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Abstract

The global burden of cancer is expected to increase between 2008 and 2030 from 13 to 22 million
new cases each year (Bray et al. 2012). The strain that this will put on health services around the
world will be reduced by the development of better methods for early detection of disease risk and
progression.

The epigenome is thought of as the interface between the genome and the environment; hence
measurements of DNA methylation, an epigenetic pattern, can indicate exposure to environmental
risk factors. However these measurements are extremely noisy, making it a challenge to derive
meaningful statistics from such data.

Using canonical correlation analysis we have developed a novel statistical measure of the level
of interaction between a pair of genes (network nodes) in a single sample/patient, based on DNA
methylation data. Testing this interaction measure for association with patient outcome, we show
how to construct prognostic networks for cancer, in which the presence of a network edge indi-
cates that the network interaction between the corresponding pair of genes (nodes) is statistically
significantly prognostic. Detecting community structure in these networks by fitting the stochastic
blockmodel allows novel cancer biomarkers to be detected. These findings represent new statistical
tools for use in the biomedical sciences.
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1. Introduction

Complex systems which can be modelled as networks are ubiquitous. Well-known exam-
ples include social and economic networks, as well as many others in cell biology such as
gene regulatory, metabolic and protein signalling networks. Over the past few years in cell
biology, much of the focus has shifted from investigation of individual genes, to pathways
of genes, to gene networks. The need for novel methodology for network analysis in cell
biology results from this recognition that examining the way genes work in groups is often
more successful in revealing biological principles. Further, by considering groups of genes
together, statistical significance can be obtained which would not be possible at the level of
individual genes.

The epigenome is thought of as the interface between the genome and the environment;
hence, measurements of DNA methylation, an epigenetic pattern, can indicate exposure to
environmental risk factors (Feinberg, Ohlsson, and Henikoff 2006; Cooney 2007). It is well
established that DNA methylation plays a major role in gene regulation, and hence DNA
methylation patterns often reflect patterns of gene regulation. Changes in DNA methylation
are highly stochastic; however, the time-scale over which these changes take place (much
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quicker than mutations in the basic DNA code, but much slower than the varying expres-
sion level of individual genes), means that DNA methylation patterns are very promising
for biomarker development. Further, there is much considerable evidence that changes in
DNA methylation patterns are amongst the earliest genetic changes in oncogenesis (Fein-
berg, Ohlsson, and Henikoff 2006). DNA methylation data are extremely noisy; however,
statistics which summarise DNA methylation patterns at the gene level show much promise
as a way to represent and analyse these measurements (Bartlett et al. 2013).

Statistical network models are an efficient way to represent and analyse large numbers
of variables and samples, over the very large quantities of data being produced by the lat-
est technologies in cell biology, i.e., ‘Big Data’ (National Research Council 2013; Boulton
et al. 2012; European Commission 2014). One such model which has received much at-
tention is the ‘stochastic blockmodel’ (Holland, Laskey, and Leinhardt 1983; Bickel and
Chen 2009), under which there is a greater probability of observing an edge (or interaction)
between a pair of nodes if they are in the same block, or community. The Newman-Girvan
modularity (Newman and Girvan 2004) quantifies the extent to which edges are observed
between community members, for a particular assignment of nodes to communities, com-
pared to the expected number of edges between community members if there were no
community structure present. It can be shown that fitting the stochastic blockmodel is
equivalent to maximising the Newman-Girvan modularity over a network, and that these
are both equivalent to spectral clustering (Riolo and Newman 2012; Newman 2013).

The problem of finding communities in biological networks has been studied for many
years (Girvan and Newman 2002), with communities in biological networks representing
subnetwork modules with specific physiological functions. It has been shown recently that
the stochastic blockmodel can be used to represent any network as a ‘network histogram’,
whatever the generating mechanism of that network, as long as that network is not too
sparse (Olhede and Wolfe 2014). Further, those advances provide a heuristic method to
estimate the maximum number of blocks, or clusters, which a valid blockmodel represen-
tation of the network may contain. This is important and useful, because it means that
the blockmodel can be used to identify an unknown number of communities, or functional
subnetwork modules, in biological networks. Biological networks are known to display
multi-scale properties (Barabasi and Oltvai 2004; Palla, Lovasz, and Vicsek 2010), which
means that different functional organisation is visible at different granularities, or scales.
Hence, the network histogram method (Olhede and Wolfe 2014) can be used to estimate
the optimal granularity at which communities, or functional subnetwork modules, can be
identified and isolated in biological networks, by fitting the stochastic blockmodel.

We have developed a novel statistical measure of the level of interaction between a
pair of genes (network nodes) in a single sample/patient, based on DNA methylation data,
which we term the ‘DNA methylation network interaction measure’ (Bartlett, Olhede, and
Zaikin 2014). By testing this interaction measure for association with patient survival out-
come, we show how to construct a binary prognostic network, in which the presence of
a network edge indicates that the corresponding gene-gene interaction is statistically sig-
nificantly prognostic. Community structure can be detected in these networks, by fitting
the stochastic blockmodel; each community, or subnetwork module, identified in this way,
represents a potential network biomarker. These findings represent new statistical tools for
use in the biomedical sciences.
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2. Methods and Models

2.1 DNA Methylation Network Interaction Measure

Using canonical correlation analysis (CCA) (Hotelling 1936), we have developed a novel
statistical measure (Bartlett, Olhede, and Zaikin 2014), of the level of interaction between
a pair of genes (network nodes) in a single sample/patient, based on DNA methylation
data (figure 1). This DNA methylation network interaction measure quantifies the extent to
which the DNA methylation profiles of a pair of genes explain each other. It is based only
on measurements of the DNA methylation profiles of this pair of genes, and it acts as a
surrogate for a measure of the extent to which this pair of genes behave interactively. Such
interactive behaviour may include transcriptional regulation or other types of biochemical
interaction, influencing gene expression levels and the presence of alternatively spliced
gene products (Jones 2012), amongst other phenomena.

The DNA methylation network interaction measure is defined by analogy to CCA. CCA
aims to discover linear combinations of variables of one type, and linear combinations of
variables of another type, so that these combinations best explain each other. In this con-
text, a particular way of combining (by scaling and adding) the deviations from the mean
methylation profile at a number of locations within one gene might be particularly effec-
tive at explaining a particular combination (again, by scaling and adding) of the deviations
from the mean methylation profile at a number of locations in another gene, and vice-versa.
There will probably be fewer ways in which the methylation levels of these genes covary
across the samples, than there are locations at which methylation is measured along the
genes; this is because the methylation level is highly correlated at many locations along
a particular gene. CCA finds the most important components of this covariation across
samples.

CCA seeks to find the vectors a and b, in the p and ¢ dimensional spaces of variables
X = (z1,22,....,2p) and Y = (y1,y2, ..., yy)" respectively, which maximise the correla-
tion p = cor (a’X, b’Y), defined according to equation 1,
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where ¥xx = E[(X — pux)(X — pux)]and Tyy = E[(Y — py) (Y — py )] are the co-
variance matrices of X and Y respectively, and Xxy = E [(X — pux)(Y — py )] is the
cross-covariance matrix of X and Y.

Two genes X and Y have corresponding methylation profiles which are measured for
sample / patient 7 at p and g CpGs (loci) respectively along these genes. Denoting these
measurements by the variables x1, ...z, and y1, ..., y, for genes X and Y respectively, the
DNA methylation profiles for these genes, for patient j, can be represented by the vectors
x(7) and y(j), which have p and ¢ entries respectively. A measure of DNA methylation
network interaction pxy (j), of the methylation profiles of genes X and Y for sample 7,
can then be defined by analogy with equation 1, according to equation 2,

. x()" =8}y ()
VEGTSE Gy )Ty ()

P (1)

@)

3517



JSM 2014 - Section on Statisticsin Epidemiology

where f]g?) , f]gg), and ﬁ]g?g, are estimated from healthy rather than cancer samples in the

methylation data set, according to equations 3 - 5,
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and nj, is the number of healthy samples in the data set. When the DNA methylation
network interaction measure pxy (j) is large (i.e., close to 1), the corresponding pair of
genes explain each other’s transcriptional or translational behaviour (as reflected in their
methylation profiles) well, or have otherwise well-correlated interactive behaviour, for sam-
ple/patient j. Hence, pxy (j) measures (according to their DNA methylation profiles) the
level of interaction between genes X and Y in tumour sample j, compared to typical inter-
actions between these genes in healthy tissue.

2.2 Prognostic Network Construction

We construct a prognostic interaction network for m genes, represented by the m X m
adjacency matrix A, by defining an edge to be present (i.e., A;; = 1) if and only if the
corresponding pair of genes (nodes) are significantly prognostic according to the DNA
methylation network interaction measure (i.e., otherwise A;; = 0). To do this, for each of
the ("2“) pairs of genes in the network, we use the Cox proportional hazards model (Cox
1972) to test the association of the DNA methylation network interaction measure pxy (j)
for the pair of genes X and Y with patient survival outcome, across patients j = 1,...n,
adjusting for significant clinical covariates (to detect novel DNA methylation biomarkers
which are independent of known prognostic clinical features).

We define an interaction as being statistically significant with ¢ < 0.1, with respect to
either of the interacting genes, where ¢ is the false discovery rate (FDR) corrected (Ben-
jamini and Hochberg 1995) p-value. This threshold FDR is set relatively high at 0.1, be-
cause we expect significantly prognostic interactions, i.e., true positives, to tend to group
together in subnetwork modules/communities, and false positives not to do so; hence we
expect the false discovery rate to be much lower than 0.1 in practice after community detec-
tion, because only a fraction of the (ZL) possible edges occur between pairs of nodes which
are in the same community. In a simulation study (data not shown), we found that applying
this methodology to a network of randomly generated p-values (from a uniform distribu-
tion on [0, 1]), no community structure is detected beyond single-figure groups of nodes.
Therefore, we set 10 nodes as the lower limit of the allowable size of a detected subnet-
work module, as a potential prognostic network biomarker. In setting this FDR threshold,
we also verified that the degree distributions of the resulting networks display the power
law behaviour expected in biological networks (Wagner 2002; Barabdasi and Oltvai 2004).
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Figure 1: The DNA methylation Network Interaction Measure. A combination of the
variation of the healthy methylation profiles in regions (a) and (b) of gene X explains well / is well-
explained by a combination of the variation of the healthy methylation profiles in regions (c) and
(d) of gene Y. The green cancer sample varies by a large amount about the mean methylation profile
and in a typical way in these regions in both genes. Hence, the green sample corresponds to a high
level of network interaction for this sample, pxy = 1. The variation in the other regions of these
genes do not well-explain each other, and so the red sample, which varies by a large amount in
these other regions and varies less and in an atypical way in regions (a)-(d), corresponds to a low
level of network interaction, pxy = 0.07. Genes X and Y are likely to have different numbers of
methylation measurement locations (i.e., variables X and Y are of different dimension). The ordering
of the measurement locations has no influence on the calculation of p, as long as the ordering is
consistent across samples.

2.3 Community and Biomarker Detection

Network nodes can be grouped together, according to their propensity to interact with each
other, for example groups of friends in a social network, or functional subnetwork modules
in a biological network; this statistical method is often referred to as community detection
(Girvan and Newman 2002; Newman 2004). Hence, community detection allows us to find
groups of genes in our constructed prognostic network, i.e., prognostic subnetwork mod-
ules, which interact differently in cancer than in healthy tissue, in a way which is predictive
of how advanced the disease is. Within such a detected community/subnetwork module,
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the genes may interact with each other more (relative to healthy tissue) the more serious
the disease is (as is predominantly the case in figure 2 (a)), or they may interact with each
other less the more serious the disease is, or both these scenarios may arise within the same
community/subnetwork module (as in figure 2 (b)). We carry out community detection by
fitting the stochastic blockmodel (Holland, Laskey, and Leinhardt 1983; Bickel and Chen
2009), using the network histogram choice of number of blocks in a valid stochastic block-
model of the network (Olhede and Wolfe 2014). Each community, or subnetwork module,
identified in this way, represents a potential network biomarker. For each such biomarker,
a prognostic measure can be calculated, by summarising the DNA methylation network
interaction measure over the subnetwork module/community.

3. Results

Figure 2 shows examples of two network biomarkers, detected by our methodology in a
breast cancer data set downloaded from The Cancer Genome Atlas (Hampton 2006; Collins
and Barker 2007). The network biomarkers are detected in a group of n = 273 patient tu-
mour samples (including 23 events), and validated in a separate, independent group of
n = 398 samples (including 29 events). Validation p-values are 7.2 x 10~% and 2.4 x 1073
for the network biomarkers shown in figure 2 (a) and (b) respectively, with correspond-
ing FDR g-values 0.029 and 0.049, respectively. Gene-set enrichment analysis (Subra-
manian et al. 2005) based on the gene-sets available for download from from The Broad
Institute Molecular Signatures Database (www.broadinstitute.org/gsea/msigdb) shows sig-
nificant enrichment of the network biomarker shown in figure 2 (a) by 12 gene-sets (FDR
q < 0.05, including seven gene-sets with ¢ < 107%) relating to stem cell genes, and known
patterns of differential methylation in cancer. However, the network biomarker in figure
2 (b) does not show significant enrichment by any of the gene-sets in the Broad Institute
Molecular Signatures Database, meaning that it is likely to represent a novel biological
finding.

(a) \ ] (b)

Figure 2: Detected Network Biomarkers. Network biomarkers detected in a breast cancer
data set, with (a) 191 and (b) 82 nodes. The green and red edges represent network interactions
which increase and decrease (relative to healthy tissue) with worse patient prognosis, respectively;
hence, these are examples of network re-wiring in cancerous tissue.
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4. Discussion

Our new methodology enables the discovery of DNA-based prognostic biomarkers, as sub-
network modules, or communities, in a prognostic network constructed from gene-gene
interactions in DNA methylation data. These findings represent new statistical tools for use
in the biomedical sciences, and we hope that they will ultimately aid the development of
new prognostic biomarkers of real clinical value.
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