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Abstract—A nonlinear model of the Helmholtz resonator with a movable wall is developed. The energy reflec-
tance, transmittance, and absorbance, as well as the energy distribution, are calculated as functions of frequency
with allowance for Stokes friction and the friction of an acoustic boundary layer. Characteristics necessary for
such a system to be used as a sound absorber or sound insulator are considered.

At high levels of sound pressure, the response of a
concentrated oscillatory system—a Helmholtz resona-
tor (HR)—to an external stimulus in the form of an
acoustic wave is known to become nonlinear [1]. This
nonlinearity gives rise to harmonics, combination fre-
quencies [2] and amplitude-dependent shifts of the
maximum of the HR frequency response [3]. Most trea-
tises on resonance sound absorbers assume a fixed back
wall of the resonator. Rudenko and Khizhnykh [4] have
proposed a nonlinear model of the HR that describes all
said nonlinear phenomena in systems where HRs may
be used to absorb intense acoustic or shock waves.

Rzhevkin er al. [5, 6] have studied resonators with a
compliant front wall and the radiation of a panel coated
with sound absorber. In real situations with an oscillat-
ing back wall of the resonator, one have to cope not
only with a reflected wave but also with a transmitted
wave. This model not only alters the characteristics of
the HR as a sound absorbing system, but also compels
one to consider, unlike [4], a concomitant sound insula-
tion problem.

In this paper, we extend the model of Rudenko and
Khizhnykh [4] sketched in Fig. 1. We consider an oscil-
latory system consisting of a throat (/) made as a cylin-
drical tube of radius a, and a cavity (2) with a movable
back wall (3). The throat is filled with a viscous incom-
pressible liquid of density p,, the cavity is filled with air
of density p,. The system is irradiated by a sound wave
incident from the left. This wave sets in motion the lig-
uid in the throat and, via the compressible air in the cav-
ity, the back wall of the HR. A part of energy of the inci-
dent wave is absorbed due to the viscosity of the throat
liquid, the friction of the oscillating wall, and reradia-
tion into the reflected and transmitted waves.

Let us construct a mathematical model that describes
the oscillations of the wall and the throat liquid. The
equation of motion for the wall is

d’z
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t -

where z is the travel of the wall from the equilibrium
position, m is the mass of the wall, and p and p,, are the
pressure at the input into the cavity and the acoustic
pressure behind the wall. We assume that the oscilla-
tions of the back wall are bending plate oscillations,
and we will consider only their “piston” mode.

The pressure at the resonator input may be defined
using the adiabaticity of forcing a liquid into the cavity:
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where V' is the increment of the volume in the cavity,
and § is the displacement of liquid in the throat.

Using (2) and differentiating (1) with respect to
time, we obtain the equation for the wall velocity
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In order to describe the motion of liquid in the
throat, we use simplified equations of quasi-uniform
flow [7, 8]
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where V, and V, are the longitudinal and transverse
velocity components of the liquid and v is the shear
viscosity.
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Fig. 1. Helmholtz resonator with a movable wall.

These equations suggest that the pressure must be a
linear function of x: p(x, ¥) = paa(?) + xP(r) [4]; at x=0
it must be equal to the pressure at the input to the throat
Pac(x=0,1), and at x=L, it must be p(x =L, ). Now, we
easily obtain the right side of equation (4). We con-
struct an approximate solution of the equations for
flows in the throat by introducing the longitudinal
velocities averaged over the cross section and over the
volume of the throat:

L

V= é}V,andr, V= ﬁjdx-:[‘/'@nrdr, (6)

where S = ta?. We note that, from the continuity, it fol-

lows that V = V (1); a flow over the cross-section does
not depend on the coordinate x. This conclusion agrees
with the fact that we seek a solution in the low-fre-
quency region.

Combining equations (3)—(6) and averaging over
the volume, we obtain

&V, Cipo g, D,(V)+D2(V)+l.‘.i.
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where [7]

dV dr'
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is the dissipative term responsible for the acoustic
boundary layer, and

= dv
D,(V) = vazn—‘-ﬁ- 9)

is a second dissipative term responsible for the Stokes
friction.

If the throat is filled with a material that has a sur-
face considerably exceeding that of the pipe, then na
in (8) should be replaced with a constant of length
dimension: a, = a/N, where N takes into account the
increase of the surface of the boundary layer, a, is a sec-
ond empirical constant with a magnitude of the order of
the typical dimension of elements passed by the stream,
and n is the volume concentration of these elements
(the physical meaning of these constants is discussed in
depth in [4, 9, 10]). For simplicity, we further omit the
overbars and write v as V.

The nonlinear term in equation (7) may be approxi-
mated by a power expansion [4, 9, 10]

1=V +Y,V2dV/adt. (10)

Equations (3) and (7) describe two oscillatory cir-
cuits: the throat and wall; however, for a complete prob-
lem statement, we need to introduce boundary condi-
tions that will match the hydrodynamic and acoustic
parts of the problem. For x < 0, the acoustic field is con-
stituted by the incident and reflected waves:

P:n:(x! 1) = pi(!_ X/Cu) +p(t+ x/CUL
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where u,_ is the oscillatory velocity.
Now, with the matching conditions:

ua;(ov )= V(O‘ I)' paﬂ(z =0,0)= PoColts

the equations of system motion take the form
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where

Wor =kim+ Co PoS/Vym and @, = €o PoS/PJVOL

are the eigenfrequencies of the wall and throat in the
absence of nonlinearity and friction,

8, = pocoS'/2m and &, =vayn/2 + poco/2p,L

are the losses due to friction and radiation (the wall fric-
tion may be taken into account by adding a friction fac-
tor to 9,), and

K, = 3 PoSS'/mVy and X, = ¢ peS'/p VoL

are the coefficients of coupling between two oscillatory
circuits.
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Fig. 2. Acoustic characteristics of the resonator.
Consider the simplest case of a harmonic incident % QMV(QS, ~QY- 2le/A,Q)2,
wave with pressure
I and the dimensionless variables
2 T = ﬂ-, = T, Qm - (00[1:,
and a weak nonlinearity. Then, to take into account Poco
nonlinear corrections to the amplitude-frequency 2 u 2
response of the HR, it suffices to include the cubic non- O = 0gt 4 =81, 4 =37,
linearity. Now, for the frequency dependences of the VT 2 2 (15)
absorption factor K, = p,/p; and the sound transmission ¥ad—n Ji=KT, K =%t
factor K, = p,/p;, we obtain 2a
; 2 24 80, 2 2
K, = 1-{4iQ(Qq - Q% +2iA, Q) }/{(Q%, - Q r= éhcﬂzt, o 5%'
+2i4,Q)(Q5, - Q% +2i4,Q - Q* ,
The typical frequency responses of |K,| and |K,| are
xV(-i)+ ETF(Q)|H0|2) -K\K,}, shown in Fig. 2a (curves 7 and 2, respectively) for the
following parameters Q;, = 16, Qy, =8,A, =1, A, =2,
K, = {4iQK, }/{(le - OF5. 2,'AIQ)(Q§2 Agn? V=0,I"=0, K, =50, and K, = 50. In the linear case,

+2i8,Q - V(1 = i) + iTF(Q)|,)*) - K, K, },
where
2
32Q°((Qg, - Q%) +442QY
F(Q) ;
F(Q) = ((Q -2))(Q - Q%) - 0"
x V(05 =07)-44,4,0% - 24,02 - K, X, )
+(24,2(Qq, - Q%) +24,Q(Q% - Q%)

FEQ) = (14)
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these dependencies exhibit a resonance behavior in the
range of throat and wall eigenfrequencies. The reflected
wave will have minimum near these frequencies, and
the transmitted wave will have maximum.

For analysis of the acoustic characteristics of such a
system, it is convenient to use the coefficient of energy
absorbed in the resonator, E, and the energy ratio of
reflected and transmitted waves, R = |K,P/|K,]~
To define E, we assume that the energy is conserved:

IKP+IKP+E=1, (16)

where E is normalized to the energy of the incident wave.
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Fig. 3. Partial derivatives with respect toI".

The profiles of E and R as functions of the frequency
of the incident wave with the same parameters as |X,|
and |K,| are presented in Figs. 2b (curve 1) and 2c.
From the plot for E, one may define the bands of best
energy absorption: they are near the frequencies 2y,
and Qq,. Far from eigenfrequencies, only the reflected
wave is present and R tends to infinity; whereas near
these frequencies, R has a minimum; and between these
frequencies, R has a local maximum.

Incorporation of the movable wall alters the reflec-
tion characteristics. This can be seen from Fig. 2a,
which compares the reflectance for the resonator with a
movable wall (curve 1) with the reflectance of the same
resonator with a fixed wall (curve 3). The fixed-wall
frequency profile of E also has a different form (Fig. 2b,
curve 2). For an ideal HR (with a fixed wall at V=0and
I" = 0), the condition of total absorption is defined as

A, = 2 at the frequency of the incident wave Q,= Q;z -
In order to find the corrections A and o to these values
for the considered system, we substitute A, =2 + A and
Q2= O, + ainto the system

Re(K,) =0, Im(K,)=0. (17)

Solving this system for relatively small quantities A
and o and neglecting their second and higher powers,
we obtain the corrections to resonator parameters
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where A, B, C, and D are frequency multipliers:
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Figure 2d illustrates the possibility of using an HR
with a movable wall for sound insulation. Curves 1 and 2
represent the frequency dependencies of the transmis-
sion factor of the considered system and the wall with
the same parameters except for the sound insulating
coat. It is obvious that the insulating coat redu the
amplitude of the transmitted wave. The performance o
this system as a sound muffier will be decided by the
frequency profile of X,.

Each of the frequency dependencies for | K., | K
and R is determined by six parameters: A, 42,
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V, and I'. To analyze the effect of each of them on the
characteristics of a specific resonator with fixed values
for these parameters, one can consider the partial deriv-
atives of [K,|, |K |, E, and R with respect to these param-
eters as functions of the frequency of incident waves.
An analysis of these partial derivatives indicates that
the parameter A,, which is responsible for losses due to
Stokes friction in the throat and radiation of the
reflected wave, broadens the profile of the reflection
coefficient and the profile of the absorbed energy
(energy increases) near £)y,, reduces the transmission
coefficient (especially at eigenfrequencies of the throat
and wall), and almost does not affect the distribution of
energy between the reflected and transmitted waves.

The losses for wall friction and radiation of the
transmitted waves, A, weakly affect the reflected wave
(increase reflection at the wall frequency). An increase
of A, considerably attenuates the transmitted wave at
this frequency, thus increasing the absorbed energy.

With increase in the losses in the acoustic throat
boundary layer (parameter V), the profiles of reflec-
tance and absorbed energy will be shifted towards
lower frequencies, and the transmitted wave will be
attenuated, especially at the frequencies €y, and Q,.

The coupling coefficients K, and K, defined by the
wall and throat parameters, weakly affect the resonator
behavior. However, a considerable increase in K, can
result in a greater amplitude of the transmitted wave
near the wall eigenfrequency.

With reference to the nonlinear effects controlled
by the parameter I', the partial derivatives plotted
(by dashed line) for the parameters used to draw the
resonator coefficients are depicted in Fig. 3, to compare
with |K,|, |K,|, E, and R (solid line).

The variation of this parameter strongly affects the
resonator characteristics near the throat eigenfre-
quency. An increase of nonlinearity reduces reflectivity
at frequency €, and broadens the curve. The absorbed
energy will increase (the curve also broadens), and the
amplitude of the transmitted wave will decrease. Varia-
tuon of the nonlinearity parameter weakly affects the
distribution of energy between the reflected and trans-
mitted waves.
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