the two-dimensional, two-sample
K-S statistic as d, and its significance level as prob. Small values of prob show that the
two samples are significantly different. Note that the test is slightly distribution-dependent, so
prob is only an estimate.
{
void pearsn(float x[], float y[], unsigned long n, float *r, float *prob,
float *z);
float probks(float alam);
void quadct(float x, float y, float xx[], float yy[], unsigned long nn,
float *fa, float *fb, float *fc, float *fd);
unsigned long j;
float d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,sqen;
d1=0.0;
for (j=1;j<=n1;j++) { First, use points in the first sample as ori-
quadct(x1[j],y1[j],x1,y1,n1,\&fa,\&fb,\&fc,\&fd); gins.
quadct(x1[j],y1[j],x2,y2,n2,\&ga,\&gb,\&gc,\&gd);
d1=FMAX(d1,fabs(fa-ga));
d1=FMAX(d1,fabs(fb-gb));
d1=FMAX(d1,fabs(fc-gc));
d1=FMAX(d1,fabs(fd-gd));
}
d2=0.0;
for (j=1;j<=n2;j++) { Then, use points in the second sample as
quadct(x2[j],y2[j],x1,y1,n1,\&fa,\&fb,\&fc,\&fd); origins.
quadct(x2[j],y2[j],x2,y2,n2,\&ga,\&gb,\&gc,\&gd);
d2=FMAX(d2,fabs(fa-ga));
d2=FMAX(d2,fabs(fb-gb));
d2=FMAX(d2,fabs(fc-gc));
d2=FMAX(d2,fabs(fd-gd));
}
d=0.5(d1+d2);
sqen=sqrt(n1*n2/(double)(n1+n2));
pearsn(x1,y1,n1,\&r1,\&dum,\&dumm);
pearsn(x2,y2,n2,\&r2,\&dum,\&dumm);
Get the linear correlation coefficient for each
sample.
rr=sqrt(1.0-0.5*(r1*r1+r2*r2));
Estimate the probability using the K-S probability function probks.
*prob=probks(*d*sqen/(1.0+rr*(0.25-0.75/sqen)));
}

```

\section*{CITED REFERENCES AND FURTHER READING:}

Fasano, G. and Franceschini, A. 1987, Monthly Notices of the Royal Astronomical Society, vol. 225, pp. 155-170. [1]
Peacock, J.A. 1983, Monthly Notices of the Royal Astronomical Society, vol. 202, pp. 615-627. [2]
Spergel, D.N., Piran, T., Loeb, A., Goodman, J., and Bahcall, J.N. 1987, Science, vol. 237, pp. 1471-1473. [3]

\subsection*{14.8 Savitzky-Golay Smoothing Filters}

In \(\S 13.5\) we learned something about the construction and application of digital filters, but little guidance was given on which particular filter to use. That, of course, depends on what you want to accomplish by filtering. One obvious use for low-pass filters is to smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly varying and also corrupted by random noise. Then it can sometimes be useful to replace each data point by some kind of local average of surrounding data points. Since nearby points measure very nearly the same underlying value, averaging can reduce the level of noise without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond the fringe of some better posed, and therefore more highly recommended, techniques that are discussed elsewhere in this book. If you are fitting data to a parametric model, for example (see Chapter 15), it is almost always better to use raw data than to use data that has been pre-processed by a smoothing procedure. Another alternative to blind smoothing is so-called "optimal" or Wiener filtering, as discussed in \(\S 13.3\) and more generally in \(\S 13.6\). Data smoothing is probably most justified when it is used simply as a graphical technique, to guide the eye through a forest of data points all with large error bars; or as a means of making initial rough estimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data smoothing, and termed variously Savitzky-Golay [1], least-squares [2], or DISPO (Digital Smoothing Polynomial) [3] filters. Rather than having their properties defined in the Fourier domain, and then translated to the time domain, Savitzky-Golay filters derive directly from a particular formulation of the data smoothing problem in the time domain, as we will now see. Savitzky-Golay filters were initially (and are still often) used to render visible the relative widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data values \(f_{i} \equiv f\left(t_{i}\right)\), where \(t_{i} \equiv t_{0}+i \Delta\) for some constant sample spacing \(\Delta\) and \(i=\ldots-2,-1,0,1,2, \ldots\). We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse response filter) replaces each data value \(f_{i}\) by a linear combination \(g_{i}\) of itself and some number of nearby neighbors,
\[
\begin{equation*}
g_{i}=\sum_{n=-n_{L}}^{n_{R}} c_{n} f_{i+n} \tag{14.8.1}
\end{equation*}
\]

Here \(n_{L}\) is the number of points used "to the left" of a data point \(i\), i.e., earlier than it, while \(n_{R}\) is the number used to the right, i.e., later. A so-called causal filter would have \(n_{R}=0\).

As a starting point for understanding Savitzky-Golay filters, consider the simplest possible averaging procedure: For some fixed \(n_{L}=n_{R}\), compute each \(g_{i}\) as the average of the data points from \(f_{i-n_{L}}\) to \(f_{i+n_{R}}\). This is sometimes called moving window averaging and corresponds to equation (14.8.1) with constant \(c_{n}=1 /\left(n_{L}+n_{R}+1\right)\). If the underlying function is constant, or is changing linearly with time (increasing or decreasing), then no bias is introduced into the result. Higher points at one end of the averaging interval are on the average balanced by lower points at the other end. A bias is introduced, however, if the underlying function has a nonzero second derivative. At a local maximum, for example, moving window averaging always reduces the function value. In the spectrometric application, a narrow spectral line has its height reduced and its width increased. Since these parameters are themselves of physical interest, the bias introduced is distinctly undesirable.

Note, however, that moving window averaging does preserve the area under a spectral line, which is its zeroth moment, and also (if the window is symmetric with \(n_{L}=n_{R}\) ) its mean position in time, which is its first moment. What is violated is the second moment, equivalent to the line width.

The idea of Savitzky-Golay filtering is to find filter coefficients \(c_{n}\) that preserve higher moments. Equivalently, the idea is to approximate the underlying function within the moving window not by a constant (whose estimate is the average), but by a polynomial of higher order, typically quadratic or quartic: For each point \(f_{i}\), we least-squares fit a polynomial to all
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline M & \(n_{L}\) & \(n_{R}\) & \multicolumn{11}{|c|}{Sample Savitzky-Golay Coefficients} \\
\hline 2 & 2 & 2 & & & & -0.086 & 0.343 & 0.486 & 0.343 & -0.086 & & & \\
\hline 2 & 3 & 1 & & & -0.143 & 0.171 & 0.343 & 0.371 & 0.257 & & & & \\
\hline 2 & 4 & 0 & & 0.086 & -0.143 & -0.086 & 0.257 & 0.886 & & & & & \\
\hline 2 & 5 & 5 & -0.084 & 0.021 & 0.103 & 0.161 & 0.196 & 0.207 & 0.196 & 0.161 & 0.103 & 0.021 & -0.084 \\
\hline 4 & 4 & 4 & & 0.035 & -0.128 & 0.070 & 0.315 & 0.417 & 0.315 & 0.070 & -0.128 & 0.035 & \\
\hline 4 & 5 & 5 & 0.042 & -0.105 & -0.023 & 0.140 & 0.280 & 0.333 & 0.280 & 0.140 & -0.023 & -0.105 & 0.042 \\
\hline
\end{tabular}
\(n_{L}+n_{R}+1\) points in the moving window, and then set \(g_{i}\) to be the value of that polynomial at position \(i\). (If you are not familiar with least-squares fitting, you might want to look ahead to Chapter 15.) We make no use of the value of the polynomial at any other point. When we move on to the next point \(f_{i+1}\), we do a whole new least-squares fit using a shifted window.

All these least-squares fits would be laborious if done as described. Luckily, since the process of least-squares fitting involves only a linear matrix inversion, the coefficients of a fitted polynomial are themselves linear in the values of the data. That means that we can do all the fitting in advance, for fictitious data consisting of all zeros except for a single 1 , and then do the fits on the real data just by taking linear combinations. This is the key point, then: There are particular sets of filter coefficients \(c_{n}\) for which equation (14.8.1) "automatically" accomplishes the process of polynomial least-squares fitting inside a moving window.

To derive such coefficients, consider how \(g_{0}\) might be obtained: We want to fit a polynomial of degree \(M\) in \(i\), namely \(a_{0}+a_{1} i+\cdots+a_{M} i^{M}\) to the values \(f_{-n_{L}}, \ldots, f_{n_{R}}\). Then \(g_{0}\) will be the value of that polynomial at \(i=0\), namely \(a_{0}\). The design matrix for this problem ( \(\S 15.4\) ) is
\[
\begin{equation*}
A_{i j}=i^{j} \quad i=-n_{L}, \ldots, n_{R}, \quad j=0, \ldots, M \tag{14.8.2}
\end{equation*}
\]
and the normal equations for the vector of \(a_{j}\) 's in terms of the vector of \(f_{i}\) 's is in matrix notation
\[
\begin{equation*}
\left(\mathbf{A}^{T} \cdot \mathbf{A}\right) \cdot \mathbf{a}=\mathbf{A}^{T} \cdot \mathbf{f} \quad \text { or } \quad \mathbf{a}=\left(\mathbf{A}^{T} \cdot \mathbf{A}\right)^{-1} \cdot\left(\mathbf{A}^{T} \cdot \mathbf{f}\right) \tag{14.8.3}
\end{equation*}
\]

We also have the specific forms
\[
\begin{equation*}
\left\{\mathbf{A}^{T} \cdot \mathbf{A}\right\}_{i j}=\sum_{k=-n_{L}}^{n_{R}} A_{k i} A_{k j}=\sum_{k=-n_{L}}^{n_{R}} k^{i+j} \tag{14.8.4}
\end{equation*}
\]
and
\[
\begin{equation*}
\left\{\mathbf{A}^{T} \cdot \mathbf{f}\right\}_{j}=\sum_{k=-n_{L}}^{n_{R}} A_{k j} f_{k}=\sum_{k=-n_{L}}^{n_{R}} k^{j} f_{k} \tag{14.8.5}
\end{equation*}
\]

Since the coefficient \(c_{n}\) is the component \(a_{0}\) when \(\mathbf{f}\) is replaced by the unit vector \(\mathbf{e}_{n}\), \(-n_{L} \leq n<n_{R}\), we have
\[
\begin{equation*}
c_{n}=\left\{\left(\mathbf{A}^{T} \cdot \mathbf{A}\right)^{-1} \cdot\left(\mathbf{A}^{T} \cdot \mathbf{e}_{n}\right)\right\}_{0}=\sum_{m=0}^{M}\left\{\left(\mathbf{A}^{T} \cdot \mathbf{A}\right)^{-1}\right\}_{0 m} n^{m} \tag{14.8.6}
\end{equation*}
\]

Note that equation (14.8.6) says that we need only one row of the inverse matrix. (Numerically we can get this by \(L U\) decomposition with only a single backsubstitution.)

The function savgol, below, implements equation (14.8.6). As input, it takes the parameters \(\mathrm{nl}=n_{L}, \mathrm{nr}=n_{R}\), and \(\mathrm{m}=M\) (the desired order). Also input is np , the physical length of the output array \(c\), and a parameter ld which for data fitting should be zero. In fact, ld specifies which coefficient among the \(a_{i}\) 's should be returned, and we are here interested in \(a_{0}\). For another purpose, namely the computation of numerical derivatives (already mentioned in \(\S 5.7\) ) the useful choice is \(1 \mathrm{~d} \geq 1\). With \(1 \mathrm{~d}=1\), for example, the filtered first derivative is the convolution (14.8.1) divided by the stepsize \(\Delta\). For derivatives, one usually wants \(m=4\) or larger.
```

\#include <math.h>
\#include "nrutil.h"
void savgol(float c[], int np, int nl, int nr, int ld, int m)
Returns in c[1..np], in wrap-around order (N.B.!) consistent with the argument respns in
routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward (past)
data points used, while nr is the number of rightward (future) data points, making the total
number of data points used nl + nr +1. ld is the order of the derivative desired (e.g., ld = 0
for smoothed function). m is the order of the smoothing polynomial, also equal to the highest
conserved moment; usual values are m=2 or m = 4.
{
void lubksb(float **a, int n, int *indx, float b[]);
void ludcmp(float **a, int n, int *indx, float *d);
int imj,ipj,j,k,kk,mm,*indx;
float d,fac,sum,**a,*b;
if (np < nl+nr+1 || nl < 0 || nr < 0 || ld > m || nl+nr < m)
nrerror("bad args in savgol");
indx=ivector(1,m+1);
a=matrix(1,m+1,1,m+1);
b=vector(1,m+1);
for (ipj=0;ipj<=(m << 1);ipj++) { Set up the normal equations of the desired
sum=(ipj ? 0.0 : 1.0); least-squares fit.
for (k=1;k<=nr;k++) sum += pow((double)k,(double)ipj);
for (k=1;k<=nl;k++) sum += pow((double)-k,(double)ipj);
mm=IMIN(ipj,2*m-ipj);
for (imj = -mm;imj<=mm;imj+=2) a[1+(ipj+imj)/2][1+(ipj-imj)/2]=sum;
}
ludcmp(a,m+1,indx,\&d); Solve them: LU decomposition
for (}\textrm{j}=1;\textrm{j}<=m+1;j++) b[j]=0.0
b[ld+1]=1.0;
Right-hand side vector is unit vector, depending on which derivative we want
lubksb (a,m+1,indx,b); Get one row of the inverse matrix
for (kk=1;kk<=np;kk++) c[kk]=0.0;
Zero the output array (it may be bigger than
for (k = -nl;k<=nr;k++) {
sum=b [1];
product of powers of an integer with th
for (mm=1;mm<=m;mm++) sum += b[mm+1]*(fac *= k); inverse matrix row.
kk=((np-k) % np)+1; Store in wrap-around order.
c[kk]=sum;
}
free_vector(b,1,m+1);
free_matrix(a,1,m+1,1,m+1);
free_ivector(indx,1,m+1);
}

```

As output, savgol returns the coefficients \(c_{n}\), for \(-n_{L} \leq n \leq n_{R}\). These are stored in c in "wrap-around order"; that is, \(c_{0}\) is in c [1], \(c_{-1}\) is in c [2], and so on for further negative indices. The value \(c_{1}\) is stored in \(\mathrm{c}[\mathrm{np}], c_{2}\) in \(\mathrm{c}[\mathrm{np}-1]\), and so on for positive indices. This order may seem arcane, but it is the natural one where causal filters have nonzero coefficients in low array elements of c . It is also the order required by the function convlv in \(\S 13.1\), which can be used to apply the digital filter to a data set.

The accompanying table shows some typical output from savgol. For orders 2 and 4, the coefficients of Savitzky-Golay filters with several choices of \(n_{L}\) and \(n_{R}\) are shown. The central column is the coefficient applied to the data \(f_{i}\) in obtaining the smoothed \(g_{i}\). Coefficients to the left are applied to earlier data; to the right, to later. The coefficients always add (within roundoff error) to unity. One sees that, as befits a smoothing operator, the coefficients always have a central positive lobe, but with smaller, outlying corrections of both positive and negative sign. In practice, the Savitzky-Golay filters are most useful for much larger values of \(n_{L}\) and \(n_{R}\), since these few-point formulas can accomplish only a relatively small amount of smoothing.

Figure 14.8.1 shows a numerical experiment using a 33 point smoothing filter, that is,


Figure 14.8.1. Top: Synthetic noisy data consisting of a sequence of progressively narrower bumps, and additive Gaussian white noise. Center: Result of smoothing the data by a simple moving window average. The window extends 16 points leftward and rightward, for a total of 33 points. Note that narrow features are broadened and suffer corresponding loss of amplitude. The dotted curve is the underlying function used to generate the synthetic data. Bottom: Result of smoothing the data by a Savitzky-Golay smoothing filter (of degree 4) using the same 33 points. While there is less smoothing of the broadest feature, narrower features have their heights and widths preserved.
\(n_{L}=n_{R}=16\). The upper panel shows a test function, constructed to have six "bumps" of varying widths, all of height 8 units. To this function Gaussian white noise of unit variance has been added. (The test function without noise is shown as the dotted curves in the center and lower panels.) The widths of the bumps (full width at half of maximum, or FWHM) are \(140,43,24,17,13\), and 10 , respectively.

The middle panel of Figure 14.8 .1 shows the result of smoothing by a moving window average. One sees that the window of width 33 does quite a nice job of smoothing the broadest bump, but that the narrower bumps suffer considerable loss of height and increase of width. The underlying signal (dotted) is very badly represented.

The lower panel shows the result of smoothing with a Savitzky-Golay filter of the identical width, and degree \(M=4\). One sees that the heights and widths of the bumps are quite extraordinarily preserved. A trade-off is that the broadest bump is less smoothed. That is because the central positive lobe of the Savitzky-Golay filter coefficients fills only a fraction of the full 33 point width. As a rough guideline, best results are obtained when the full width of the degree 4 Savitzky-Golay filter is between 1 and 2 times the FWHM of desired features in the data. (References [3] and [4] give additional practical hints.)

Figure 14.8 .2 shows the result of smoothing the same noisy "data" with broader Savitzky-Golay filters of 3 different orders. Here we have \(n_{L}=n_{R}=32\) ( 65 point filter) and \(M=2,4,6\). One sees that, when the bumps are too narrow with respect to the filter size, then even the Savitzky-Golay filter must at some point give out. The higher order filter manages to track narrower features, but at the cost of less smoothing on broad features.

To summarize: Within limits, Savitzky-Golay filtering does manage to provide smoothing


Figure 14.8.2. Result of applying wider 65 point Savitzky-Golay filters to the same data set as in Figure 14.8.1. Top: degree 2. Center: degree 4. Bottom: degree 6. All of these filters are inoptimally broad for the resolution of the narrow features. Higher-order filters do best at preserving feature heights and widths, but do less smoothing on broader features
without loss of resolution. It does this by assuming that relatively distant data points have some significant redundancy that can be used to reduce the level of noise. The specific nature of the assumed redundancy is that the underlying function should be locally well-fitted by a polynomial. When this is true, as it is for smooth line profiles not too much narrower than the filter width, then the performance of Savitzky-Golay filters can be spectacular. When it is not true, then these filters have no compelling advantage over other classes of smoothing filter coefficients.

A last remark concerns irregularly sampled data, where the values \(f_{i}\) are not uniformly spaced in time. The obvious generalization of Savitzky-Golay filtering would be to do a least-squares fit within a moving window around each data point, one containing a fixed number of data points to the left \(\left(n_{L}\right)\) and right \(\left(n_{R}\right)\). Because of the irregular spacing, however, there is no way to obtain universal filter coefficients applicable to more than one data point. One must instead do the actual least-squares fits for each data point. This becomes computationally burdensome for larger \(n_{L}, n_{R}\), and \(M\).

As a cheap alternative, one can simply pretend that the data points are equally spaced. This amounts to virtually shifting, within each moving window, the data points to equally spaced positions. Such a shift introduces the equivalent of an additional source of noise into the function values. In those cases where smoothing is useful, this noise will often be much smaller than the noise already present. Specifically, if the location of the points is approximately random within the window, then a rough criterion is this: If the change in \(f\) across the full width of the \(N=n_{L}+n_{R}+1\) point window is less than \(\sqrt{N / 2}\) times the measurement noise on a single point, then the cheap method can be used.

CITED REFERENCES AND FURTHER READING:
Savitzky A., and Golay, M.J.E. 1964, Analytical Chemistry, vol. 36, pp. 1627-1639. [1]
Hamming, R.W. 1983, Digital Filters, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall). [2]
Ziegler, H. 1981, Applied Spectroscopy, vol. 35, pp. 88-92. [3]
Bromba, M.U.A., and Ziegler, H. 1981, Analytical Chemistry, vol. 53, pp. 1583-1586. [4]

\section*{Chapter 15. Modeling of Data}

\subsection*{15.0 Introduction}

Given a set of observations, one often wants to condense and summarize the data by fitting it to a "model" that depends on adjustable parameters. Sometimes the model is simply a convenient class of functions, such as polynomials or Gaussians, and the fit supplies the appropriate coefficients. Other times, the model's parameters come from some underlying theory that the data are supposed to satisfy; examples are coefficients of rate equations in a complex network of chemical reactions, or orbital elements of a binary star. Modeling can also be used as a kind of constrained interpolation, where you want to extend a few data points into a continuous function, but with some underlying idea of what that function should look like.

The basic approach in all cases is usually the same: You choose or design a figure-of-merit function ("merit function," for short) that measures the agreement between the data and the model with a particular choice of parameters. The merit function is conventionally arranged so that small values represent close agreement. The parameters of the model are then adjusted to achieve a minimum in the merit function, yielding best-fit parameters. The adjustment process is thus a problem in minimization in many dimensions. This optimization was the subject of Chapter 10; however, there exist special, more efficient, methods that are specific to modeling, and we will discuss these in this chapter.

There are important issues that go beyond the mere finding of best-fit parameters. Data are generally not exact. They are subject to measurement errors (called noise in the context of signal-processing). Thus, typical data never exactly fit the model that is being used, even when that model is correct. We need the means to assess whether or not the model is appropriate, that is, we need to test the goodness-of-fit against some useful statistical standard.

We usually also need to know the accuracy with which parameters are determined by the data set. In other words, we need to know the likely errors of the best-fit parameters.

Finally, it is not uncommon in fitting data to discover that the merit function is not unimodal, with a single minimum. In some cases, we may be interested in global rather than local questions. Not, "how good is this fit?" but rather, "how sure am I that there is not a very much better fit in some corner of parameter space?" As we have seen in Chapter 10, especially \(\S 10.9\), this kind of problem is generally quite difficult to solve.

The important message we want to deliver is that fitting of parameters is not the end-all of parameter estimation. To be genuinely useful, a fitting procedure
should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a statistical measure of goodness-of-fit. When the third item suggests that the model is an unlikely match to the data, then items (i) and (ii) are probably worthless. Unfortunately, many practitioners of parameter estimation never proceed beyond item (i). They deem a fit acceptable if a graph of data and model "looks good." This approach is known as chi-by-eye. Luckily, its practitioners get what they deserve.

\section*{CITED REFERENCES AND FURTHER READING:}

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill).
Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).
Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).
von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), Chapter X.
Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed. (New York: McGraw-Hill), Chapters 18-19.

\subsection*{15.1 Least Squares as a Maximum Likelihood Estimator}

Suppose that we are fitting \(N\) data points \(\left(x_{i}, y_{i}\right) i=1, \ldots, N\), to a model that has \(M\) adjustable parameters \(a_{j}, j=1, \ldots, M\). The model predicts a functional relationship between the measured independent and dependent variables,
\[
\begin{equation*}
y(x)=y\left(x ; a_{1} \ldots a_{M}\right) \tag{15.1.1}
\end{equation*}
\]
where the dependence on the parameters is indicated explicitly on the right-hand side.
What, exactly, do we want to minimize to get fitted values for the \(a_{j}\) 's? The first thing that comes to mind is the familiar least-squares fit,
\[
\begin{equation*}
\text { minimize over } a_{1} \ldots a_{M}: \quad \sum_{i=1}^{N}\left[y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)\right]^{2} \tag{15.1.2}
\end{equation*}
\]

But where does this come from? What general principles is it based on? The answer to these questions takes us into the subject of maximum likelihood estimators.

Given a particular data set of \(x_{i}\) 's and \(y_{i}\) 's, we have the intuitive feeling that some parameter sets \(a_{1} \ldots a_{M}\) are very unlikely - those for which the model function \(y(x)\) looks nothing like the data - while others may be very likely - those that closely resemble the data. How can we quantify this intuitive feeling? How can we select fitted parameters that are "most likely" to be correct? It is not meaningful to ask the question, "What is the probability that a particular set of fitted parameters \(a_{1} \ldots a_{M}\) is correct?" The reason is that there is no statistical universe of models from which the parameters are drawn. There is just one model, the correct one, and a statistical universe of data sets that are drawn from it!

That being the case, we can, however, turn the question around, and ask, "Given a particular set of parameters, what is the probability that this data set could have occurred?" If the \(y_{i}\) 's take on continuous values, the probability will always be zero unless we add the phrase, "...plus or minus some fixed \(\Delta y\) on each data point." So let's always take this phrase as understood. If the probability of obtaining the data set is infinitesimally small, then we can conclude that the parameters under consideration are "unlikely" to be right. Conversely, our intuition tells us that the data set should not be too improbable for the correct choice of parameters.

In other words, we identify the probability of the data given the parameters (which is a mathematically computable number), as the likelihood of the parameters given the data. This identification is entirely based on intuition. It has no formal mathematical basis in and of itself; as we already remarked, statistics is not a branch of mathematics!

Once we make this intuitive identification, however, it is only a small further step to decide to fit for the parameters \(a_{1} \ldots a_{M}\) precisely by finding those values that maximize the likelihood defined in the above way. This form of parameter estimation is maximum likelihood estimation.

We are now ready to make the connection to (15.1.2). Suppose that each data point \(y_{i}\) has a measurement error that is independently random and distributed as a normal (Gaussian) distribution around the "true" model \(y(x)\). And suppose that the standard deviations \(\sigma\) of these normal distributions are the same for all points. Then the probability of the data set is the product of the probabilities of each point,
\[
\begin{equation*}
P \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma}\right)^{2}\right] \Delta y\right\} \tag{15.1.3}
\end{equation*}
\]

Notice that there is a factor \(\Delta y\) in each term in the product. Maximizing (15.1.3) is equivalent to maximizing its logarithm, or minimizing the negative of its logarithm, namely,
\[
\begin{equation*}
\left[\sum_{i=1}^{N} \frac{\left[y_{i}-y\left(x_{i}\right)\right]^{2}}{2 \sigma^{2}}\right]-N \log \Delta y \tag{15.1.4}
\end{equation*}
\]

Since \(N, \sigma\), and \(\Delta y\) are all constants, minimizing this equation is equivalent to minimizing (15.1.2).

What we see is that least-squares fitting is a maximum likelihood estimation of the fitted parameters if the measurement errors are independent and normally distributed with constant standard deviation. Notice that we made no assumption about the linearity or nonlinearity of the model \(y\left(x ; a_{1} \ldots\right)\) in its parameters \(a_{1} \ldots a_{M}\). Just below, we will relax our assumption of constant standard deviations and obtain the very similar formulas for what is called "chi-square fitting" or "weighted least-squares fitting." First, however, let us discuss further our very stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love with the fact that the probability distribution of the sum of a very large number of very small random deviations almost always converges to a normal distribution. (For precise statements of this central limit theorem, consult [1] or other standard works on mathematical statistics.) This infatuation tended to focus interest away from the
fact that, for real data, the normal distribution is often rather poorly realized, if it is realized at all. We are often taught, rather casually, that, on average, measurements will fall within \(\pm \sigma\) of the true value 68 percent of the time, within \(\pm 2 \sigma 95\) percent of the time, and within \(\pm 3 \sigma 99.7\) percent of the time. Extending this, one would expect a measurement to be off by \(\pm 20 \sigma\) only one time out of \(2 \times 10^{88}\). We all know that "glitches" are much more likely than that!

In some instances, the deviations from a normal distribution are easy to understand and quantify. For example, in measurements obtained by counting events, the measurement errors are usually distributed as a Poisson distribution, whose cumulative probability function was already discussed in \(\S 6.2\). When the number of counts going into one data point is large, the Poisson distribution converges towards a Gaussian. However, the convergence is not uniform when measured in fractional accuracy. The more standard deviations out on the tail of the distribution, the larger the number of counts must be before a value close to the Gaussian is realized. The sign of the effect is always the same: The Gaussian predicts that "tail" events are much less likely than they actually (by Poisson) are. This causes such events, when they occur, to skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so easy to understand in detail. Experimental points are occasionally just way off. Perhaps the power flickered during a point's measurement, or someone kicked the apparatus, or someone wrote down a wrong number. Points like this are called outliers. They can easily turn a least-squares fit on otherwise adequate data into nonsense. Their probability of occurrence in the assumed Gaussian model is so small that the maximum likelihood estimator is willing to distort the whole curve to try to bring them, mistakenly, into line.

The subject of robust statistics deals with cases where the normal or Gaussian model is a bad approximation, or cases where outliers are important. We will discuss robust methods briefly in \(\S 15.7\). All the sections between this one and that one assume, one way or the other, a Gaussian model for the measurement errors in the data. It it quite important that you keep the limitations of that model in mind, even as you use the very useful methods that follow from assuming it.

Finally, note that our discussion of measurement errors has been limited to statistical errors, the kind that will average away if we only take enough data. Measurements are also susceptible to systematic errors that will not go away with any amount of averaging. For example, the calibration of a metal meter stick might depend on its temperature. If we take all our measurements at the same wrong temperature, then no amount of averaging or numerical processing will correct for this unrecognized systematic error.

\section*{Chi-Square Fitting}

We considered the chi-square statistic once before, in \(\S 14.3\). Here it arises in a slightly different context.

If each data point \(\left(x_{i}, y_{i}\right)\) has its own, known standard deviation \(\sigma_{i}\), then equation (15.1.3) is modified only by putting a subscript \(i\) on the symbol \(\sigma\). That subscript also propagates docilely into (15.1.4), so that the maximum likelihood
estimate of the model parameters is obtained by minimizing the quantity
\[
\begin{equation*}
\chi^{2} \equiv \sum_{i=1}^{N}\left(\frac{y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)}{\sigma_{i}}\right)^{2} \tag{15.1.5}
\end{equation*}
\]
called the "chi-square."
To whatever extent the measurement errors actually are normally distributed, the quantity \(\chi^{2}\) is correspondingly a sum of \(N\) squares of normally distributed quantities, each normalized to unit variance. Once we have adjusted the \(a_{1} \ldots a_{M}\) to minimize the value of \(\chi^{2}\), the terms in the sum are not all statistically independent. For models that are linear in the \(a\) 's, however, it turns out that the probability distribution for different values of \(\chi^{2}\) at its minimum can nevertheless be derived analytically, and is the chi-square distribution for \(N-M\) degrees of freedom. We learned how to compute this probability function using the incomplete gamma function gammq in §6.2. In particular, equation (6.2.18) gives the probability \(Q\) that the chi-square should exceed a particular value \(\chi^{2}\) by chance, where \(\nu=N-M\) is the number of degrees of freedom. The quantity \(Q\), or its complement \(P \equiv 1-Q\), is frequently tabulated in appendices to statistics books, but we generally find it easier to use gammq and compute our own values: \(Q=\operatorname{gammq}\left(0.5 \nu, 0.5 \chi^{2}\right)\). It is quite common, and usually not too wrong, to assume that the chi-square distribution holds even for models that are not strictly linear in the \(a\) 's.

This computed probability gives a quantitative measure for the goodness-of-fit of the model. If \(Q\) is a very small probability for some particular data set, then the apparent discrepancies are unlikely to be chance fluctuations. Much more probably either (i) the model is wrong - can be statistically rejected, or (ii) someone has lied to you about the size of the measurement errors \(\sigma_{i}\) - they are really larger than stated.

It is an important point that the chi-square probability \(Q\) does not directly measure the credibility of the assumption that the measurement errors are normally distributed. It assumes they are. In most, but not all, cases, however, the effect of nonnormal errors is to create an abundance of outlier points. These decrease the probability \(Q\), so that we can add another possible, though less definitive, conclusion to the above list: (iii) the measurement errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for this reason that reasonable experimenters are often rather tolerant of low probabilities \(Q\). It is not uncommon to deem acceptable on equal terms any models with, say, \(Q>0.001\). This is not as sloppy as it sounds: Truly wrong models will often be rejected with vastly smaller values of \(Q, 10^{-18}\), say. However, if day-in and day-out you find yourself accepting models with \(Q \sim 10^{-3}\), you really should track down the cause.

If you happen to know the actual distribution law of your measurement errors, then you might wish to Monte Carlo simulate some data sets drawn from a particular model, cf. \(\S 7.2-\S 7.3\). You can then subject these synthetic data sets to your actual fitting procedure, so as to determine both the probability distribution of the \(\chi^{2}\) statistic, and also the accuracy with which your model parameters are reproduced by the fit. We discuss this further in \(\S 15.6\). The technique is very general, but it can also be very expensive.

At the opposite extreme, it sometimes happens that the probability \(Q\) is too large, too near to 1 , literally too good to be true! Nonnormal measurement errors cannot in general produce this disease, since the normal distribution is about as "compact"
as a distribution can be. Almost always, the cause of too good a chi-square fit is that the experimenter, in a "fit" of conservativism, has overestimated his or her measurement errors. Very rarely, too good a chi-square signals actual fraud, data that has been "fudged" to fit the model.

A rule of thumb is that a "typical" value of \(\chi^{2}\) for a "moderately" good fit is \(\chi^{2} \approx \nu\). More precise is the statement that the \(\chi^{2}\) statistic has a mean \(\nu\) and a standard deviation \(\sqrt{2 \nu}\), and, asymptotically for large \(\nu\), becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not known in advance, and considerations related to \(\chi^{2}\) fitting are used to derive a value for \(\sigma\). If we assume that all measurements have the same standard deviation, \(\sigma_{i}=\sigma\), and that the model does fit well, then we can proceed by first assigning an arbitrary constant \(\sigma\) to all points, next fitting for the model parameters by minimizing \(\chi^{2}\), and finally recomputing
\[
\begin{equation*}
\sigma^{2}=\sum_{i=1}^{N}\left[y_{i}-y\left(x_{i}\right)\right]^{2} /(N-M) \tag{15.1.6}
\end{equation*}
\]

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a fact occasionally missed by its adherents. When, however, the measurement error is not known, this approach at least allows some kind of error bar to be assigned to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters \(a_{k}\), we obtain equations that must hold at the chi-square minimum,
\[
\begin{equation*}
0=\sum_{i=1}^{N}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}^{2}}\right)\left(\frac{\partial y\left(x_{i} ; \ldots a_{k} \ldots\right)}{\partial a_{k}}\right) \quad k=1, \ldots, M \tag{15.1.7}
\end{equation*}
\]

Equation (15.1.7) is, in general, a set of \(M\) nonlinear equations for the \(M\) unknown \(a_{k}\). Various of the procedures described subsequently in this chapter derive from (15.1.7) and its specializations.

\section*{CITED REFERENCES AND FURTHER READING:}

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapters 1-4.
von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), §VI.C. [1]

\subsection*{15.2 Fitting Data to a Straight Line}

A concrete example will make the considerations of the previous section more meaningful. We consider the problem of fitting a set of \(N\) data points \(\left(x_{i}, y_{i}\right)\) to a straight-line model
\[
\begin{equation*}
y(x)=y(x ; a, b)=a+b x \tag{15.2.1}
\end{equation*}
\]

This problem is often called linear regression, a terminology that originated, long ago, in the social sciences. We assume that the uncertainty \(\sigma_{i}\) associated with each measurement \(y_{i}\) is known, and that the \(x_{i}\) 's (values of the dependent variable) are known exactly.

To measure how well the model agrees with the data, we use the chi-square merit function (15.1.5), which in this case is
\[
\begin{equation*}
\chi^{2}(a, b)=\sum_{i=1}^{N}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2} \tag{15.2.2}
\end{equation*}
\]

If the measurement errors are normally distributed, then this merit function will give maximum likelihood parameter estimations of \(a\) and \(b\); if the errors are not normally distributed, then the estimations are not maximum likelihood, but may still be useful in a practical sense. In \(\S 15.7\), we will treat the case where outlier points are so numerous as to render the \(\chi^{2}\) merit function useless.

Equation (15.2.2) is minimized to determine \(a\) and \(b\). At its minimum, derivatives of \(\chi^{2}(a, b)\) with respect to \(a, b\) vanish.
\[
\begin{align*}
& 0=\frac{\partial \chi^{2}}{\partial a}=-2 \sum_{i=1}^{N} \frac{y_{i}-a-b x_{i}}{\sigma_{i}^{2}}  \tag{15.2.3}\\
& 0=\frac{\partial \chi^{2}}{\partial b}=-2 \sum_{i=1}^{N} \frac{x_{i}\left(y_{i}-a-b x_{i}\right)}{\sigma_{i}^{2}}
\end{align*}
\]

These conditions can be rewritten in a convenient form if we define the following sums:
\[
\begin{align*}
S & \equiv \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \quad S_{x} \equiv \sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}} \quad S_{y} \equiv \sum_{i=1}^{N} \frac{y_{i}}{\sigma_{i}^{2}} \\
S_{x x} & \equiv \sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \quad S_{x y} \tag{15.2.4}
\end{align*}>\sum_{i=1}^{N} \frac{x_{i} y_{i}}{\sigma_{i}^{2}},
\]

With these definitions (15.2.3) becomes
\[
\begin{align*}
a S+b S_{x} & =S_{y} \\
a S_{x}+b S_{x x} & =S_{x y} \tag{15.2.5}
\end{align*}
\]

The solution of these two equations in two unknowns is calculated as
\[
\begin{align*}
\Delta & \equiv S S_{x x}-\left(S_{x}\right)^{2} \\
a & =\frac{S_{x x} S_{y}-S_{x} S_{x y}}{\Delta}  \tag{15.2.6}\\
b & =\frac{S S_{x y}-S_{x} S_{y}}{\Delta}
\end{align*}
\]

Equation (15.2.6) gives the solution for the best-fit model parameters \(a\) and \(b\).

We are not done, however. We must estimate the probable uncertainties in the estimates of \(a\) and \(b\), since obviously the measurement errors in the data must introduce some uncertainty in the determination of those parameters. If the data are independent, then each contributes its own bit of uncertainty to the parameters. Consideration of propagation of errors shows that the variance \(\sigma_{f}^{2}\) in the value of any function will be
\[
\begin{equation*}
\sigma_{f}^{2}=\sum_{i=1}^{N} \sigma_{i}^{2}\left(\frac{\partial f}{\partial y_{i}}\right)^{2} \tag{15.2.7}
\end{equation*}
\]

For the straight line, the derivatives of \(a\) and \(b\) with respect to \(y_{i}\) can be directly evaluated from the solution:
\[
\begin{align*}
\frac{\partial a}{\partial y_{i}} & =\frac{S_{x x}-S_{x} x_{i}}{\sigma_{i}^{2} \Delta} \\
\frac{\partial b}{\partial y_{i}} & =\frac{S x_{i}-S_{x}}{\sigma_{i}^{2} \Delta} \tag{15.2.8}
\end{align*}
\]

Summing over the points as in (15.2.7), we get
\[
\begin{align*}
\sigma_{a}^{2} & =S_{x x} / \Delta \\
\sigma_{b}^{2} & =S / \Delta \tag{15.2.9}
\end{align*}
\]
which are the variances in the estimates of \(a\) and \(b\), respectively. We will see in \(\S 15.6\) that an additional number is also needed to characterize properly the probable uncertainty of the parameter estimation. That number is the covariance of \(a\) and \(b\), and (as we will see below) is given by
\[
\begin{equation*}
\operatorname{Cov}(a, b)=-S_{x} / \Delta \tag{15.2.10}
\end{equation*}
\]

The coefficient of correlation between the uncertainty in \(a\) and the uncertainty in \(b\), which is a number between -1 and 1 , follows from (15.2.10) (compare equation 14.5.1),
\[
\begin{equation*}
r_{a b}=\frac{-S_{x}}{\sqrt{S S_{x x}}} \tag{15.2.11}
\end{equation*}
\]

A positive value of \(r_{a b}\) indicates that the errors in \(a\) and \(b\) are likely to have the same sign, while a negative value indicates the errors are anticorrelated, likely to have opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the model. Absent this estimate, we have not the slightest indication that the parameters \(a\) and \(b\) in the model have any meaning at all! The probability \(Q\) that a value of chi-square as poor as the value (15.2.2) should occur by chance is
\[
\begin{equation*}
Q=\operatorname{gammq}\left(\frac{N-2}{2}, \frac{\chi^{2}}{2}\right) \tag{15.2.12}
\end{equation*}
\]

Here gammq is our routine for the incomplete gamma function \(Q(a, x), \S 6.2\). If \(Q\) is larger than, say, 0.1 , then the goodness-of-fit is believable. If it is larger than, say, 0.001 , then the fit may be acceptable if the errors are nonnormal or have been moderately underestimated. If \(Q\) is less than 0.001 then the model and/or estimation procedure can rightly be called into question. In this latter case, turn to \(\S 15.7\) to proceed further.

If you do not know the individual measurement errors of the points \(\sigma_{i}\), and are proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then here is the procedure for estimating the probable uncertainties of the parameters \(a\) and \(b\) : Set \(\sigma_{i} \equiv 1\) in all equations through (15.2.6), and multiply \(\sigma_{a}\) and \(\sigma_{b}\), as obtained from equation (15.2.9), by the additional factor \(\sqrt{\chi^{2} /(N-2)}\), where \(\chi^{2}\) is computed by (15.2.2) using the fitted parameters \(a\) and \(b\). As discussed above, this procedure is equivalent to assuming a good fit, so you get no independent goodness-of-fit probability \(Q\).

In \(\S 14.5\) we promised a relation between the linear correlation coefficient \(r\) (equation 14.5.1) and a goodness-of-fit measure, \(\chi^{2}\) (equation 15.2.2). For unweighted data (all \(\sigma_{i}=1\) ), that relation is
\[
\begin{equation*}
\chi^{2}=\left(1-r^{2}\right) \mathrm{NVar}\left(y_{1} \ldots y_{N}\right) \tag{15.2.13}
\end{equation*}
\]
where
\[
\begin{equation*}
\operatorname{NVar}\left(y_{1} \ldots y_{N}\right) \equiv \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \tag{15.2.14}
\end{equation*}
\]

For data with varying weights \(\sigma_{i}\), the above equations remain valid if the sums in equation (14.5.1) are weighted by \(1 / \sigma_{i}^{2}\).

The following function, fit, carries out exactly the operations that we have discussed. When the weights \(\sigma\) are known in advance, the calculations exactly correspond to the formulas above. However, when weights \(\sigma\) are unavailable, the routine assumes equal values of \(\sigma\) for each point and assumes a good fit, as discussed in \(\S 15.1\).

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we rewrite them as follows: Define
\[
\begin{equation*}
t_{i}=\frac{1}{\sigma_{i}}\left(x_{i}-\frac{S_{x}}{S}\right), \quad i=1,2, \ldots, N \tag{15.2.15}
\end{equation*}
\]
and
\[
\begin{equation*}
S_{t t}=\sum_{i=1}^{N} t_{i}^{2} \tag{15.2.16}
\end{equation*}
\]

Then, as you can verify by direct substitution,
\[
\begin{align*}
& b=\frac{1}{S_{t t}} \sum_{i=1}^{N} \frac{t_{i} y_{i}}{\sigma_{i}}  \tag{15.2.17}\\
& a=\frac{S_{y}-S_{x} b}{S} \tag{15.2.18}
\end{align*}
\]
\[
\begin{align*}
\sigma_{a}^{2} & =\frac{1}{S}\left(1+\frac{S_{x}^{2}}{S S_{t t}}\right)  \tag{15.2.19}\\
\sigma_{b}^{2} & =\frac{1}{S_{t t}}  \tag{15.2.20}\\
\operatorname{Cov}(a, b) & =-\frac{S_{x}}{S S_{t t}}  \tag{15.2.21}\\
r_{a b} & =\frac{\operatorname{Cov}(a, b)}{\sigma_{a} \sigma_{b}} \tag{15.2.22}
\end{align*}
\]
\#include <math.h>
\#include "nrutil.h"
void fit(float \(x[], f l o a t ~ y[], ~ i n t ~ n d a t a, ~ f l o a t ~ s i g[], ~ i n t ~ m w t, ~ f l o a t ~ * a, ~\) float *b, float *siga, float *sigb, float *chi2, float *q)
Given a set of data points x [1..ndata],y [1..ndata] with individual standard deviations \(\operatorname{sig}\left[1 .\right.\). ndata], fit them to a straight line \(y=a+b x\) by minimizing \(\chi^{2}\). Returned are \(\mathrm{a}, \mathrm{b}\) and their respective probable uncertainties siga and sigb, the chi-square chi2, and the goodness-of-fit probability q (that the fit would have \(\chi^{2}\) this large or larger). If mwt=0 on input, then the standard deviations are assumed to be unavailable: q is returned as 1.0 and the normalization of chi2 is to unit standard deviation on all points. \{
float gammq(float a, float x);
int i;
float wt,t,sxoss, sx=0.0,sy=0.0,st2=0.0,ss, sigdat;
*b=0.0;
if (mwt) \{ Accumulate sums ... ss=0.0;
for (i=1;i<=ndata;i++) \{ ...with weights
wt=1.0/SQR(sig[i]);
ss += wt;
sx += \(\mathrm{x}[\mathrm{i}] * \mathrm{wt}\);
sy += y[i]*wt;
    \}
\} else \{
for (i=1;i<=ndata;i++) \{ ...or without weights.
sx += x[i];
sy \(+=\mathrm{y}[\mathrm{i}]\);
\}
ss=ndata;
\}
sxoss=sx/ss;
if (mwt) \{
for (i=1;i<=ndata;i++) \{
\(\mathrm{t}=(\mathrm{x}[\mathrm{i}]-\mathrm{sxoss}) / \mathrm{sig}[\mathrm{i}]\);
st2 += t*t;
*b += t*y[i]/sig[i];
\}
\} else \{
for (i=1;i<=ndata;i++) \{
\(\mathrm{t}=\mathrm{x}[\mathrm{i}]\)-sxoss;
st2 += t*t;
*b += t*y[i];
\}
\}
*b /= st2; Solve for \(a, b, \sigma_{a}\), and \(\sigma_{b}\).
*a=(sy-sx*(*b))/ss;
*siga=sqrt((1.0+sx*sx/(ss*st2))/ss);
*sigb=sqrt(1.0/st2);
```

 *chi2=0.0; Calculate }\mp@subsup{\chi}{}{2}\mathrm{ .
 *q=1.0;
 if (mwt == 0) {
 for (i=1;i<=ndata;i++)
 *chi2 += SQR(y[i]-(*a)-(*b)*x[i]);
 sigdat=sqrt((*chi2)/(ndata-2));
 *siga *= sigdat;
 *sigb *= sigdat;
 } else {
 for (i=1;i<=ndata;i++)
 *chi2 += SQR((y[i]-(*a)-(*b)*x[i])/sig[i]);
 if (ndata>2) *q=gammq(0.5*(ndata-2),0.5*(*chi2)); Equation (15.2.12).
 }
 }

```

CITED REFERENCES AND FURTHER READING:
Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapter 6.

\subsection*{15.3 Straight-Line Data with Errors in Both Coordinates}

If experimental data are subject to measurement error not only in the \(y_{i}\) 's, but also in the \(x_{i}\) 's, then the task of fitting a straight-line model
\[
\begin{equation*}
y(x)=a+b x \tag{15.3.1}
\end{equation*}
\]
is considerably harder. It is straightforward to write down the \(\chi^{2}\) merit function for this case,
\[
\begin{equation*}
\chi^{2}(a, b)=\sum_{i=1}^{N} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{y i}^{2}+b^{2} \sigma_{x i}^{2}} \tag{15.3.2}
\end{equation*}
\]
where \(\sigma_{x i}\) and \(\sigma_{y i}\) are, respectively, the \(x\) and \(y\) standard deviations for the \(i\) th point. The weighted sum of variances in the denominator of equation (15.3.2) can be understood both as the variance in the direction of the smallest \(\chi^{2}\) between each data point and the line with slope \(b\), and also as the variance of the linear combination \(y_{i}-a-b x_{i}\) of two random variables \(x_{i}\) and \(y_{i}\),
\[
\begin{equation*}
\operatorname{Var}\left(y_{i}-a-b x_{i}\right)=\operatorname{Var}\left(y_{i}\right)+b^{2} \operatorname{Var}\left(x_{i}\right)=\sigma_{y i}^{2}+b^{2} \sigma_{x i}^{2} \equiv 1 / w_{i} \tag{15.3.3}
\end{equation*}
\]

The sum of the square of \(N\) random variables, each normalized by its variance, is thus \(\chi^{2}\)-distributed.

We want to minimize equation (15.3.2) with respect to \(a\) and \(b\). Unfortunately, the occurrence of \(b\) in the denominator of equation (15.3.2) makes the resulting equation for the slope \(\partial \chi^{2} / \partial b=0\) nonlinear. However, the corresponding condition for the intercept, \(\partial \chi^{2} / \partial a=0\), is still linear and yields
\[
\begin{equation*}
a=\left[\sum_{i} w_{i}\left(y_{i}-b x_{i}\right)\right] / \sum_{i} w_{i} \tag{15.3.4}
\end{equation*}
\]
where the \(w_{i}\) 's are defined by equation (15.3.3). A reasonable strategy, now, is to use the machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional function to minimize with respect to \(b\), while using equation (15.3.4) at each stage to ensure that the minimum with respect to \(b\) is also minimized with respect to \(a\).


Figure 15.3.1. Standard errors for the parameters \(a\) and \(b\). The point \(B\) can be found by varying the slope \(b\) while simultaneously minimizing the intercept \(a\). This gives the standard error \(\sigma_{b}\), and also the value \(s\). The standard error \(\sigma_{a}\) can then be found by the geometric relation \(\sigma_{a}^{2}=s^{2}+r^{2}\).

Because of the finite error bars on the \(x_{i}\) 's, the minimum \(\chi^{2}\) as a function of \(b\) will be finite, though usually large, when \(b\) equals infinity (line of infinite slope). The angle \(\theta \equiv \arctan b\) is thus more suitable as a parametrization of slope than \(b\) itself. The value of \(\chi^{2}\) will then be periodic in \(\theta\) with period \(\pi\) (not \(2 \pi!\) ). If any data points have very small \(\sigma_{y}\) 's but moderate or large \(\sigma_{x}\) 's, then it is also possible to have a maximum in \(\chi^{2}\) near zero slope, \(\theta \approx 0\). In that case, there can sometimes be two \(\chi^{2}\) minima, one at positive slope and the other at negative. Only one of these is the correct global minimum. It is therefore important to have a good starting guess for \(b\) (or \(\theta\) ). Our strategy, implemented below, is to scale the \(y_{i}\) 's so as to have variance equal to the \(x_{i}\) 's, then to do a conventional (as in \(\S 15.2\) ) linear fit with weights derived from the (scaled) sum \(\sigma_{y i}^{2}+\sigma_{x i}^{2}\). This yields a good starting guess for \(b\) if the data are even plausibly related to a straight-line model.

Finding the standard errors \(\sigma_{a}\) and \(\sigma_{b}\) on the parameters \(a\) and \(b\) is more complicated. We will see in \(\S 15.6\) that, in appropriate circumstances, the standard errors in \(a\) and \(b\) are the respective projections onto the \(a\) and \(b\) axes of the "confidence region boundary" where \(\chi^{2}\) takes on a value one greater than its minimum, \(\Delta \chi^{2}=1\). In the linear case of \(\S 15.2\), these projections follow from the Taylor series expansion
\[
\begin{equation*}
\Delta \chi^{2} \approx \frac{1}{2}\left[\frac{\partial^{2} \chi^{2}}{\partial a^{2}}(\Delta a)^{2}+\frac{\partial^{2} \chi^{2}}{\partial b^{2}}(\Delta b)^{2}\right]+\frac{\partial^{2} \chi^{2}}{\partial a \partial b} \Delta a \Delta b \tag{15.3.5}
\end{equation*}
\]

Because of the present nonlinearity in \(b\), however, analytic formulas for the second derivatives are quite unwieldy; more important, the lowest-order term frequently gives a poor approximation to \(\Delta \chi^{2}\). Our strategy is therefore to find the roots of \(\Delta \chi^{2}=1\) numerically, by adjusting the value of the slope \(b\) away from the minimum. In the program below the general root finder zbrent is used. It may occur that there are no roots at all - for example, if all error bars are so large that all the data points are compatible with each other. It is important, therefore, to make some effort at bracketing a putative root before refining it (cf. §9.1).

Because \(a\) is minimized at each stage of varying \(b\), successful numerical root-finding leads to a value of \(\Delta a\) that minimizes \(\chi^{2}\) for the value of \(\Delta b\) that gives \(\Delta \chi^{2}=1\). This (see Figure 15.3.1) directly gives the tangent projection of the confidence region onto the \(b\) axis, and thus \(\sigma_{b}\). It does not, however, give the tangent projection of the confidence region onto the \(a\) axis. In the figure, we have found the point labeled \(B\); to find \(\sigma_{a}\) we need to find the
point \(A\). Geometry to the rescue: To the extent that the confidence region is approximated by an ellipse, then you can prove (see figure) that \(\sigma_{a}^{2}=r^{2}+s^{2}\). The value of \(s\) is known from having found the point \(B\). The value of \(r\) follows from equations (15.3.2) and (15.3.3) applied at the \(\chi^{2}\) minimum (point \(O\) in the figure), giving
\[
\begin{equation*}
r^{2}=1 / \sum_{i} w_{i} \tag{15.3.6}
\end{equation*}
\]

Actually, since \(b\) can go through infinity, this whole procedure makes more sense in \((a, \theta)\) space than in \((a, b)\) space. That is in fact how the following program works. Since it is conventional, however, to return standard errors for \(a\) and \(b\), not \(a\) and \(\theta\), we finally use the relation
\[
\begin{equation*}
\sigma_{b}=\sigma_{\theta} / \cos ^{2} \theta \tag{15.3.7}
\end{equation*}
\]

We caution that if \(b\) and its standard error are both large, so that the confidence region actually includes infinite slope, then the standard error \(\sigma_{b}\) is not very meaningful. The function chixy is normally called only by the routine fitexy. However, if you want, you can yourself explore the confidence region by making repeated calls to chixy (whose argument is an angle \(\theta\), not a slope \(b\) ), after a single initializing call to fitexy.

A final caution, repeated from \(\S 15.0\), is that if the goodness-of-fit is not acceptable (returned probability is too small), the standard errors \(\sigma_{a}\) and \(\sigma_{b}\) are surely not believable. In dire circumstances, you might try scaling all your \(x\) and \(y\) error bars by a constant factor until the probability is acceptable ( 0.5 , say), to get more plausible values for \(\sigma_{a}\) and \(\sigma_{b}\).
```

\#include <math.h>
\#include "nrutil.h"
\#define POTN 1.571000
\#define BIG 1.0e30
\#define PI 3.14159265
\#define ACC 1.0e-3
int nn;
float *xx,*yy,*sx,*sy,*WW,aa,offs;
Global variables communicate with
chixy.
void fitexy(float x[], float y[], int ndat, float sigx[], float sigy[],
float *a, float *b, float *siga, float *sigb, float *chi2, float *q)
Straight-line fit to input data x [1. .ndat] and y [1. . ndat] with errors in both }x\mathrm{ and }y\mathrm{ , the re-
spective standard deviations being the input quantities sigx[1..ndat] and sigy[1..ndat].
Output quantities are a and b such that y = a+bx minimizes }\mp@subsup{\chi}{}{2}\mathrm{ , whose value is returned
as chi2. The }\mp@subsup{\chi}{}{2}\mathrm{ probability is returned as q, a small value indicating a poor fit (sometimes
indicating underestimated errors). Standard errors on a and b are returned as siga and sigb.
These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the data are
consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG, then the data
are consistent with all values of b.
{
void avevar(float data[], unsigned long n, float *ave, float *var);
float brent(float ax, float bx, float cx,
float (*f)(float), float tol, float *xmin);
float chixy(float bang);
void fit(float x[], float y[], int ndata, float sig[], int mwt,
float *a, float *b, float *siga, float *sigb, float *chi2, float *q);
float gammq(float a, float x);
void mnbrak(float *ax, float *bx, float *cx, float *fa, float *fb,
float *fc, float (*func)(float));
float zbrent(float (*func)(float), float x1, float x2, float tol);
int j;
float swap,amx,amn,varx, vary, ang [7] , ch [7] ,scale, bmn, bmx, d1, d2 ,r2,
dum1, dum2,dum3,dum4,dum5;
xx=vector(1,ndat);
yy=vector(1,ndat);

```
sx=vector (1, ndat);
sy=vector (1, ndat) ;
ww=vector (1, ndat);
avevar (x, ndat,\&dum1,\&varx) ;
Find the \(x\) and \(y\) variances, and scale avevar (y,ndat, \&dum1, \&vary); the data into the global variables scale=sqrt (varx/vary); for communication with the funcnn=ndat; tion chixy.
for ( \(j=1 ; j\) <=ndat \(; j++\) ) \{
\(\mathrm{xx}[j]=\mathrm{x}[j]\);
yy \([j]=y[j] *\) scale;
sx[j]=sigx[j];
sy[j]=sigy[j]*scale;
ww \([j]=\operatorname{sqrt}(\operatorname{SQR}(\operatorname{sx}[j])+\operatorname{SQR}(\operatorname{sy}[j]))\); Use both \(x\) and \(y\) weights in first \} trial fit.
fit(xx,yy,nn,ww,1,\&dum1,b,\&dum2,\&dum3,\&dum4,\&dum5); Trial fit for b.
offs=ang \([1]=0.0\); Construct several angles for refer-
ang [2] \(=\operatorname{atan}(* \mathrm{~b})\); ence points, and make b an an-
ang [4] \(=0.0\); gle.
ang [5] =ang [2] ;
ang [6] =POTN ;
for ( \(\mathrm{j}=4 ; \mathrm{j}<=6 ; \mathrm{j}++\) ) \(\mathrm{ch}[\mathrm{j}]=\mathrm{chixy}(\operatorname{ang}[j])\);
mnbrak (\&ang [1], \&ang [2], \&ang [3],\&ch[1], \&ch [2] , \&ch[3], chixy);
Bracket the \(\chi^{2}\) minimum and then locate it with brent.
*chi2=brent (ang [1] , ang [2] , ang [3] , chixy , ACC , b) ;
*chi2 \(=\) chixy (*b);
*a=aa;
\(* q=\operatorname{gammq}(0.5 *(n n-2), * \operatorname{chi} 2 * 0.5)\);
for ( \(r 2=0.0, j=1 ; j<=n n ; j++\) ) r2 += ww [j] ;
r2=1.0/r2;
bmx=BIG;
bmn=BIG;
offs=(*chi2) +1.0 ;
for ( \(\mathrm{j}=1 ; \mathrm{j}<=6 ; \mathrm{j}++\) ) \{
if (ch[j] > offs) \{
\(\mathrm{d} 1=\mathrm{fabs}(\operatorname{ang}[j]-(* \mathrm{~b}))\); while (d1 >= PI) d1 -= PI; d2=PI-d1; if (ang \([j]<* b\) ) \{
swap=d1;
d1=d2;
d2=swap; \} if (d1 < bmx) bmx=d1; if (d2 < bmn) bmn=d2;
\}
\}
if ( \(\mathrm{bmx}<\mathrm{BIG}\) ) \{ Call zbrent to find the roots.
bmx=zbrent(chixy, *b, *b+bmx, ACC\()-(* \mathrm{~b})\);
\(a m x=a a-(* a)\);
bmn=zbrent(chixy ,*b,*b-bmn, ACC) \(-(* \mathrm{~b})\);
amn=aa-(*a) ;
*sigb=sqrt (0.5*(bmx*bmx+bmn*bmn))/(scale*SQR(cos(*b)));
*siga \(=\) sqrt \((0.5 *(a m x * a m x+a m n * a m n)+r 2) /\) scale; \(\quad\) Error in a has additional piece
\} else (*sigb)=(*siga)=BIG;
*a /= scale;
Unscale the answers.
*b=tan(*b)/scale;
free_vector(ww,1,ndat);
free_vector(sy,1,ndat);
free_vector(sx,1,ndat);
free_vector (yy,1,ndat);
free_vector(xx,1,ndat);
```

\#include <math.h>
\#include "nrutil.h"
\#define BIG 1.0e30
extern int nn;
extern float *xx,*yy,*sx,*sy,*ww,aa,offs;
float chixy(float bang)
Captive function of fitexy, returns the value of (}\mp@subsup{\chi}{}{2}-\mathrm{ offs) for the slope b=tan(bang).
Scaled data and offs are communicated via the global variables.
{
int j;
float ans,avex=0.0, avey=0.0, sumw=0.0,b;
b=tan(bang);
for (j=1;j<=nn;j++) {
ww[j] = SQR(b*sx[j])+SQR(sy[j]);
sumw += (ww[j] = (ww[j] < 1.0/BIG ? BIG : 1.0/ww[j]));
avex += ww[j]*xx[j];
avey += ww[j]*yy[j];
}
avex /= sumw;
avey /= sumw;
aa=avey-b*avex;
for (ans = -offs,j=1;j<=nn;j++)
ans += ww[j]*SQR(yy[j]-aa-b*xx[j]);
return ans;
}

```

Be aware that the literature on the seemingly straightforward subject of this section is generally confusing and sometimes plain wrong. Deming's [1] early treatment is sound, but its reliance on Taylor expansions gives inaccurate error estimates. References [2-4] are reliable, more recent, general treatments with critiques of earlier work. York [5] and Reed [6] usefully discuss the simple case of a straight line as treated here, but the latter paper has some errors, corrected in [7]. All this commotion has attracted the Bayesians [8-10], who have still different points of view.

CITED REFERENCES AND FURTHER READING:
Deming, W.E. 1943, Statistical Adjustment of Data (New York: Wiley), reprinted 1964 (New York: Dover). [1]
Jefferys, W.H. 1980, Astronomical Journal, vol. 85, pp. 177-181; see also vol. 95, p. 1299 (1988). [2]

Jefferys, W.H. 1981, Astronomical Journal, vol. 86, pp. 149-155; see also vol. 95, p. 1300 (1988). [3]

Lybanon, M. 1984, American Journal of Physics, vol. 52, pp. 22-26. [4]
York, D. 1966, Canadian Journal of Physics, vol. 44, pp. 1079-1086. [5]
Reed, B.C. 1989, American Journal of Physics, vol. 57, pp. 642-646; see also vol. 58, p. 189, and vol. 58, p. 1209. [6]
Reed, B.C. 1992, American Journal of Physics, vol. 60, pp. 59-62. [7]
Zellner, A. 1971, An Introduction to Bayesian Inference in Econometrics (New York: Wiley); reprinted 1987 (Malabar, FL: R. E. Krieger Pub. Co.). [8]
Gull, S.F. 1989, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer). [9] Jaynes, E.T. 1991, in Maximum-Entropy and Bayesian Methods, Proc. 10th Int. Workshop, W.T. Grandy, Jr., and L.H. Schick, eds. (Boston: Kluwer). [10]

Macdonald, J.R., and Thompson, W.J. 1992, American Journal of Physics, vol. 60, pp. 66-73.

\subsection*{15.4 General Linear Least Squares}

An immediate generalization of \(\S 15.2\) is to fit a set of data points \(\left(x_{i}, y_{i}\right)\) to a model that is not just a linear combination of 1 and \(x\) (namely \(a+b x\) ), but rather a linear combination of any \(M\) specified functions of \(x\). For example, the functions could be \(1, x, x^{2}, \ldots, x^{M-1}\), in which case their general linear combination,
\[
\begin{equation*}
y(x)=a_{1}+a_{2} x+a_{3} x^{2}+\cdots+a_{M} x^{M-1} \tag{15.4.1}
\end{equation*}
\]
is a polynomial of degree \(M-1\). Or, the functions could be sines and cosines, in which case their general linear combination is a harmonic series.

The general form of this kind of model is
\[
\begin{equation*}
y(x)=\sum_{k=1}^{M} a_{k} X_{k}(x) \tag{15.4.2}
\end{equation*}
\]
where \(X_{1}(x), \ldots, X_{M}(x)\) are arbitrary fixed functions of \(x\), called the basis functions.

Note that the functions \(X_{k}(x)\) can be wildly nonlinear functions of \(x\). In this discussion "linear" refers only to the model's dependence on its parameters \(a_{k}\).

For these linear models we generalize the discussion of the previous section by defining a merit function
\[
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N}\left[\frac{y_{i}-\sum_{k=1}^{M} a_{k} X_{k}\left(x_{i}\right)}{\sigma_{i}}\right]^{2} \tag{15.4.3}
\end{equation*}
\]

As before, \(\sigma_{i}\) is the measurement error (standard deviation) of the \(i\) th data point, presumed to be known. If the measurement errors are not known, they may all (as discussed at the end of \(\S 15.1\) ) be set to the constant value \(\sigma=1\).

Once again, we will pick as best parameters those that minimize \(\chi^{2}\). There are several different techniques available for finding this minimum. Two are particularly useful, and we will discuss both in this section. To introduce them and elucidate their relationship, we need some notation.

Let A be a matrix whose \(N \times M\) components are constructed from the \(M\) basis functions evaluated at the \(N\) abscissas \(x_{i}\), and from the \(N\) measurement errors \(\sigma_{i}\), by the prescription
\[
\begin{equation*}
A_{i j}=\frac{X_{j}\left(x_{i}\right)}{\sigma_{i}} \tag{15.4.4}
\end{equation*}
\]

The matrix \(\mathbf{A}\) is called the design matrix of the fitting problem. Notice that in general A has more rows than columns, \(N \geq M\), since there must be more data points than model parameters to be solved for. (You can fit a straight line to two points, but not a very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector \(\mathbf{b}\) of length \(N\) by
\[
\begin{equation*}
b_{i}=\frac{y_{i}}{\sigma_{i}} \tag{15.4.5}
\end{equation*}
\]
and denote the \(M\) vector whose components are the parameters to be fitted, \(a_{1}, \ldots, a_{M}\), by \(\mathbf{a}\).
\[
\begin{aligned}
& \begin{array}{l}
\longleftrightarrow \text { basis functions } \longrightarrow \\
X_{1}(\quad) \quad X_{2}(\quad) \quad \cdots \quad X_{M}(\quad)
\end{array}
\end{aligned}
\]

Figure 15.4.1. Design matrix for the least-squares fit of a linear combination of \(M\) basis functions to \(N\) data points. The matrix elements involve the basis functions evaluated at the values of the independent variable at which measurements are made, and the standard deviations of the measured dependent variable. The measured values of the dependent variable do not enter the design matrix.

\section*{Solution by Use of the Normal Equations}

The minimum of (15.4.3) occurs where the derivative of \(\chi^{2}\) with respect to all \(M\) parameters \(a_{k}\) vanishes. Specializing equation (15.1.7) to the case of the model (15.4.2), this condition yields the \(M\) equations
\[
\begin{equation*}
0=\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}\left[y_{i}-\sum_{j=1}^{M} a_{j} X_{j}\left(x_{i}\right)\right] X_{k}\left(x_{i}\right) \quad k=1, \ldots, M \tag{15.4.6}
\end{equation*}
\]

Interchanging the order of summations, we can write (15.4.6) as the matrix equation
\[
\begin{equation*}
\sum_{j=1}^{M} \alpha_{k j} a_{j}=\beta_{k} \tag{15.4.7}
\end{equation*}
\]
where
\[
\begin{equation*}
\alpha_{k j}=\sum_{i=1}^{N} \frac{X_{j}\left(x_{i}\right) X_{k}\left(x_{i}\right)}{\sigma_{i}^{2}} \quad \text { or equivalently } \quad[\alpha]=\mathbf{A}^{T} \cdot \mathbf{A} \tag{15.4.8}
\end{equation*}
\]
an \(M \times M\) matrix, and
\[
\begin{equation*}
\beta_{k}=\sum_{i=1}^{N} \frac{y_{i} X_{k}\left(x_{i}\right)}{\sigma_{i}^{2}} \quad \text { or equivalently } \quad[\beta]=\mathbf{A}^{T} \cdot \mathbf{b} \tag{15.4.9}
\end{equation*}
\]
a vector of length \(M\).
The equations (15.4.6) or (15.4.7) are called the normal equations of the leastsquares problem. They can be solved for the vector of parameters a by the standard methods of Chapter 2, notably \(L U\) decomposition and backsubstitution, Choleksy decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations can be written as either
\[
\begin{equation*}
[\alpha] \cdot \mathbf{a}=[\beta] \quad \text { or as } \quad\left(\mathbf{A}^{T} \cdot \mathbf{A}\right) \cdot \mathbf{a}=\mathbf{A}^{T} \cdot \mathbf{b} \tag{15.4.10}
\end{equation*}
\]

The inverse matrix \(C_{j k} \equiv[\alpha]_{j k}^{-1}\) is closely related to the probable (or, more precisely, standard) uncertainties of the estimated parameters a. To estimate these uncertainties, consider that
\[
\begin{equation*}
a_{j}=\sum_{k=1}^{M}[\alpha]_{j k}^{-1} \beta_{k}=\sum_{k=1}^{M} C_{j k}\left[\sum_{i=1}^{N} \frac{y_{i} X_{k}\left(x_{i}\right)}{\sigma_{i}^{2}}\right] \tag{15.4.11}
\end{equation*}
\]
and that the variance associated with the estimate \(a_{j}\) can be found as in (15.2.7) from
\[
\begin{equation*}
\sigma^{2}\left(a_{j}\right)=\sum_{i=1}^{N} \sigma_{i}^{2}\left(\frac{\partial a_{j}}{\partial y_{i}}\right)^{2} \tag{15.4.12}
\end{equation*}
\]

Note that \(\alpha_{j k}\) is independent of \(y_{i}\), so that
\[
\begin{equation*}
\frac{\partial a_{j}}{\partial y_{i}}=\sum_{k=1}^{M} C_{j k} X_{k}\left(x_{i}\right) / \sigma_{i}^{2} \tag{15.4.13}
\end{equation*}
\]

Consequently, we find that
\[
\begin{equation*}
\sigma^{2}\left(a_{j}\right)=\sum_{k=1}^{M} \sum_{l=1}^{M} C_{j k} C_{j l}\left[\sum_{i=1}^{N} \frac{X_{k}\left(x_{i}\right) X_{l}\left(x_{i}\right)}{\sigma_{i}^{2}}\right] \tag{15.4.14}
\end{equation*}
\]

The final term in brackets is just the matrix \([\alpha]\). Since this is the matrix inverse of \([C],(15.4 .14)\) reduces immediately to
\[
\begin{equation*}
\sigma^{2}\left(a_{j}\right)=C_{j j} \tag{15.4.15}
\end{equation*}
\]

In other words, the diagonal elements of \([C]\) are the variances (squared uncertainties) of the fitted parameters a. It should not surprise you to learn that the off-diagonal elements \(C_{j k}\) are the covariances between \(a_{j}\) and \(a_{k}\) (cf. 15.2.10); but we shall defer discussion of these to \(\S 15.6\).

We will now give a routine that implements the above formulas for the general linear least-squares problem, by the method of normal equations. Since we wish to compute not only the solution vector a but also the covariance matrix \([C]\), it is most convenient to use Gauss-Jordan elimination (routine gaussj of \(\S 2.1\) ) to perform the linear algebra. The operation count, in this application, is no larger than that for \(L U\) decomposition. If you have no need for the covariance matrix, however, you can save a factor of 3 on the linear algebra by switching to \(L U\) decomposition, without
computation of the matrix inverse. In theory, since \(\mathbf{A}^{T} \cdot \mathbf{A}\) is positive definite, Cholesky decomposition is the most efficient way to solve the normal equations. However, in practice most of the computing time is spent in looping over the data to form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of a least-squares problem directly from the normal equations is rather susceptible to roundoff error. An alternative, and preferred, technique involves \(Q R\) decomposition ( \(\S 2.10, \S 11.3\), and \(\S 11.6\) ) of the design matrix \(\mathbf{A}\). This is essentially what we did at the end of \(\S 15.2\) for fitting data to a straight line, but without invoking all the machinery of \(Q R\) to derive the necessary formulas. Later in this section, we will discuss other difficulties in the least-squares problem, for which the cure is singular value decomposition (SVD), of which we give an implementation. It turns out that SVD also fixes the roundoff problem, so it is our recommended technique for all but "easy" least-squares problems. It is for these easy problems that the following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping trick that is quite useful in practical work. Frequently it is a matter of "art" to decide which parameters \(a_{k}\) in a model should be fit from the data set, and which should be held constant at fixed values, for example values predicted by a theory or measured in a previous experiment. One wants, therefore, to have a convenient means for "freezing" and "unfreezing" the parameters \(a_{k}\). In the following routine the total number of parameters \(a_{k}\) is denoted ma (called \(M\) above). As input to the routine, you supply an array ia[1..ma], whose components are either zero or nonzero (e.g., 1). Zeros indicate that you want the corresponding elements of the parameter vector a [1 . .ma] to be held fixed at their input values. Nonzeros indicate parameters that should be fitted for. On output, any frozen parameters will have their variances, and all their covariances, set to zero in the covariance matrix.
```

\#include "nrutil.h"
void lfit(float x[], float y[], float sig[], int ndat, float a[], int ia[],
int ma, float **covar, float *chisq, void (*funcs)(float, float [], int))
Given a set of data points x[1..ndat], y[1..ndat] with individual standard deviations
sig[1..ndat], use }\mp@subsup{\chi}{}{2}\mathrm{ minimization to fit for some or all of the coefficients a[1..ma] of
a function that depends linearly on a, y = \sum i a a }\times\mathrm{ afunc }\mp@subsup{\mp@code{ci}}{i}{(x). The input array ia[1..ma]
indicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
for a[1..ma], \chi 2 = chisq, and the covariance matrix covar[1..ma][1..ma]. (Parameters
held fixed will return zero covariances.) The user supplies a routine funcs (x, afunc,ma) that
returns the ma basis functions evaluated at x= x in the array afunc[1..ma].
{
void covsrt(float **covar, int ma, int ia[], int mfit);
void gaussj(float **a, int n, float **b, int m);
int i,j,k,l,m,mfit=0;
float ym,wt,sum,sig2i,**beta,*afunc;
beta=matrix(1,ma,1,1);
afunc=vector(1,ma);
for (j=1;j<=ma;j++)
if (ia[j]) mfit++;
if (mfit == 0) nrerror("lfit: no parameters to be fitted");
for (j=1;j<=mfit;j++) { Initialize the (symmetric) matrix.
for (k=1;k<=mfit;k++) covar[j][k]=0.0;
beta[j][1]=0.0;
}
for (i=1;i<=ndat;i++) { Loop over data to accumulate coefficients of
the normal equations.

```
```

 (*funcs)(x[i],afunc,ma);
 ym=y[i];
 if (mfit < ma) {
 for (j=1;j<=ma;j++)
 if (!ia[j]) ym -= a[j]*afunc[j];
 }
 sig2i=1.0/SQR(sig[i]);
 for (}j=0,l=1;l<=ma;l++)
 if (ia[l]) {
 wt=afunc[l]*sig2i;
 for (}\textrm{j}++,\textrm{k}=0,m=1;m<=1;m++
 if (ia[m]) covar[j][++k] += wt*afunc[m];
 beta[j][1] += ym*wt;
 }
 }
 }
 for (}j=2;j<=mfit;j++) Fill in above the diagonal from symmetry
for (k=1;k<j;k++)
covar[k][j]=covar[j] [k];
gaussj(covar,mfit,beta,1); Matrix solution.
for (j=0,l=1;l<=ma;l++)
if (ia[l]) a[l]=beta[++j][1]; Partition solution to appropriate coefficients
*chisq=0.0;
for (i=1;i<=ndat;i++) {
(*funcs)(x[i], afunc,ma);
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]*afunc[j];
*chisq += SQR((y[i]-sum)/sig[i]);
}
covsrt(covar,ma,ia,mfit); Sort covariance matrix to true order of fitting
free_vector(afunc,1,ma);
free_matrix(beta,1,ma,1,1);
}

```

That last call to a function covsrt is only for the purpose of spreading the covariances back into the full ma \(\times\) ma covariance matrix, in the proper rows and columns and with zero variances and covariances set for variables which were held frozen.

The function covsrt is as follows.
```

\#define SWAP(a,b) {swap=(a); (a)=(b);(b)=swap;}
void covsrt(float **covar, int ma, int ia[], int mfit)
Expand in storage the covariance matrix covar, so as to take into account parameters that are
being held fixed. (For the latter, return zero covariances.)
{
int i,j,k;
float swap;
for (i=mfit+1;i<=ma;i++)
for (j=1;j<=i;j++) covar[i][j]=covar[j][i]=0.0;
k=mfit;
for (j=ma;j>=1;j--) {
if (ia[j]) {
for (i=1;i<=ma;i++) SWAP(covar[i][k], covar[i][j])
for (i=1;i<=ma;i++) SWAP(covar[k][i],covar[j][i])
k--;
}
}
}

```

\section*{Solution by Use of Singular Value Decomposition}

In some applications, the normal equations are perfectly adequate for linear least-squares problems. However, in many cases the normal equations are very close to singular. A zero pivot element may be encountered during the solution of the linear equations (e.g., in gaussj), in which case you get no solution at all. Or a very small pivot may occur, in which case you typically get fitted parameters \(a_{k}\) with very large magnitudes that are delicately (and unstably) balanced to cancel out almost precisely when the fitted function is evaluated.

Why does this commonly occur? The reason is that, more often than experimenters would like to admit, data do not clearly distinguish between two or more of the basis functions provided. If two such functions, or two different combinations of functions, happen to fit the data about equally well - or equally badly - then the matrix \([\alpha]\), unable to distinguish between them, neatly folds up its tent and becomes singular. There is a certain mathematical irony in the fact that least-squares problems are both overdetermined (number of data points greater than number of parameters) and underdetermined (ambiguous combinations of parameters exist); but that is how it frequently is. The ambiguities can be extremely hard to notice a priori in complicated problems.

Enter singular value decomposition (SVD). This would be a good time for you to review the material in \(\S 2.6\), which we will not repeat here. In the case of an overdetermined system, SVD produces a solution that is the best approximation in the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In the case of an underdetermined system, SVD produces a solution whose values (for us, the \(a_{k}\) 's) are smallest in the least-squares sense, cf. equation (2.6.8). That is also what we want: When some combination of basis functions is irrelevant to the fit, that combination will be driven down to a small, innocuous, value, rather than pushed up to delicately canceling infinities.

In terms of the design matrix \(\mathbf{A}\) (equation 15.4.4) and the vector \(\mathbf{b}\) (equation 15.4.5), minimization of \(\chi^{2}\) in (15.4.3) can be written as
\[
\begin{equation*}
\text { find } \quad \mathbf{a} \quad \text { that minimizes } \quad \chi^{2}=|\mathbf{A} \cdot \mathbf{a}-\mathbf{b}|^{2} \tag{15.4.16}
\end{equation*}
\]

Comparing to equation (2.6.9), we see that this is precisely the problem that routines svdcmp and svbksb are designed to solve. The solution, which is given by equation (2.6.12), can be rewritten as follows: If \(\mathbf{U}\) and \(\mathbf{V}\) enter the SVD decomposition of \(\mathbf{A}\) according to equation (2.6.1), as computed by svdcmp, then let the vectors \(\mathbf{U}_{(i)} i=1, \ldots, M\) denote the columns of \(\mathbf{U}\) (each one a vector of length \(N\) ); and let the vectors \(\mathbf{V}_{(i)} ; i=1, \ldots, M\) denote the columns of \(\mathbf{V}\) (each one a vector of length \(M\) ). Then the solution (2.6.12) of the least-squares problem (15.4.16) can be written as
\[
\begin{equation*}
\mathbf{a}=\sum_{i=1}^{M}\left(\frac{\mathbf{U}_{(i)} \cdot \mathbf{b}}{w_{i}}\right) \mathbf{V}_{(i)} \tag{15.4.17}
\end{equation*}
\]
where the \(w_{i}\) are, as in \(\S 2.6\), the singular values calculated by svdcmp.
Equation (15.4.17) says that the fitted parameters a are linear combinations of the columns of \(\mathbf{V}\), with coefficients obtained by forming dot products of the columns
of \(\mathbf{U}\) with the weighted data vector (15.4.5). Though it is beyond our scope to prove here, it turns out that the standard (loosely, "probable") errors in the fitted parameters are also linear combinations of the columns of \(\mathbf{V}\). In fact, equation (15.4.17) can be written in a form displaying these errors as
\[
\begin{equation*}
\mathbf{a}=\left[\sum_{i=1}^{M}\left(\frac{\mathbf{U}_{(i)} \cdot \mathbf{b}}{w_{i}}\right) \mathbf{V}_{(i)}\right] \pm \frac{1}{w_{1}} \mathbf{V}_{(1)} \pm \cdots \pm \frac{1}{w_{M}} \mathbf{V}_{(M)} \tag{15.4.18}
\end{equation*}
\]

Here each \(\pm\) is followed by a standard deviation. The amazing fact is that, decomposed in this fashion, the standard deviations are all mutually independent (uncorrelated). Therefore they can be added together in root-mean-square fashion. What is going on is that the vectors \(\mathbf{V}_{(i)}\) are the principal axes of the error ellipsoid of the fitted parameters a (see §15.6).

It follows that the variance in the estimate of a parameter \(a_{j}\) is given by
\[
\begin{equation*}
\sigma^{2}\left(a_{j}\right)=\sum_{i=1}^{M} \frac{1}{w_{i}^{2}}\left[\mathbf{V}_{(i)}\right]_{j}^{2}=\sum_{i=1}^{M}\left(\frac{V_{j i}}{w_{i}}\right)^{2} \tag{15.4.19}
\end{equation*}
\]
whose result should be identical with (15.4.14). As before, you should not be surprised at the formula for the covariances, here given without proof,
\[
\begin{equation*}
\operatorname{Cov}\left(a_{j}, a_{k}\right)=\sum_{i=1}^{M}\left(\frac{V_{j i} V_{k i}}{w_{i}^{2}}\right) \tag{15.4.20}
\end{equation*}
\]

We introduced this subsection by noting that the normal equations can fail by encountering a zero pivot. We have not yet, however, mentioned how SVD overcomes this problem. The answer is: If any singular value \(w_{i}\) is zero, its reciprocal in equation (15.4.18) should be set to zero, not infinity. (Compare the discussion preceding equation 2.6.7.) This corresponds to adding to the fitted parameters a a zero multiple, rather than some random large multiple, of any linear combination of basis functions that are degenerate in the fit. It is a good thing to do!

Moreover, if a singular value \(w_{i}\) is nonzero but very small, you should also define its reciprocal to be zero, since its apparent value is probably an artifact of roundoff error, not a meaningful number. A plausible answer to the question "how small is small?" is to edit in this fashion all singular values whose ratio to the largest singular value is less than \(N\) times the machine precision \(\epsilon\). (You might argue for \(\sqrt{N}\), or a constant, instead of \(N\) as the multiple; that starts getting into hardware-dependent questions.)

There is another reason for editing even additional singular values, ones large enough that roundoff error is not a question. Singular value decomposition allows you to identify linear combinations of variables that just happen not to contribute much to reducing the \(\chi^{2}\) of your data set. Editing these can sometimes reduce the probable error on your coefficients quite significantly, while increasing the minimum \(\chi^{2}\) only negligibly. We will learn more about identifying and treating such cases in \(\S 15.6\). In the following routine, the point at which this kind of editing would occur is indicated.

Generally speaking, we recommend that you always use SVD techniques instead of using the normal equations. SVD's only significant disadvantage is that it requires
an extra array of size \(N \times M\) to store the whole design matrix. This storage is overwritten by the matrix \(\mathbf{U}\). Storage is also required for the \(M \times M\) matrix \(\mathbf{V}\), but this is instead of the same-sized matrix for the coefficients of the normal equations. SVD can be significantly slower than solving the normal equations; however, its great advantage, that it (theoretically) cannot fail, more than makes up for the speed disadvantage.

In the routine that follows, the matrices \(u, v\) and the vector \(w\) are input as working space. The logical dimensions of the problem are ndata data points by ma basis functions (and fitted parameters). If you care only about the values a of the fitted parameters, then \(u, v, w\) contain no useful information on output. If you want probable errors for the fitted parameters, read on.
```

\#include "nrutil.h"
\#define TOL 1.0e-5
void svdfit(float x[], float y[], float sig[], int ndata, float a[], int ma,
float **u, float **v, float w[], float *chisq,
void (*funcs)(float, float [], int))
Given a set of data points x[1..ndata],y[1..ndata] with individual standard deviations
sig[1..ndata], use }\mp@subsup{\chi}{}{2}\mathrm{ minimization to determine the coefficients a[1..ma] of the fit-

```

```

value decomposition of the ndata by ma matrix, as in §2.6. Arrays u[1..ndata][1..ma],
v[1..ma][1..ma], and w[1..ma] provide workspace on input; on output they define the
singular value decomposition, and can be used to obtain the covariance matrix. The pro-
gram returns values for the ma fit parameters a, and \chi}\mp@subsup{\chi}{}{2}\mathrm{ , chisq. The user supplies a routine
funcs(x,afunc,ma) that returns the ma basis functions evaluated at x= x in the array
afunc[1..ma].
{
void svbksb(float **u, float w[], float **v, int m, int n, float b[],
float x[]);
void svdcmp(float **a, int m, int n, float w[], float **v);
int j,i;
float wmax,tmp,thresh,sum,*b,*afunc;
b=vector(1,ndata);
afunc=vector(1,ma);
for (i=1;i<=ndata;i++) { Accumulate coefficients of the fitting ma-
(*funcs)(x[i],afunc,ma); trix.
tmp=1.0/sig[i];
for (}\textrm{j}=1;\textrm{j}<==ma;j++) u[i][j]=afunc[j]*tmp
b[i]=y[i]*tmp;
}
svdcmp(u,ndata,ma,w,v); Singular value decomposition.
wmax=0.0; Edit the singular values, given TOL from the
for (}\textrm{j=1;j<=ma;j++)
\#define statement, between here ...
if (w[j] > wmax) wmax=w[j];
thresh=TOL*wmax;
for (}\textrm{j=1;j<=ma;j++)
if (w[j] < thresh) w[j]=0.0; ...and here.
svbksb(u,w,v,ndata,ma,b,a);
*chisq=0.0; Evaluate chi-square
for (i=1;i<=ndata;i++) {
(*funcs)(x[i], afunc,ma);
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]*afunc[j];
*chisq += (tmp=(y[i]-sum)/sig[i],tmp*tmp);
}
free_vector(afunc,1,ma);
free_vector(b,1,ndata);
}

```

Feeding the matrix v and vector w output by the above program into the following short routine, you easily obtain variances and covariances of the fitted parameters a. The square roots of the variances are the standard deviations of the fitted parameters. The routine straightforwardly implements equation (15.4.20) above, with the convention that singular values equal to zero are recognized as having been edited out of the fit.
```

\#include "nrutil.h"
void svdvar(float **v, int ma, float w[], float **cvm)
To evaluate the covariance matrix cvm[1..ma] [1..ma] of the fit for ma parameters obtained
by svdfit, call this routine with matrices v[1..ma][1..ma], w[1..ma] as returned from
svdfit.
{
int k,j,i;
float sum,*wti;
wti=vector(1,ma);
for (i=1;i<=ma;i++) {
wti[i]=0.0;
if (w[i]) wti[i]=1.0/(w[i]*w[i]);
}
for (i=1;i<=ma;i++) { Sum contributions to covariance matrix (15.4.20).
for (j=1;j<=i;j++) {
for (sum=0.0,k=1;k<=ma;k++) sum += v[i][k]*v[j][k]*wti[k];
cvm[j][i]=cvm[i][j]=sum;
}
}
free_vector(wti,1,ma);
}

```

\section*{Examples}

Be aware that some apparently nonlinear problems can be expressed so that they are linear. For example, an exponential model with two parameters \(a\) and \(b\),
\[
\begin{equation*}
y(x)=a \exp (-b x) \tag{15.4.21}
\end{equation*}
\]
can be rewritten as
\[
\begin{equation*}
\log [y(x)]=c-b x \tag{15.4.22}
\end{equation*}
\]
which is linear in its parameters \(c\) and \(b\). (Of course you must be aware that such transformations do not exactly take Gaussian errors into Gaussian errors.)

Also watch out for "non-parameters," as in
\[
\begin{equation*}
y(x)=a \exp (-b x+d) \tag{15.4.23}
\end{equation*}
\]

Here the parameters \(a\) and \(d\) are, in fact, indistinguishable. This is a good example of where the normal equations will be exactly singular, and where SVD will find a zero singular value. SVD will then make a "least-squares" choice for setting a balance between \(a\) and \(d\) (or, rather, their equivalents in the linear model derived by taking the logarithms). However - and this is true whenever SVD gives back a zero singular value - you are better advised to figure out analytically where the degeneracy is among your basis functions, and then make appropriate deletions in the basis set.

Here are two examples for user-supplied routines funcs. The first one is trivial and fits a general polynomial to a set of data:
```

void fpoly(float x, float p[], int np)
Fitting routine for a polynomial of degree np-1, with coefficients in the array p [1..np].
{
int j;
p[1]=1.0;
for (j=2;j<=np;j++) p[j]=p[j-1]*x;
}

```

The second example is slightly less trivial. It is used to fit Legendre polynomials up to some order nl-1 through a data set.
```

void fleg(float x, float pl[], int nl)
Fitting routine for an expansion with nl Legendre polynomials pl, evaluated using the recurrence
relation as in \$5.5.
{
int j;
float twox,f2,f1,d;
pl[1]=1.0;
pl[2]=x;
if (nl > 2) {
twox=2.0*x;
f2=x;
d=1.0
for (j=3;j<=nl;j++) {
f1=d++;
f2 += twox;
pl[j]=(f2*pl[j-1]-f1*pl[j-2])/d;
}
}
}

```

\section*{Multidimensional Fits}

If you are measuring a single variable \(y\) as a function of more than one variable - say, a vector of variables \(\mathbf{x}\), then your basis functions will be functions of a vector, \(X_{1}(\mathbf{x}), \ldots, X_{M}(\mathbf{x})\). The \(\chi^{2}\) merit function is now
\[
\begin{equation*}
\chi^{2}=\sum_{i=1}^{N}\left[\frac{y_{i}-\sum_{k=1}^{M} a_{k} X_{k}\left(\mathbf{x}_{i}\right)}{\sigma_{i}}\right]^{2} \tag{15.4.24}
\end{equation*}
\]

All of the preceding discussion goes through unchanged, with \(x\) replaced by \(\mathbf{x}\). In fact, if you are willing to tolerate a bit of programming hack, you can use the above programs without any modification: In both lfit and svdfit, the only use made of the array elements x [i] is that each element is in turn passed to the user-supplied routine funcs, which duly gives back the values of the basis functions at that point. If you set \(x[i]=i\) before calling lfit or svdfit, and independently provide funcs with the true vector values of your data points (e.g., in global variables), then funcs can translate from the fictitious x [i]'s to the actual data points before doing its work.

\section*{CITED REFERENCES AND FURTHER READING:}

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapters 8-9.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ: Prentice-Hall).
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

\subsection*{15.5 Nonlinear Models}

We now consider fitting when the model depends nonlinearly on the set of \(M\) unknown parameters \(a_{k}, k=1,2, \ldots, M\). We use the same approach as in previous sections, namely to define a \(\chi^{2}\) merit function and determine best-fit parameters by its minimization. With nonlinear dependences, however, the minimization must proceed iteratively. Given trial values for the parameters, we develop a procedure that improves the trial solution. The procedure is then repeated until \(\chi^{2}\) stops (or effectively stops) decreasing.

How is this problem different from the general nonlinear function minimization problem already dealt with in Chapter 10? Superficially, not at all: Sufficiently close to the minimum, we expect the \(\chi^{2}\) function to be well approximated by a quadratic form, which we can write as
\[
\begin{equation*}
\chi^{2}(\mathbf{a}) \approx \gamma-\mathbf{d} \cdot \mathbf{a}+\frac{1}{2} \mathbf{a} \cdot \mathbf{D} \cdot \mathbf{a} \tag{15.5.1}
\end{equation*}
\]
where \(\mathbf{d}\) is an \(M\)-vector and \(\mathbf{D}\) is an \(M \times M\) matrix. (Compare equation 10.6.1.) If the approximation is a good one, we know how to jump from the current trial parameters \(\mathbf{a}_{\text {cur }}\) to the minimizing ones \(\mathbf{a}_{\text {min }}\) in a single leap, namely
\[
\begin{equation*}
\mathbf{a}_{\min }=\mathbf{a}_{\mathrm{cur}}+\mathbf{D}^{-1} \cdot\left[-\nabla \chi^{2}\left(\mathbf{a}_{\mathrm{cur}}\right)\right] \tag{15.5.2}
\end{equation*}
\]
(Compare equation 10.7.4.)
On the other hand, (15.5.1) might be a poor local approximation to the shape of the function that we are trying to minimize at \(\mathbf{a}_{\text {cur }}\). In that case, about all we can do is take a step down the gradient, as in the steepest descent method (§10.6). In other words,
\[
\begin{equation*}
\mathbf{a}_{\mathrm{next}}=\mathbf{a}_{\mathrm{cur}}-\text { constant } \times \nabla \chi^{2}\left(\mathbf{a}_{\mathrm{cur}}\right) \tag{15.5.3}
\end{equation*}
\]
where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient of the \(\chi^{2}\) function at any set of parameters \(\mathbf{a}\). To use (15.5.2) we also need the matrix \(\mathbf{D}\), which is the second derivative matrix (Hessian matrix) of the \(\chi^{2}\) merit function, at any \(\mathbf{a}\).

Now, this is the crucial difference from Chapter 10: There, we had no way of directly evaluating the Hessian matrix. We were given only the ability to evaluate the function to be minimized and (in some cases) its gradient. Therefore, we had to resort to iterative methods not just because our function was nonlinear, but also in order to build up information about the Hessian matrix. Sections 10.7 and 10.6 concerned themselves with two different techniques for building up this information.

Here, life is much simpler. We know exactly the form of \(\chi^{2}\), since it is based on a model function that we ourselves have specified. Therefore the Hessian matrix is known to us. Thus we are free to use (15.5.2) whenever we care to do so. The only reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling failure of (15.5.1) as a good local approximation.

\section*{Calculation of the Gradient and Hessian}

The model to be fitted is
\[
\begin{equation*}
y=y(x ; \mathbf{a}) \tag{15.5.4}
\end{equation*}
\]
and the \(\chi^{2}\) merit function is
\[
\begin{equation*}
\chi^{2}(\mathbf{a})=\sum_{i=1}^{N}\left[\frac{y_{i}-y\left(x_{i} ; \mathbf{a}\right)}{\sigma_{i}}\right]^{2} \tag{15.5.5}
\end{equation*}
\]

The gradient of \(\chi^{2}\) with respect to the parameters \(\mathbf{a}\), which will be zero at the \(\chi^{2}\) minimum, has components
\[
\begin{equation*}
\frac{\partial \chi^{2}}{\partial a_{k}}=-2 \sum_{i=1}^{N} \frac{\left[y_{i}-y\left(x_{i} ; \mathbf{a}\right)\right]}{\sigma_{i}^{2}} \frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{k}} \quad k=1,2, \ldots, M \tag{15.5.6}
\end{equation*}
\]

Taking an additional partial derivative gives
\[
\begin{equation*}
\frac{\partial^{2} \chi^{2}}{\partial a_{k} \partial a_{l}}=2 \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}\left[\frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{k}} \frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{l}}-\left[y_{i}-y\left(x_{i} ; \mathbf{a}\right)\right] \frac{\partial^{2} y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{l} \partial a_{k}}\right] \tag{15.5.7}
\end{equation*}
\]

It is conventional to remove the factors of 2 by defining
\[
\begin{equation*}
\beta_{k} \equiv-\frac{1}{2} \frac{\partial \chi^{2}}{\partial a_{k}} \quad \alpha_{k l} \equiv \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{k} \partial a_{l}} \tag{15.5.8}
\end{equation*}
\]
making \([\alpha]=\frac{1}{2} \mathbf{D}\) in equation (15.5.2), in terms of which that equation can be rewritten as the set of linear equations
\[
\begin{equation*}
\sum_{l=1}^{M} \alpha_{k l} \delta a_{l}=\beta_{k} \tag{15.5.9}
\end{equation*}
\]

This set is solved for the increments \(\delta a_{l}\) that, added to the current approximation, give the next approximation. In the context of least-squares, the matrix \([\alpha]\), equal to one-half times the Hessian matrix, is usually called the curvature matrix.

Equation (15.5.3), the steepest descent formula, translates to
\[
\begin{equation*}
\delta a_{l}=\text { constant } \times \beta_{l} \tag{15.5.10}
\end{equation*}
\]

Note that the components \(\alpha_{k l}\) of the Hessian matrix (15.5.7) depend both on the first derivatives and on the second derivatives of the basis functions with respect to their parameters. Some treatments proceed to ignore the second derivative without comment. We will ignore it also, but only after a few comments.

Second derivatives occur because the gradient (15.5.6) already has a dependence on \(\partial y / \partial a_{k}\), so the next derivative simply must contain terms involving \(\partial^{2} y / \partial a_{l} \partial a_{k}\). The second derivative term can be dismissed when it is zero (as in the linear case of equation 15.4.8), or small enough to be negligible when compared to the term involving the first derivative. It also has an additional possibility of being ignorably small in practice: The term multiplying the second derivative in equation (15.5.7) is \(\left[y_{i}-y\left(x_{i} ; \mathbf{a}\right)\right]\). For a successful model, this term should just be the random measurement error of each point. This error can have either sign, and should in general be uncorrelated with the model. Therefore, the second derivative terms tend to cancel out when summed over \(i\).

Inclusion of the second-derivative term can in fact be destabilizing if the model fits badly or is contaminated by outlier points that are unlikely to be offset by compensating points of opposite sign. From this point on, we will always use as the definition of \(\alpha_{k l}\) the formula
\[
\begin{equation*}
\alpha_{k l}=\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}\left[\frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{k}} \frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{l}}\right] \tag{15.5.11}
\end{equation*}
\]

This expression more closely resembles its linear cousin (15.4.8). You should understand that minor (or even major) fiddling with \([\alpha]\) has no effect at all on what final set of parameters \(\mathbf{a}\) is reached, but affects only the iterative route that is taken in getting there. The condition at the \(\chi^{2}\) minimum, that \(\beta_{k}=0\) for all \(k\), is independent of how \([\alpha]\) is defined.

\section*{Levenberg-Marquardt Method}

Marquardt [1] has put forth an elegant method, related to an earlier suggestion of Levenberg, for varying smoothly between the extremes of the inverse-Hessian method (15.5.9) and the steepest descent method (15.5.10). The latter method is used far from the minimum, switching continuously to the former as the minimum is approached. This Levenberg-Marquardt method (also called Marquardt method) works very well in practice and has become the standard of nonlinear least-squares routines.

The method is based on two elementary, but important, insights. Consider the "constant" in equation (15.5.10). What should it be, even in order of magnitude? What sets its scale? There is no information about the answer in the gradient. That tells only the slope, not how far that slope extends. Marquardt's first insight is that the components of the Hessian matrix, even if they are not usable in any precise fashion, give some information about the order-of-magnitude scale of the problem.

The quantity \(\chi^{2}\) is nondimensional, i.e., is a pure number; this is evident from its definition (15.5.5). On the other hand, \(\beta_{k}\) has the dimensions of \(1 / a_{k}\), which may well be dimensional, i.e., have units like \(\mathrm{cm}^{-1}\), or kilowatt-hours, or whatever. (In fact, each component of \(\beta_{k}\) can have different dimensions!) The constant of proportionality between \(\beta_{k}\) and \(\delta a_{k}\) must therefore have the dimensions of \(a_{k}^{2}\). Scan
the components of \([\alpha]\) and you see that there is only one obvious quantity with these dimensions, and that is \(1 / \alpha_{k k}\), the reciprocal of the diagonal element. So that must set the scale of the constant. But that scale might itself be too big. So let's divide the constant by some (nondimensional) fudge factor \(\lambda\), with the possibility of setting \(\lambda \gg 1\) to cut down the step. In other words, replace equation (15.5.10) by
\[
\begin{equation*}
\delta a_{l}=\frac{1}{\lambda \alpha_{l l}} \beta_{l} \quad \text { or } \quad \lambda \alpha_{l l} \delta a_{l}=\beta_{l} \tag{15.5.12}
\end{equation*}
\]

It is necessary that \(a_{l l}\) be positive, but this is guaranteed by definition (15.5.11) another reason for adopting that equation.

Marquardt's second insight is that equations (15.5.12) and (15.5.9) can be combined if we define a new matrix \(\alpha^{\prime}\) by the following prescription
\[
\begin{align*}
\alpha_{j j}^{\prime} & \equiv \alpha_{j j}(1+\lambda) \\
\alpha_{j k}^{\prime} & \equiv \alpha_{j k} \quad(j \neq k) \tag{15.5.13}
\end{align*}
\]
and then replace both (15.5.12) and (15.5.9) by
\[
\begin{equation*}
\sum_{l=1}^{M} \alpha_{k l}^{\prime} \delta a_{l}=\beta_{k} \tag{15.5.14}
\end{equation*}
\]

When \(\lambda\) is very large, the matrix \(\alpha^{\prime}\) is forced into being diagonally dominant, so equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, as \(\lambda\) approaches zero, equation (15.5.14) goes over to (15.5.9).

Given an initial guess for the set of fitted parameters a, the recommended Marquardt recipe is as follows:
- Compute \(\chi^{2}(\mathbf{a})\).
- Pick a modest value for \(\lambda\), say \(\lambda=0.001\).
- ( \(\dagger\) ) Solve the linear equations (15.5.14) for \(\delta \mathbf{a}\) and evaluate \(\chi^{2}(\mathbf{a}+\delta \mathbf{a})\).
- If \(\chi^{2}(\mathbf{a}+\delta \mathbf{a}) \geq \chi^{2}(\mathbf{a})\), increase \(\lambda\) by a factor of 10 (or any other substantial factor) and go back to ( \(\dagger\) ).
- If \(\chi^{2}(\mathbf{a}+\delta \mathbf{a})<\chi^{2}(\mathbf{a})\), decrease \(\lambda\) by a factor of 10 , update the trial solution \(\mathbf{a} \leftarrow \mathbf{a}+\delta \mathbf{a}\), and go back to ( \(\dagger\) ).
Also necessary is a condition for stopping. Iterating to convergence (to machine accuracy or to the roundoff limit) is generally wasteful and unnecessary since the minimum is at best only a statistical estimate of the parameters \(\mathbf{a}\). As we will see in \(\S 15.6\), a change in the parameters that changes \(\chi^{2}\) by an amount \(\ll 1\) is never statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering around near the minimum in a flat valley of complicated topography. The reason is that Marquardt's method generalizes the method of normal equations (§15.4), hence has the same problem as that method with regard to near-degeneracy of the minimum. Outright failure by a zero pivot is possible, but unlikely. More often, a small pivot will generate a large correction which is then rejected, the value of \(\lambda\) being then increased. For sufficiently large \(\lambda\) the matrix \(\left[\alpha^{\prime}\right]\) is positive definite and can have no small pivots. Thus the method does tend to stay away from zero
pivots, but at the cost of a tendency to wander around doing steepest descent in very un-steep degenerate valleys.

These considerations suggest that, in practice, one might as well stop iterating on the first or second occasion that \(\chi^{2}\) decreases by a negligible amount, say either less than 0.01 absolutely or (in case roundoff prevents that being reached) some fractional amount like \(10^{-3}\). Don't stop after a step where \(\chi^{2}\) increases: That only shows that \(\lambda\) has not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to set \(\lambda=0\) and compute the matrix
\[
\begin{equation*}
[C] \equiv[\alpha]^{-1} \tag{15.5.15}
\end{equation*}
\]
which, as before, is the estimated covariance matrix of the standard errors in the fitted parameters a (see next section).

The following pair of functions encodes Marquardt's method for nonlinear parameter estimation. Much of the organization matches that used in lfit of §15.4. In particular the array ia[1..ma] must be input with components one or zero corresponding to whether the respective parameter values a[1..ma] are to be fitted for or held fixed at their input values, respectively.

The routine mrqmin performs one iteration of Marquardt's method. It is first called (once) with alamda \(<0\), which signals the routine to initialize. alamda is set on the first and all subsequent calls to the suggested value of \(\lambda\) for the next iteration; a and chisq are always given back as the best parameters found so far and their \(\chi^{2}\). When convergence is deemed satisfactory, set alamda to zero before a final call. The matrices alpha and covar (which were used as workspace in all previous calls) will then be set to the curvature and covariance matrices for the converged parameter values. The arguments alpha, a, and chisq must not be modified between calls, nor should alamda be, except to set it to zero for the final call. When an uphill step is taken, chisq and a are given back with their input (best) values, but alamda is set to an increased value.

The routine mrqmin calls the routine mrqcof for the computation of the matrix \([\alpha]\) (equation 15.5.11) and vector \(\beta\) (equations 15.5 .6 and 15.5.8). In turn mrqcof calls the user-supplied routine funcs ( \(\mathrm{x}, \mathrm{a}, \mathrm{y}, \mathrm{dyda}\) ), which for input values \(\mathrm{x} \equiv x_{i}\) and \(\mathrm{a} \equiv \mathbf{a}\) calculates the model function \(\mathrm{y} \equiv y\left(x_{i} ; \mathbf{a}\right)\) and the vector of derivatives dyda \(\equiv \partial y / \partial a_{k}\).
\#include "nrutil.h"
void mrqmin(float \(x[], f l o a t ~ y[], ~ f l o a t ~ s i g[], ~ i n t ~ n d a t a, ~ f l o a t ~ a[], ~ i n t ~ i a[], ~\) int ma, float **covar, float **alpha, float *chisq,
void (*funcs) (float, float [], float *, float [], int), float *alamda)
Levenberg-Marquardt method, attempting to reduce the value \(\chi^{2}\) of a fit between a set of data points \(\mathrm{x}[1 . . n d a t a], \mathrm{y}[1 . . n d a t a]\) with individual standard deviations sig[1..ndata], and a nonlinear function dependent on ma coefficients a [1..ma]. The input array ia [1..ma] indicates by nonzero entries those components of \(a\) that should be fitted for, and by zero entries those components that should be held fixed at their input values. The program returns current best-fit values for the parameters a [1..ma], and \(\chi^{2}=\) chisq. The arrays covar[1..ma] [1..ma], alpha[1..ma][1..ma] are used as working space during most iterations. Supply a routine funcs (x, a,yfit,dyda,ma) that evaluates the fitting function
 the first call provide an initial guess for the parameters a, and set alamda<0 for initialization (which then sets alamda=.001). If a step succeeds chisq becomes smaller and alamda decreases by a factor of 10. If a step fails alamda grows by a factor of 10 . You must call this
routine repeatedly until convergence is achieved. Then, make one final call with alamda=0, so that covar [1..ma] [1..ma] returns the covariance matrix, and alpha the curvature matrix. (Parameters held fixed will return zero covariances.)
\{
    void covsrt(float \(* *\) covar, int ma, int ia[], int mfit);
    void gaussj(float \(* *\), int n , float \(* *\) b, int m);
    void mrqcof(float \(x[]\), float y[], float sig[], int ndata, float a[],
        int ia[], int ma, float **alpha, float beta[], float *chisq,
        void (*funcs)(float, float [], float *, float [], int));
    int j,k,l;
    static int mfit
    static float ochisq,*atry,*beta,*da,**oneda;
    if (*alamda < 0.0) \{ Initialization
        atry=vector(1,ma);
        beta=vector (1,ma);
        da=vector (1,ma);
        for (mfit=0,j=1;j<=ma;j++)
            if (ia[j]) mfit++;
        oneda=matrix(1,mfit,1,1);
        *alamda=0.001;
        mrqcof( \(x, y\), sig, ndata, a, ia, ma, alpha, beta, chisq, funcs);
        ochisq=(*chisq);
        for ( \(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{ma} ; \mathrm{j}++\) ) atry \([\mathrm{j}]=\mathrm{a}[\mathrm{j}]\);
    \}
    for ( \(j=1 ; j<=m f i t ; j++\) ) \{ Alter linearized fitting matrix, by augmenting di-
        for ( \(k=1 ; k<=m f i t ; k++\) ) covar \([j][k]=a l p h a[j][k] ; \quad\) agonal elements.
        covar[j][j]=alpha[j][j]*(1.0+(*alamda));
        oneda[j][1]=beta[j];
    \}
    gaussj(covar,mfit,oneda,1); Matrix solution.
    for ( \(\mathrm{j}=1\); \(\mathrm{j}<=\mathrm{mfit} ; \mathrm{j}++\) ) da[j]=oneda[j][1];
    if (*alamda \(=0.0\) ) \{ Once converged, evaluate covariance matrix.
        covsrt(covar,ma,ia,mfit);
        covsrt(alpha,ma,ia,mfit); Spread out alpha to its full size too
        free_matrix(oneda, 1, mfit, 1,1 );
        free_vector(da,1,ma);
        free_vector (beta, 1,ma) ;
        free_vector (atry, 1,ma);
        return;
    \}
    for ( \(j=0, l=1 ; 1<=m a ; 1++\) ) Did the trial succeed?
        if (ia[l]) atry[l]=a[l]+da[++j];
    mrqcof( \(x, y\), sig, ndata, atry, ia, ma, covar, da, chisq,funcs) ;
    if (*chisq < ochisq) \{ Success, accept the new solution.
        *alamda *= 0.1;
        ochisq=(*chisq);
        for ( \(j=1 ; j<=m f i t ; j++\) ) \{
            for ( \(k=1 ; k<=m f i t ; k++\) ) alpha[j] [k]=covar[j][k];
            beta[j] \(=\mathrm{da}[\mathrm{j}]\);
        \}
        for (l=1;1<=ma; \(1++\) ) a[l]=atry[1];
    \(\}\) else \{ Failure, increase alamda and return.
        *alamda *= 10.0;
        *chisq=ochisq;
    \}
\}

Notice the use of the routine covsrt from §15.4. This is merely for rearranging the covariance matrix covar into the order of all ma parameters. The above routine also makes use of
```

\#include "nrutil.h"
void mrqcof(float x[], float y[], float sig[], int ndata, float a[], int ia[],
int ma, float **alpha, float beta[], float *chisq,
void (*funcs)(float, float [], float *, float [], int))
Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in (15.5.8),
and calculate }\mp@subsup{\chi}{}{2}\mathrm{ .
{
int i,j,k,l,m,mfit=0;
float ymod,wt,sig2i,dy,*dyda;
dyda=vector(1,ma);
for (j=1;j<=ma;j++)
if (ia[j]) mfit++;
for (j=1;j<=mfit;j++) { Initialize (symmetric) alpha, beta.
for (k=1;k<=j;k++) alpha[j][k]=0.0;
beta[j]=0.0;
}
*chisq=0.0;
for (i=1;i<=ndata;i++) { Summation loop over all data.
(*funcs)(x[i],a,\&ymod,dyda,ma);
sig2i=1.0/(sig[i]*sig[i]);
dy=y[i]-ymod;
for (j=0,l=1;l<=ma;l++) {
if (ia[l]) {
wt=dyda[l]*sig2i;
for (j++,k=0,m=1;m<=l;m++)
if (ia[m]) alpha[j][++k] += wt*dyda[m];
beta[j] += dy*wt;
}
}
*chisq += dy*dy*sig2i; And find }\mp@subsup{\chi}{}{2}\mathrm{ .
}
for (j=2;j<=mfit;j++) Fill in the symmetric side.
for (k=1;k<j;k++) alpha[k][j]=alpha[j][k];
free_vector(dyda,1,ma);
}

```

\section*{Example}

The following function fgauss is an example of a user-supplied function funcs. Used with the above routine mrqmin (in turn using mrqcof, covsrt, and gaussj), it fits for the model
\[
\begin{equation*}
y(x)=\sum_{k=1}^{K} B_{k} \exp \left[-\left(\frac{x-E_{k}}{G_{k}}\right)^{2}\right] \tag{15.5.16}
\end{equation*}
\]
which is a sum of \(K\) Gaussians, each having a variable position, amplitude, and width. We store the parameters in the order \(B_{1}, E_{1}, G_{1}, B_{2}, E_{2}, G_{2}, \ldots, B_{K}\), \(E_{K}, G_{K}\).
```

\#include <math.h>
void fgauss(float x, float a[], float *y, float dyda[], int na)
y(x;a) is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
Gaussians are stored in consecutive locations of a: a [i] = Bk, a[i+1] = E Ek, a[i+2] = G ,
k=1,···,na/3. The dimensions of the arrays are a[1..na], dyda[1..na].
{
int i;
float fac,ex,arg;
*y=0.0;
for (i=1;i<=na-1;i+=3) {
arg=(x-a[i+1])/a[i+2];
ex=exp(-arg*arg);
fac=a[i]*ex*2.0*arg;
*y += a[i]*ex;
dyda[i]=ex;
dyda[i+1]=fac/a[i+2];
dyda[i+2]=fac*arg/a[i+2];
}
}

```

\section*{More Advanced Methods for Nonlinear Least Squares}

The Levenberg-Marquardt algorithm can be implemented as a model-trust region method for minimization (see \(\S 9.7\) and ref. [2]) applied to the special case of a least squares function. A code of this kind due to Moré [3] can be found in MINPACK [4]. Another algorithm for nonlinear least-squares keeps the secondderivative term we dropped in the Levenberg-Marquardt method whenever it would be better to do so. These methods are called "full Newton-type" methods and are reputed to be more robust than Levenberg-Marquardt, but more complex. One implementation is the code NL2SOL [5].

\section*{CITED REFERENCES AND FURTHER READING:}

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapter 11.
Marquardt, D.W. 1963, Journal of the Society for Industrial and Applied Mathematics, vol. 11, pp. 431-441. [1]
Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press), Chapter III. 2 (by J.E. Dennis).
Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [2]
Moré, J.J. 1977, in Numerical Analysis, Lecture Notes in Mathematics, vol. 630, G.A. Watson, ed. (Berlin: Springer-Verlag), pp. 105-116. [3]
Moré, J.J., Garbow, B.S., and Hillstrom, K.E. 1980, User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74. [4]
Dennis, J.E., Gay, D.M, and Welsch, R.E. 1981, ACM Transactions on Mathematical Software, vol. 7, pp. 348-368; op. cit., pp. 369-383. [5].

\subsection*{15.6 Confidence Limits on Estimated Model Parameters}

Several times already in this chapter we have made statements about the standard errors, or uncertainties, in a set of \(M\) estimated parameters a. We have given some formulas for computing standard deviations or variances of individual parameters (equations \(15.2 .9,15.4 .15,15.4 .19\) ), as well as some formulas for covariances between pairs of parameters (equation 15.2.10; remark following equation 15.4.15; equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning of these quantitative uncertainties, and to give further information about how quantitative confidence limits on fitted parameters can be estimated. The subject can get somewhat technical, and even somewhat confusing, so we will try to make precise statements, even when they must be offered without proof.

Figure 15.6 .1 shows the conceptual scheme of an experiment that "measures" a set of parameters. There is some underlying true set of parameters \(\mathbf{a}_{\text {true }}\) that are known to Mother Nature but hidden from the experimenter. These true parameters are statistically realized, along with random measurement errors, as a measured data set, which we will symbolize as \(\mathcal{D}_{(0)}\). The data set \(\mathcal{D}_{(0)}\) is known to the experimenter. He or she fits the data to a model by \(\chi^{2}\) minimization or some other technique, and obtains measured, i.e., fitted, values for the parameters, which we here denote \(\mathbf{a}_{(0)}\).

Because measurement errors have a random component, \(\mathcal{D}_{(0)}\) is not a unique realization of the true parameters \(\mathbf{a}_{\text {true }}\). Rather, there are infinitely many other realizations of the true parameters as "hypothetical data sets" each of which could have been the one measured, but happened not to be. Let us symbolize these by \(\mathcal{D}_{(1)}, \mathcal{D}_{(2)}, \ldots\). Each one, had it been realized, would have given a slightly different set of fitted parameters, \(\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \ldots\), respectively. These parameter sets \(\mathbf{a}_{(i)}\) therefore occur with some probability distribution in the \(M\)-dimensional space of all possible parameter sets \(\mathbf{a}\). The actual measured set \(\mathbf{a}_{(0)}\) is one member drawn from this distribution.

Even more interesting than the probability distribution of \(\mathbf{a}_{(i)}\) would be the distribution of the difference \(\mathbf{a}_{(i)}-\mathbf{a}_{\text {true }}\). This distribution differs from the former one by a translation that puts Mother Nature's true value at the origin. If we knew this distribution, we would know everything that there is to know about the quantitative uncertainties in our experimental measurement \(\mathbf{a}_{(0)}\).

So the name of the game is to find some way of estimating or approximating the probability distribution of \(\mathbf{a}_{(i)}-\mathbf{a}_{\text {true }}\) without knowing \(\mathbf{a}_{\text {true }}\) and without having available to us an infinite universe of hypothetical data sets.

\section*{Monte Carlo Simulation of Synthetic Data Sets}

Although the measured parameter set \(\mathbf{a}_{(0)}\) is not the true one, let us consider a fictitious world in which it was the true one. Since we hope that our measured parameters are not too wrong, we hope that that fictitious world is not too different from the actual world with parameters \(\mathbf{a}_{\text {true }}\). In particular, let us hope - no, let us assume - that the shape of the probability distribution \(\mathbf{a}_{(i)}-\mathbf{a}_{(0)}\) in the fictitious world is the same, or very nearly the same, as the shape of the probability distribution


Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters \(\mathbf{a}_{\text {true }}\) are realized in a data set, from which fitted (observed) parameters \(\mathbf{a}_{0}\) are obtained. If the experiment were repeated many times, new data sets and new values of the fitted parameters would be obtained.
\(\mathbf{a}_{(i)}-\mathbf{a}_{\text {true }}\) in the real world. Notice that we are not assuming that \(\mathbf{a}_{(0)}\) and \(\mathbf{a}_{\text {true }}\) are equal; they are certainly not. We are only assuming that the way in which random errors enter the experiment and data analysis does not vary rapidly as a function of \(\mathbf{a}_{\text {true }}\), so that \(\mathbf{a}_{(0)}\) can serve as a reasonable surrogate.

Now, often, the distribution of \(\mathbf{a}_{(i)}-\mathbf{a}_{(0)}\) in the fictitious world is within our power to calculate (see Figure 15.6.2). If we know something about the process that generated our data, given an assumed set of parameters \(\mathbf{a}_{(0)}\), then we can usually figure out how to simulate our own sets of "synthetic" realizations of these parameters as "synthetic data sets." The procedure is to draw random numbers from appropriate distributions (cf. \(\S 7.2-\S 7.3\) ) so as to mimic our best understanding of the underlying process and measurement errors in our apparatus. With such random draws, we construct data sets with exactly the same numbers of measured points, and precisely the same values of all control (independent) variables, as our actual data set \(\mathcal{D}_{(0)}\). Let us call these simulated data sets \(\mathcal{D}_{(1)}^{S}, \mathcal{D}_{(2)}^{S}, \ldots\). By construction these are supposed to have exactly the same statistical relationship to \(\mathbf{a}_{(0)}\) as the \(\mathcal{D}_{(i)}\) 's have to \(\mathbf{a}_{\text {true }}\). (For the case where you don't know enough about what you are measuring to do a credible job of simulating it, see below.)

Next, for each \(\mathcal{D}_{(j)}^{S}\), perform exactly the same procedure for estimation of parameters, e.g., \(\chi^{2}\) minimization, as was performed on the actual data to get the parameters \(\mathbf{a}_{(0)}\), giving simulated measured parameters \(\mathbf{a}_{(1)}^{S}, \mathbf{a}_{(2)}^{S}, \ldots\) Each simulated measured parameter set yields a point \(\mathbf{a}_{(i)}^{S}-\mathbf{a}_{(0)}\). Simulate enough data sets and enough derived simulated measured parameters, and you map out the desired probability distribution in \(M\) dimensions.

In fact, the ability to do Monte Carlo simulations in this fashion has revo-


Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters from an actual experiment are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of these fitted parameters around the (known) surrogate true parameters is thus studied.
lutionized many fields of modern experimental science. Not only is one able to characterize the errors of parameter estimation in a very precise way; one can also try out on the computer different methods of parameter estimation, or different data reduction techniques, and seek to minimize the uncertainty of the result according to any desired criteria. Offered the choice between mastery of a five-foot shelf of analytical statistics books and middling ability at performing statistical Monte Carlo simulations, we would surely choose to have the latter skill.

\section*{Quick-and-Dirty Monte Carlo: The Bootstrap Method}

Here is a powerful technique that can often be used when you don't know enough about the underlying process, or the nature of your measurement errors, to do a credible Monte Carlo simulation. Suppose that your data set consists of \(N\) independent and identically distributed (or iid) "data points." Each data point probably consists of several numbers, e.g., one or more control variables (uniformly distributed, say, in the range that you have decided to measure) and one or more associated measured values (each distributed however Mother Nature chooses). "Iid" means that the sequential order of the data points is not of consequence to the process that you are using to get the fitted parameters a. For example, a \(\chi^{2}\) sum like (15.5.5) does not care in what order the points are added. Even simpler examples are the mean value of a measured quantity, or the mean of some function of the measured quantities.

The bootstrap method [1] uses the actual data set \(\mathcal{D}_{(0)}^{S}\), with its \(N\) data points, to generate any number of synthetic data sets \(\mathcal{D}_{(1)}^{S}, \mathcal{D}_{(2)}^{S}, \ldots\), also with \(N\) data points. The procedure is simply to draw \(N\) data points at a time with replacement from the
set \(\mathcal{D}_{(0)}^{S}\). Because of the replacement, you do not simply get back your original data set each time. You get sets in which a random fraction of the original points, typically \(\sim 1 / e \approx 37 \%\), are replaced by duplicated original points. Now, exactly as in the previous discussion, you subject these data sets to the same estimation procedure as was performed on the actual data, giving a set of simulated measured parameters \(\mathbf{a}_{(1)}^{S}, \mathbf{a}_{(2)}^{S}, \ldots\). These will be distributed around \(\mathbf{a}_{(0)}\) in close to the same way that \(\mathbf{a}_{(0)}\) is distributed around \(\mathbf{a}_{\text {true }}\).

Sounds like getting something for nothing, doesn't it? In fact, it has taken more than a decade for the bootstrap method to become accepted by statisticians. By now, however, enough theorems have been proved to render the bootstrap reputable (see [2] for references). The basic idea behind the bootstrap is that the actual data set, viewed as a probability distribution consisting of delta functions at the measured values, is in most cases the best - or only - available estimator of the underlying probability distribution. It takes courage, but one can often simply use that distribution as the basis for Monte Carlo simulations.

Watch out for cases where the bootstrap's "iid" assumption is violated. For example, if you have made measurements at evenly spaced intervals of some control variable, then you can usually get away with pretending that these are "iid," uniformly distributed over the measured range. However, some estimators of a (e.g., ones involving Fourier methods) might be particularly sensitive to all the points on a grid being present. In that case, the bootstrap is going to give a wrong distribution. Also watch out for estimators that look at anything like small-scale clumpiness within the \(N\) data points, or estimators that sort the data and look at sequential differences. Obviously the bootstrap will fail on these, too. (The theorems justifying the method are still true, but some of their technical assumptions are violated by these examples.)

For a large class of problems, however, the bootstrap does yield easy, very quick, Monte Carlo estimates of the errors in an estimated parameter set.

\section*{Confidence Limits}

Rather than present all details of the probability distribution of errors in parameter estimation, it is common practice to summarize the distribution in the form of confidence limits. The full probability distribution is a function defined on the \(M\)-dimensional space of parameters \(\mathbf{a}\). A confidence region (or confidence interval) is just a region of that \(M\)-dimensional space (hopefully a small region) that contains a certain (hopefully large) percentage of the total probability distribution. You point to a confidence region and say, e.g., "there is a 99 percent chance that the true parameter values fall within this region around the measured value."

It is worth emphasizing that you, the experimenter, get to pick both the confidence level ( 99 percent in the above example), and the shape of the confidence region. The only requirement is that your region does include the stated percentage of probability. Certain percentages are, however, customary in scientific usage: 68.3 percent (the lowest confidence worthy of quoting), 90 percent, 95.4 percent, 99 percent, and 99.73 percent. Higher confidence levels are conventionally "ninety-nine point nine . . nine." As for shape, obviously you want a region that is compact and reasonably centered on your measurement \(\mathbf{a}_{(0)}\), since the whole purpose of a confidence limit is to inspire confidence in that measured value. In one dimension, the convention is to use a line segment centered on the measured value; in higher dimensions, ellipses or ellipsoids are most frequently used.


Figure 15.6.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measured points (here \(68 \%\) ) lies (i) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the ellipse.

You might suspect, correctly, that the numbers 68.3 percent, 95.4 percent, and 99.73 percent, and the use of ellipsoids, have some connection with a normal distribution. That is true historically, but not always relevant nowadays. In general, the probability distribution of the parameters will not be normal, and the above numbers, used as levels of confidence, are purely matters of convention.

Figure 15.6 .3 sketches a possible probability distribution for the case \(M=2\). Shown are three different confidence regions which might usefully be given, all at the same confidence level. The two vertical lines enclose a band (horizontal inverval) which represents the 68 percent confidence interval for the variable \(a_{1}\) without regard to the value of \(a_{2}\). Similarly the horizontal lines enclose a 68 percent confidence interval for \(a_{2}\). The ellipse shows a 68 percent confidence interval for \(a_{1}\) and \(a_{2}\) jointly. Notice that to enclose the same probability as the two bands, the ellipse must necessarily extend outside of both of them (a point we will return to below).

\section*{Constant Chi-Square Boundaries as Confidence Limits}

When the method used to estimate the parameters \(\mathbf{a}_{(0)}\) is chi-square minimization, as in the previous sections of this chapter, then there is a natural choice for the shape of confidence intervals, whose use is almost universal. For the observed data set \(\mathcal{D}_{(0)}\), the value of \(\chi^{2}\) is a minimum at \(\mathbf{a}_{(0)}\). Call this minimum value \(\chi_{\min }^{2}\). If


Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted minimum. The solid curves, with \(\Delta \chi^{2}=1.00,2.71,6.63\) project onto one-dimensional intervals \(A A^{\prime}\), \(B B^{\prime}, C C^{\prime}\). These intervals - not the ellipses themselves - contain \(68.3 \%, 90 \%\), and \(99 \%\) of normally distributed data. The ellipse that contains \(68.3 \%\) of normally distributed data is shown dashed, and has \(\Delta \chi^{2}=2.30\). For additional numerical values, see accompanying table.
the vector \(\mathbf{a}\) of parameter values is perturbed away from \(\mathbf{a}_{(0)}\), then \(\chi^{2}\) increases. The region within which \(\chi^{2}\) increases by no more than a set amount \(\Delta \chi^{2}\) defines some \(M\)-dimensional confidence region around \(\mathbf{a}_{(0)}\). If \(\Delta \chi^{2}\) is set to be a large number, this will be a big region; if it is small, it will be small. Somewhere in between there will be choices of \(\Delta \chi^{2}\) that cause the region to contain, variously, 68 percent, 90 percent, etc. of probability distribution for a's, as defined above. These regions are taken as the confidence regions for the parameters \(\mathbf{a}_{(0)}\).

Very frequently one is interested not in the full \(M\)-dimensional confidence region, but in individual confidence regions for some smaller number \(\nu\) of parameters. For example, one might be interested in the confidence interval of each parameter taken separately (the bands in Figure 15.6.3), in which case \(\nu=1\). In that case, the natural confidence regions in the \(\nu\)-dimensional subspace of the \(M\)-dimensional parameter space are the projections of the \(M\)-dimensional regions defined by fixed \(\Delta \chi^{2}\) into the \(\nu\)-dimensional spaces of interest. In Figure 15.6.4, for the case \(M=2\), we show regions corresponding to several values of \(\Delta \chi^{2}\). The one-dimensional confidence interval in \(a_{2}\) corresponding to the region bounded by \(\Delta \chi^{2}=1\) lies between the lines \(A\) and \(A^{\prime}\).

Notice that the projection of the higher-dimensional region on the lowerdimension space is used, not the intersection. The intersection would be the band between \(Z\) and \(Z^{\prime}\). It is never used. It is shown in the figure only for the purpose of making this cautionary point, that it should not be confused with the projection.

\section*{Probability Distribution of Parameters in the Normal Case}

You may be wondering why we have, in this section up to now, made no connection at all with the error estimates that come out of the \(\chi^{2}\) fitting procedure, most notably the covariance matrix \(C_{i j}\). The reason is this: \(\chi^{2}\) minimization is a useful means for estimating parameters even if the measurement errors are not normally distributed. While normally distributed errors are required if the \(\chi^{2}\) parameter estimate is to be a maximum likelihood estimator ( \(\S 15.1\) ), one is often willing to give up that property in return for the relative convenience of the \(\chi^{2}\) procedure. Only in extreme cases, measurement error distributions with very large "tails," is \(\chi^{2}\) minimization abandoned in favor of more robust techniques, as will be discussed in §15.7.

However, the formal covariance matrix that comes out of a \(\chi^{2}\) minimization has a clear quantitative interpretation only if (or to the extent that) the measurement errors actually are normally distributed. In the case of nonnormal errors, you are "allowed"
- to fit for parameters by minimizing \(\chi^{2}\)
- to use a contour of constant \(\Delta \chi^{2}\) as the boundary of your confidence region
- to use Monte Carlo simulation or detailed analytic calculation in determining which contour \(\Delta \chi^{2}\) is the correct one for your desired confidence level
- to give the covariance matrix \(C_{i j}\) as the "formal covariance matrix of the fit."
You are not allowed
- to use formulas that we now give for the case of normal errors, which establish quantitative relationships among \(\Delta \chi^{2}, C_{i j}\), and the confidence level.
Here are the key theorems that hold when (i) the measurement errors are normally distributed, and either (ii) the model is linear in its parameters or (iii) the sample size is large enough that the uncertainties in the fitted parameters a do not extend outside a region in which the model could be replaced by a suitable linearized model. [Note that condition (iii) does not preclude your use of a nonlinear routine like mqrfit to find the fitted parameters.]

Theorem A. \(\quad \chi_{\min }^{2}\) is distributed as a chi-square distribution with \(N-M\) degrees of freedom, where \(N\) is the number of data points and \(M\) is the number of fitted parameters. This is the basic theorem that lets you evaluate the goodness-of-fit of the model, as discussed above in \(\S 15.1\). We list it first to remind you that unless the goodness-of-fit is credible, the whole estimation of parameters is suspect.

Theorem B. If \(\mathbf{a}_{(j)}^{S}\) is drawn from the universe of simulated data sets with actual parameters \(\mathbf{a}_{(0)}\), then the probability distribution of \(\delta \mathbf{a} \equiv \mathbf{a}_{(j)}^{S}-\mathbf{a}_{(0)}\) is the multivariate normal distribution
\[
P(\delta \mathbf{a}) d a_{1} \ldots d a_{M}=\text { const. } \times \exp \left(-\frac{1}{2} \delta \mathbf{a} \cdot[\alpha] \cdot \delta \mathbf{a}\right) d a_{1} \ldots d a_{M}
\]
where \([\alpha]\) is the curvature matrix defined in equation (15.5.8).
Theorem \(C\). If \(\mathbf{a}_{(j)}^{S}\) is drawn from the universe of simulated data sets with actual parameters \(\mathbf{a}_{(0)}\), then the quantity \(\Delta \chi^{2} \equiv \chi^{2}\left(\mathbf{a}_{(j)}\right)-\chi^{2}\left(\mathbf{a}_{(0)}\right)\) is distributed as a chi-square distribution with \(M\) degrees of freedom. Here the \(\chi^{2}\) 's are all
evaluated using the fixed (actual) data set \(\mathcal{D}_{(0)}\). This theorem makes the connection between particular values of \(\Delta \chi^{2}\) and the fraction of the probability distribution that they enclose as an \(M\)-dimensional region, i.e., the confidence level of the \(M\)-dimensional confidence region.

Theorem D. Suppose that \(\mathbf{a}_{(j)}^{S}\) is drawn from the universe of simulated data sets (as above), that its first \(\nu\) components \(a_{1}, \ldots, a_{\nu}\) are held fixed, and that its remaining \(M-\nu\) components are varied so as to minimize \(\chi^{2}\). Call this minimum value \(\chi_{\nu}^{2}\). Then \(\Delta \chi_{\nu}^{2} \equiv \chi_{\nu}^{2}-\chi_{\min }^{2}\) is distributed as a chi-square distribution with \(\nu\) degrees of freedom. If you consult Figure 15.6.4, you will see that this theorem connects the projected \(\Delta \chi^{2}\) region with a confidence level. In the figure, a point that is held fixed in \(a_{2}\) and allowed to vary in \(a_{1}\) minimizing \(\chi^{2}\) will seek out the ellipse whose top or bottom edge is tangent to the line of constant \(a_{2}\), and is therefore the line that projects it onto the smaller-dimensional space.

As a first example, let us consider the case \(\nu=1\), where we want to find the confidence interval of a single parameter, say \(a_{1}\). Notice that the chi-square distribution with \(\nu=1\) degree of freedom is the same distribution as that of the square of a single normally distributed quantity. Thus \(\Delta \chi_{\nu}^{2}<1\) occurs 68.3 percent of the time (1- \(\sigma\) for the normal distribution), \(\Delta \chi_{\nu}^{2}<4\) occurs 95.4 percent of the time (2- \(\sigma\) for the normal distribution), \(\Delta \chi_{\nu}^{2}<9\) occurs 99.73 percent of the time (3- \(\sigma\) for the normal distribution), etc. In this manner you find the \(\Delta \chi_{\nu}^{2}\) that corresponds to your desired confidence level. (Additional values are given in the accompanying table.)

Let \(\delta \mathbf{a}\) be a change in the parameters whose first component is arbitrary, \(\delta a_{1}\), but the rest of whose components are chosen to minimize the \(\Delta \chi^{2}\). Then Theorem D applies. The value of \(\Delta \chi^{2}\) is given in general by
\[
\begin{equation*}
\Delta \chi^{2}=\delta \mathbf{a} \cdot[\alpha] \cdot \delta \mathbf{a} \tag{15.6.1}
\end{equation*}
\]
which follows from equation (15.5.8) applied at \(\chi_{\min }^{2}\) where \(\beta_{k}=0\). Since \(\delta \mathbf{a}\) by hypothesis minimizes \(\chi^{2}\) in all but its first component, the second through \(M\) th components of the normal equations (15.5.9) continue to hold. Therefore, the solution of (15.5.9) is
\[
\delta \mathbf{a}=[\alpha]^{-1} \cdot\left(\begin{array}{c}
c  \tag{15.6.2}\\
0 \\
\vdots \\
0
\end{array}\right)=[C] \cdot\left(\begin{array}{c}
c \\
0 \\
\vdots \\
0
\end{array}\right)
\]
where \(c\) is one arbitrary constant that we get to adjust to make (15.6.1) give the desired left-hand value. Plugging (15.6.2) into (15.6.1) and using the fact that \([C]\) and \([\alpha]\) are inverse matrices of one another, we get
\[
\begin{equation*}
c=\delta a_{1} / C_{11} \quad \text { and } \quad \Delta \chi_{\nu}^{2}=\left(\delta a_{1}\right)^{2} / C_{11} \tag{15.6.3}
\end{equation*}
\]
or
\[
\begin{equation*}
\delta a_{1}= \pm \sqrt{\Delta \chi_{\nu}^{2}} \sqrt{C_{11}} \tag{15.6.4}
\end{equation*}
\]

At last! A relation between the confidence interval \(\pm \delta a_{1}\) and the formal standard error \(\sigma_{1} \equiv \sqrt{C_{11}}\). Not unreasonably, we find that the 68 percent confidence interval is \(\pm \sigma_{1}\), the 95 percent confidence interval is \(\pm 2 \sigma_{1}\), etc.
\begin{tabular}{|l|cccccc|}
\hline \multicolumn{7}{|c|}{\(\Delta \chi^{2}\) as a Function of Confidence Level and Degrees of Freedom } \\
\hline & & \multicolumn{6}{c|}{\(\nu\)} \\
\multicolumn{1}{|c|}{\(p\)} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \(68.3 \%\) & 1.00 & 2.30 & 3.53 & 4.72 & 5.89 & 7.04 \\
\(90 \%\) & 2.71 & 4.61 & 6.25 & 7.78 & 9.24 & 10.6 \\
\(95.4 \%\) & 4.00 & 6.17 & 8.02 & 9.70 & 11.3 & 12.8 \\
\(99 \%\) & 6.63 & 9.21 & 11.3 & 13.3 & 15.1 & 16.8 \\
\(99.73 \%\) & 9.00 & 11.8 & 14.2 & 16.3 & 18.2 & 20.1 \\
\(99.99 \%\) & 15.1 & 18.4 & 21.1 & 23.5 & 25.7 & 27.8 \\
\hline
\end{tabular}

These considerations hold not just for the individual parameters \(a_{i}\), but also for any linear combination of them: If
\[
\begin{equation*}
b \equiv \sum_{k=1}^{M} c_{i} a_{i}=\mathbf{c} \cdot \mathbf{a} \tag{15.6.5}
\end{equation*}
\]
then the 68 percent confidence interval on \(b\) is
\[
\begin{equation*}
\delta b= \pm \sqrt{\mathbf{c} \cdot[C] \cdot \mathbf{c}} \tag{15.6.6}
\end{equation*}
\]

However, these simple, normal-sounding numerical relationships do not hold in the case \(\nu>1\) [3]. In particular, \(\Delta \chi^{2}=1\) is not the boundary, nor does it project onto the boundary, of a 68.3 percent confidence region when \(\nu>1\). If you want to calculate not confidence intervals in one parameter, but confidence ellipses in two parameters jointly, or ellipsoids in three, or higher, then you must follow the following prescription for implementing Theorems C and D above:
- Let \(\nu\) be the number of fitted parameters whose joint confidence region you wish to display, \(\nu \leq M\). Call these parameters the "parameters of interest."
- Let \(p\) be the confidence limit desired, e.g., \(p=0.68\) or \(p=0.95\).
- Find \(\Delta\) (i.e., \(\Delta \chi^{2}\) ) such that the probability of a chi-square variable with \(\nu\) degrees of freedom being less than \(\Delta\) is \(p\). For some useful values of \(p\) and \(\nu, \Delta\) is given in the table. For other values, you can use the routine gammq and a simple root-finding routine (e.g., bisection) to find \(\Delta\) such that \(\operatorname{gammq}(\nu / 2, \Delta / 2)=1-p\).
- Take the \(M \times M\) covariance matrix \([C]=[\alpha]^{-1}\) of the chi-square fit. Copy the intersection of the \(\nu\) rows and columns corresponding to the parameters of interest into a \(\nu \times \nu\) matrix denoted [ \(C_{\text {proj }}\) ].
- Invert the matrix \(\left[C_{\text {proj }}\right]\). (In the one-dimensional case this was just taking the reciprocal of the element \(C_{11}\).)
- The equation for the elliptical boundary of your desired confidence region in the \(\nu\)-dimensional subspace of interest is
\[
\begin{equation*}
\Delta=\delta \mathbf{a}^{\prime} \cdot\left[C_{\mathrm{proj}}\right]^{-1} \cdot \delta \mathbf{a}^{\prime} \tag{15.6.7}
\end{equation*}
\]
where \(\delta \mathbf{a}^{\prime}\) is the \(\nu\)-dimensional vector of parameters of interest.


Figure 15.6.5. Relation of the confidence region ellipse \(\Delta \chi^{2}=1\) to quantities computed by singular value decomposition. The vectors \(\mathbf{V}_{(i)}\) are unit vectors along the principal axes of the confidence region. The semi-axes have lengths equal to the reciprocal of the singular values \(w_{i}\). If the axes are all scaled by some constant factor \(\alpha, \Delta \chi^{2}\) is scaled by the factor \(\alpha^{2}\).

If you are confused at this point, you may find it helpful to compare Figure 15.6.4 and the accompanying table, considering the case \(M=2\) with \(\nu=1\) and \(\nu=2\). You should be able to verify the following statements: (i) The horizontal band between \(C\) and \(C^{\prime}\) contains 99 percent of the probability distribution, so it is a confidence limit on \(a_{2}\) alone at this level of confidence. (ii) Ditto the band between \(B\) and \(B^{\prime}\) at the 90 percent confidence level. (iii) The dashed ellipse, labeled by \(\Delta \chi^{2}=2.30\), contains 68.3 percent of the probability distribution, so it is a confidence region for \(a_{1}\) and \(a_{2}\) jointly, at this level of confidence.

\section*{Confidence Limits from Singular Value Decomposition}

When you have obtained your \(\chi^{2}\) fit by singular value decomposition (§15.4), the information about the fit's formal errors comes packaged in a somewhat different, but generally more convenient, form. The columns of the matrix \(\mathbf{V}\) are an orthonormal set of \(M\) vectors that are the principal axes of the \(\Delta \chi^{2}=\) constant ellipsoids. We denote the columns as \(\mathbf{V}_{(1)} \ldots \mathbf{V}_{(M)}\). The lengths of those axes are inversely proportional to the corresponding singular values \(w_{1} \ldots w_{M}\); see Figure 15.6.5. The boundaries of the ellipsoids are thus given by
\[
\begin{equation*}
\Delta \chi^{2}=w_{1}^{2}\left(\mathbf{V}_{(1)} \cdot \delta \mathbf{a}\right)^{2}+\cdots+w_{M}^{2}\left(\mathbf{V}_{(M)} \cdot \delta \mathbf{a}\right)^{2} \tag{15.6.8}
\end{equation*}
\]
which is the justification for writing equation (15.4.18) above. Keep in mind that it is much easier to plot an ellipsoid given a list of its vector principal axes, than given its matrix quadratic form!

The formula for the covariance matrix \([C]\) in terms of the columns \(\mathbf{V}_{(i)}\) is
\[
\begin{equation*}
[C]=\sum_{i=1}^{M} \frac{1}{w_{i}^{2}} \mathbf{V}_{(i)} \otimes \mathbf{V}_{(i)} \tag{15.6.9}
\end{equation*}
\]
or, in components,
\[
\begin{equation*}
C_{j k}=\sum_{i=1}^{M} \frac{1}{w_{i}^{2}} V_{j i} V_{k i} \tag{15.6.10}
\end{equation*}
\]

CITED REFERENCES AND FURTHER READING:
Efron, B. 1982, The Jackknife, the Bootstrap, and Other Resampling Plans (Philadelphia: S.I.A.M.). [1]

Efron, B., and Tibshirani, R. 1986, Statistical Science vol. 1, pp. 54-77. [2]
Avni, Y. 1976, Astrophysical Journal, vol. 210, pp. 642-646. [3]
Lampton, M., Margon, M., and Bowyer, S. 1976, Astrophysical Journal, vol. 208, pp. 177-190.
Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).
Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

\subsection*{15.7 Robust Estimation}

The concept of robustness has been mentioned in passing several times already. In \(\S 14.1\) we noted that the median was a more robust estimator of central value than the mean; in \(\S 14.6\) it was mentioned that rank correlation is more robust than linear correlation. The concept of outlier points as exceptions to a Gaussian model for experimental error was discussed in \(\S 15.1\).

The term "robust" was coined in statistics by G.E.P. Box in 1953. Various definitions of greater or lesser mathematical rigor are possible for the term, but in general, referring to a statistical estimator, it means "insensitive to small departures from the idealized assumptions for which the estimator is optimized." \([1,2]\) The word "small" can have two different interpretations, both important: either fractionally small departures for all data points, or else fractionally large departures for a small number of data points. It is the latter interpretation, leading to the notion of outlier points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many, if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much as equations (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually the most relevant class for model-fitting, that is, estimation of parameters. We therefore consider these estimates in some detail below.

L-estimates are "linear combinations of order statistics." These are most applicable to estimations of central value and central tendency, though they can occasionally be applied to some problems in estimation of parameters. Two "typical" L-estimates will give you the general idea. They are (i) the median, and (ii) Tukey's trimean, defined as the weighted average of the first, second, and third quartile points in a distribution, with weights \(1 / 4,1 / 2\), and \(1 / 4\), respectively.
\(R\)-estimates are estimates based on rank tests. For example, the equality or inequality of two distributions can be estimated by the Wilcoxon test of computing the mean rank of one distribution in a combined sample of both distributions. The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order


Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A one-dimensional distribution with a tail of outliers; statistical fluctuations in these outliers can preventaccurate determination of the position of the central peak. (b) A distribution in two dimensions fitted to a straight line; non-robust techniques such as least-squares fitting can have undesired sensitivity to outlying points.
correlation coefficient (14.6.1) are R-estimates in essence, if not always by formal definition.

Some other kinds of robust techniques, coming from the fields of optimal control and filtering rather than from the field of mathematical statistics, are mentioned at the end of this section. Some examples where robust statistical methods are desirable are shown in Figure 15.7.1.

\section*{Estimation of Parameters by Local M-Estimates}

Suppose we know that our measurement errors are not normally distributed. Then, in deriving a maximum-likelihood formula for the estimated parameters \(\mathbf{a}\) in a model \(y(x ; \mathbf{a})\), we would write instead of equation (15.1.3)
\[
\begin{equation*}
P=\prod_{i=1}^{N}\left\{\exp \left[-\rho\left(y_{i}, y\left\{x_{i} ; \mathbf{a}\right\}\right)\right] \Delta y\right\} \tag{15.7.1}
\end{equation*}
\]
where the function \(\rho\) is the negative logarithm of the probability density. Taking the logarithm of (15.7.1) analogously with (15.1.4), we find that we want to minimize the expression
\[
\begin{equation*}
\sum_{i=1}^{N} \rho\left(y_{i}, y\left\{x_{i} ; \mathbf{a}\right\}\right) \tag{15.7.2}
\end{equation*}
\]

Very often, it is the case that the function \(\rho\) depends not independently on its two arguments, measured \(y_{i}\) and predicted \(y\left(x_{i}\right)\), but only on their difference, at least if scaled by some weight factors \(\sigma_{i}\) which we are able to assign to each point. In this case the M-estimate is said to be local, and we can replace (15.7.2) by the prescription
\[
\begin{equation*}
\text { minimize over a } \quad \sum_{i=1}^{N} \rho\left(\frac{y_{i}-y\left(x_{i} ; \mathbf{a}\right)}{\sigma_{i}}\right) \tag{15.7.3}
\end{equation*}
\]
where the function \(\rho(z)\) is a function of a single variable \(z \equiv\left[y_{i}-y\left(x_{i}\right)\right] / \sigma_{i}\).
If we now define the derivative of \(\rho(z)\) to be a function \(\psi(z)\),
\[
\begin{equation*}
\psi(z) \equiv \frac{d \rho(z)}{d z} \tag{15.7.4}
\end{equation*}
\]
then the generalization of (15.1.7) to the case of a general M-estimate is
\[
\begin{equation*}
0=\sum_{i=1}^{N} \frac{1}{\sigma_{i}} \psi\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right)\left(\frac{\partial y\left(x_{i} ; \mathbf{a}\right)}{\partial a_{k}}\right) \quad k=1, \ldots, M \tag{15.7.5}
\end{equation*}
\]

If you compare (15.7.3) to (15.1.3), and (15.7.5) to (15.1.7), you see at once that the specialization for normally distributed errors is
\[
\begin{equation*}
\rho(z)=\frac{1}{2} z^{2} \quad \psi(z)=z \quad \text { (normal) } \tag{15.7.6}
\end{equation*}
\]

If the errors are distributed as a double or two-sided exponential, namely
\[
\begin{equation*}
\text { Prob }\left\{y_{i}-y\left(x_{i}\right)\right\} \sim \exp \left(-\left|\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right|\right) \tag{15.7.7}
\end{equation*}
\]
then, by contrast,
\[
\begin{equation*}
\rho(x)=|z| \quad \psi(z)=\operatorname{sgn}(z) \quad \text { (double exponential) } \tag{15.7.8}
\end{equation*}
\]

Comparing to equation (15.7.3), we see that in this case the maximum likelihood estimator is obtained by minimizing the mean absolute deviation, rather than the mean square deviation. Here the tails of the distribution, although exponentially decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive - therefore sometimes even more realistic - tails is the Cauchy or Lorentzian distribution,
\[
\begin{equation*}
\operatorname{Prob}\left\{y_{i}-y\left(x_{i}\right)\right\} \sim \frac{1}{1+\frac{1}{2}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}} \tag{15.7.9}
\end{equation*}
\]

This implies
\[
\begin{equation*}
\rho(z)=\log \left(1+\frac{1}{2} z^{2}\right) \quad \psi(z)=\frac{z}{1+\frac{1}{2} z^{2}} \quad \text { (Lorentzian) } \tag{15.7.10}
\end{equation*}
\]

Notice that the \(\psi\) function occurs as a weighting function in the generalized normal equations (15.7.5). For normally distributed errors, equation (15.7.6) says that the more deviant the points, the greater the weight. By contrast, when tails are somewhat more prominent, as in (15.7.7), then (15.7.8) says that all deviant points get the same relative weight, with only the sign information used. Finally, when the tails are even larger, (15.7.10) says the \(\psi\) increases with deviation, then starts decreasing, so that very deviant points - the true outliers - are not counted at all in the estimation of the parameters.

This general idea, that the weight given individual points should first increase with deviation, then decrease, motivates some additional prescriptions for \(\psi\) which do not especially correspond to standard, textbook probability distributions. Two examples are

Andrew's sine
\[
\psi(z)=\left\{\begin{array}{cl}
\sin (z / c) & |z|<c \pi  \tag{15.7.11}\\
0 & |z|>c \pi
\end{array}\right.
\]

If the measurement errors happen to be normal after all, with standard deviations \(\sigma_{i}\), then it can be shown that the optimal value for the constant \(c\) is \(c=2.1\).

Tukey's biweight
\[
\psi(z)=\left\{\begin{array}{cl}
z\left(1-z^{2} / c^{2}\right)^{2} & |z|<c  \tag{15.7.12}\\
0 & |z|>c
\end{array}\right.
\]
where the optimal value of \(c\) for normal errors is \(c=6.0\).

\section*{Numerical Calculation of M-Estimates}

To fit a model by means of an M-estimate, you first decide which M-estimate you want, that is, which matching pair \(\rho, \psi\) you want to use. We rather like (15.7.8) or (15.7.10).

You then have to make an unpleasant choice between two fairly difficult problems. Either find the solution of the nonlinear set of \(M\) equations (15.7.5), or else minimize the single function in \(M\) variables (15.7.3).

Notice that the function (15.7.8) has a discontinuous \(\psi\), and a discontinuous derivative for \(\rho\). Such discontinuities frequently wreak havoc on both general nonlinear equation solvers and general function minimizing routines. You might now think of rejecting (15.7.8) in favor of (15.7.10), which is smoother. However, you will find that the latter choice is also bad news for many general equation solving or minimization routines: small changes in the fitted parameters can drive \(\psi(z)\) off its peak into one or the other of its asymptotically small regimes. Therefore, different terms in the equation spring into or out of action (almost as bad as analytic discontinuities).

Don't despair. If your computer budget (or, for personal computers, patience) is up to it, this is an excellent application for the downhill simplex minimization
algorithm exemplified in amoeba \(\S 10.4\) or amebsa in \(\S 10.9\). Those algorithms make no assumptions about continuity; they just ooze downhill and will work for virtually any sane choice of the function \(\rho\).

It is very much to your (financial) advantage to find good starting values, however. Often this is done by first fitting the model by the standard \(\chi^{2}\) (nonrobust) techniques, e.g., as described in \(\S 15.4\) or \(\S 15.5\). The fitted parameters thus obtained are then used as starting values in amoeba, now using the robust choice of \(\rho\) and minimizing the expression (15.7.3).

\section*{Fitting a Line by Minimizing Absolute Deviation}

Occasionally there is a special case that happens to be much easier than is suggested by the general strategy outlined above. The case of equations (15.7.7)(15.7.8), when the model is a simple straight line
\[
\begin{equation*}
y(x ; a, b)=a+b x \tag{15.7.13}
\end{equation*}
\]
and where the weights \(\sigma_{i}\) are all equal, happens to be such a case. The problem is precisely the robust version of the problem posed in equation (15.2.1) above, namely fit a straight line through a set of data points. The merit function to be minimized is
\[
\begin{equation*}
\sum_{i=1}^{N}\left|y_{i}-a-b x_{i}\right| \tag{15.7.14}
\end{equation*}
\]
rather than the \(\chi^{2}\) given by equation (15.2.2).
The key simplification is based on the following fact: The median \(c_{M}\) of a set of numbers \(c_{i}\) is also that value which minimizes the sum of the absolute deviations
\[
\sum_{i}\left|c_{i}-c_{M}\right|
\]
(Proof: Differentiate the above expression with respect to \(c_{M}\) and set it to zero.)
It follows that, for fixed \(b\), the value of \(a\) that minimizes (15.7.14) is
\[
\begin{equation*}
a=\operatorname{median}\left\{y_{i}-b x_{i}\right\} \tag{15.7.15}
\end{equation*}
\]

Equation (15.7.5) for the parameter \(b\) is
\[
\begin{equation*}
0=\sum_{i=1}^{N} x_{i} \operatorname{sgn}\left(y_{i}-a-b x_{i}\right) \tag{15.7.16}
\end{equation*}
\]
(where \(\operatorname{sgn}(0)\) is to be interpreted as zero). If we replace \(a\) in this equation by the implied function \(a(b)\) of (15.7.15), then we are left with an equation in a single variable which can be solved by bracketing and bisection, as described in §9.1. (In fact, it is dangerous to use any fancier method of root-finding, because of the discontinuities in equation 15.7.16.)

Here is a routine that does all this. It calls select (§8.5) to find the median. The bracketing and bisection are built in to the routine, as is the \(\chi^{2}\) solution that generates the initial guesses for \(a\) and \(b\). Notice that the evaluation of the right-hand side of (15.7.16) occurs in the function rofunc, with communication via global (top-level) variables.
```

\#include <math.h>
\#include "nrutil.h"
int ndatat;
float *xt,*yt,aa,abdevt;
void medfit(float x[], float y[], int ndata, float *a, float *b, float *abdev)
Fits y=a+bx by the criterion of least absolute deviations. The arrays x[1..ndata] and
y [1..ndata] are the input experimental points. The fitted parameters a and b are output,
along with abdev, which is the mean absolute deviation (in y) of the experimental points from
the fitted line. This routine uses the routine rofunc, with communication via global variables.
{
float rofunc(float b);
int j;
float bb,b1,b2,del,f,f1,f2,sigb,temp;
float sx=0.0,sy=0.0,sxy=0.0,sxx=0.0,chisq=0.0;
ndatat=ndata;
xt=x;
yt=y
for (j=1;j<=ndata;j++) { As a first guess for a and b, we will find the least-
sx += x[j]
sy += y[j];
sxy += x[j]*y[j]
sxx += x[j]*x[j];
}
del=ndata*sxx-sx*sx
aa=(sxx*sy-sx*sxy)/del; Least-squares solutions.
bb=(ndata*sxy-sx*sy)/del;
for (}j=1;j<=ndata;j++
chisq += (temp=y[j]-(aa+bb*x[j]),temp*temp);
sigb=sqrt(chisq/del); The standard deviation will give some idea of how
b1=bb;
f1=rofunc(b1);
b2=bb+SIGN(3.0*sigb,f1);
Guess bracket as 3-\sigma away, in the downhill direction known from f1.
f2=rofunc(b2);
if (b2 == b1) {
*a=aa;
*b=bb;
*abdev=abdevt/ndata
return;
}
while (f1*f2 > 0.0) { Bracketing
bb=b2+1.6*(b2-b1);
b1=b2;
f1=f2;
b2=bb;
f2=rofunc(b2);
}
sigb=0.01*sigb;
while (fabs(b2-b1) > sigb) {
Refine until error a negligible number of standard
deviations.
bb=b1+0.5*(b2-b1);
Bisection.
if (bb == b1 || bb == b2) break;
f=rofunc(bb);
if (f*f1 >= 0.0) {
f1=f;
b1=bb;
} else {
f2=f;
b2=bb;
}
}
*a=aa;
*b=bb;

```
```

 *abdev=abdevt/ndata;
 }
\#include <math.h>
\#include "nrutil.h"
\#define EPS 1.0e-7
extern int ndatat; Defined in medfit.
extern float *xt,*yt,aa,abdevt;
float rofunc(float b)
Evaluates the right-hand side of equation (15.7.16) for a given value of b. Communication with
the routine medfit is through global variables.
{
float select(unsigned long k, unsigned long n, float arr[]);
int j;
float *arr,d, sum=0.0;
arr=vector(1,ndatat);
for (j=1;j<=ndatat;j++) arr [j]=yt[j]-b*xt[j];
if (ndatat \& 1) {
aa=select((ndatat+1)>>1,ndatat,arr);
}
else {
j=ndatat >> 1;
aa=0.5*(select(j, ndatat,arr)+select(j+1,ndatat,arr));
}
abdevt=0.0;
for (j=1;j<=ndatat;j++) {
d=yt[j]-(b*xt[j]+aa);
abdevt += fabs(d);
if (yt[j] != 0.0) d /= fabs(yt[j]);
if (fabs(d) > EPS) sum += (d >= 0.0 ? xt[j] : -xt[j]);
}
free_vector(arr,1,ndatat);
return sum;
}

```

\section*{Other Robust Techniques}

Sometimes you may have a priori knowledge about the probable values and probable uncertainties of some parameters that you are trying to estimate from a data set. In such cases you may want to perform a fit that takes this advance information properly into account, neither completely freezing a parameter at a predetermined value (as in lfit \(\S 15.4\) ) nor completely leaving it to be determined by the data set. The formalism for doing this is called "use of a priori covariances."

A related problem occurs in signal processing and control theory, where it is sometimes desired to "track" (i.e., maintain an estimate of) a time-varying signal in the presence of noise. If the signal is known to be characterized by some number of parameters that vary only slowly, then the formalism of Kalman filtering tells how the incoming, raw measurements of the signal should be processed to produce best parameter estimates as a function of time. For example, if the signal is a frequency-modulated sine wave, then the slowly varying parameter might be the instantaneous frequency. The Kalman filter for this case is called a phase-locked loop and is implemented in the circuitry of good radio receivers \([3,4]\).

CITED REFERENCES AND FURTHER READING:
Huber, P.J. 1981, Robust Statistics (New York: Wiley). [1]
Launer, R.L., and Wilkinson, G.N. (eds.) 1979, Robustness in Statistics (New York: Academic Press). [2]
Bryson, A. E., and Ho, Y.C. 1969, Applied Optimal Control (Waltham, MA: Ginn). [3]
Jazwinski, A. H. 1970, Stochastic Processes and Filtering Theory (New York: Academic Press). [4]

\section*{Chapter 16. Integration of Ordinary Differential Equations}

\subsection*{16.0 Introduction}

Problems involving ordinary differential equations (ODEs) can always be reduced to the study of sets of first-order differential equations. For example the second-order equation
\[
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+q(x) \frac{d y}{d x}=r(x) \tag{16.0.1}
\end{equation*}
\]
can be rewritten as two first-order equations
\[
\begin{align*}
& \frac{d y}{d x}=z(x) \\
& \frac{d z}{d x}=r(x)-q(x) z(x) \tag{16.0.2}
\end{align*}
\]
where \(z\) is a new variable. This exemplifies the procedure for an arbitrary ODE. The usual choice for the new variables is to let them be just derivatives of each other (and of the original variable). Occasionally, it is useful to incorporate into their definition some other factors in the equation, or some powers of the independent variable, for the purpose of mitigating singular behavior that could result in overflows or increased roundoff error. Let common sense be your guide: If you find that the original variables are smooth in a solution, while your auxiliary variables are doing crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the study of a set of \(N\) coupled first-order differential equations for the functions \(y_{i}, i=1,2, \ldots, N\), having the general form
\[
\begin{equation*}
\frac{d y_{i}(x)}{d x}=f_{i}\left(x, y_{1}, \ldots, y_{N}\right), \quad i=1, \ldots, N \tag{16.0.3}
\end{equation*}
\]
where the functions \(f_{i}\) on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even more crucial in determining how to attack the problem numerically is the nature of the problem's boundary conditions. Boundary conditions are algebraic conditions```

