ISSN-0027-1349-

Moscow University

Physics
Bulletin

(Vestnik Moskovskogo
Universiteta. Fizika)

Vol. 48, No. 6

ALLERTON PRESS, INC.



Moscow University Vestnik Moskovakogo
Physics Bulletin . Unsversiteta. Fizika
Vol. 43, No. 6, pp. 56-58, 1993 UDC 534.222.2

ACOUSTIC NONLINEARITY OF NONUNIFORM
FLOW OF AN OSCILLATING LIQUID

A. A. Zaikin and O. V. Rudenko

The efficiency of nonhneanty production by a localized geometrical inhomogene-
ity is estimated using as an example of the latter a partxcle layer. The Bernoulli
equation for the near field and a Lighthill-type equation in the wave zone are
employed in the calculation. Use is also made of the equivalent nonlinearity
parameter.

In an attempt to improve the efficiency of wave interactions one should search for new nonlinear
materials and also try to make better use of the potentialities of the ordinary nonlinear mechanisms. Recently
intensive studies have been carried out of structurally inhomogeneous media (liquids with gas bubbles and
porous or defective solid-state specimens) whose nonlinearity parameter ¢ attains the values of 102~10*. At
the same time, the total contribution of the physical and geometrical nonlinearities of these media (relating,
respectively, to the nonlinear dependence of intermolecular interaction forces on deformation and to the
presence of nonlinear terms in the equations of continuum mechanics) usually does not exceed 10%.

The role of geometrical nonlinearity can be noticeably increased. Consider, for example, the convective
nonlinear term in the equation of motion whose contribution is characterized by the number

M = |(uV)u|/|0u/dt| ~ uoT/L. (1

Here ug is the characteristic velocity of the flow and T and L are its time and space scales, respectively.
For a sound wave the parameter T is the period and L = ¢;T = ) is the wavelength (co is the velocity of
sound), and therefore M = ug/cp is the acoustic Mach number, which does not exceed 10~4-10~2 even in
very strong fields.

If an obstacle of dlmenswn R < ) is placed in a low-frequency field, the scale of the ﬂow near the
obstacle will be L ~ R, and the number M will increase A/R times. Hence, by placing small obstacles in
an oscillating liquid one can strengthen the nonlinearity by means of purposeful formation of small-scale
inhomogeneities of the flow.

As is known, maximum gradients are produced in an acoustic boundary layer of thickness § = (v/xf )2,
where v is the kinematic viscosity and f is frequency. Thus, the local increase of the nonlinearity parameter
is estimated as A/§ ~ co(7/vf)*/2. In particular, for air at frequencies f ~ 100 Hz, the nonlinearity increases
10* times.

In many experiments, when a hole in a screen was irradiated by intensive sound certain nonlinear effects
were observed: changes of the impedance with increasing wave amplitude {1] and generation of harmonics (2].
Allowance for the geometrical nonlinearity is important in calculations of resonance absorbers based on
the Helmholtz resonator and operating at high sound levels [3]. Radiation from an oscillating sphere was
calculated in [4], but the medium considered there had ordinary types of nonlinearity.

Consider a flow nonuniformity produced by solid spherical particles that are not entrained by the flow
and are concentrated in a thin layer of thickness d <« A. The volume concentration n, is assumed to be
low so that the flow perturbation produced by a single particle should not actually affect the flow around
the neighboring particles. Let the flow be created by a plane acoustic wave u = uo cos(ut kz) normally )
incident on the layer. - - - :
It is well known that when the obstacle has small wave dimensions t.he compressibility can be neglected
The Sdutxon to the problem of potent.xal ﬂowmg around the sphere has the form [5] - -

}23 - - T -
) =0 - ——|—= —-uf. . 2) -
B v=u- o [rzr(u.r) u] (2)
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Here R is the radius of the sphéricdl particle and r is the radius vector ,frém the center of the sphere to th
observation point. The distribution of pressure is given by the formula

dp

= — Lop2 _ 0% g
PEP 5PV =P -,(

where qpr is the potential (v = V), p is the density of the liquid, and py is the pressure in the unpertdrbé
flow. , o ' )

 Using the solutions (2), (3) and separating out the Fourier component of the pressure at the frequenc)
of the second harmonic, we obtain

1

_1 o[R® 2 R 2
pm,..zpuo[r‘?(%os 9—1)-—4 r6(3cos 6+1)]. (4

Here # is the polar angle between r and the z axis.
In the estimation we take the amplitude of the second harmonic on the axis at a distance d ~ nR fron
the center of the spherical particle as a characteristic pressure:

P2, = 0.5puln=3. 5

Now we compare this with a different situation. Let a sound wave be incident on a layer of a homo
geneous nonlinear medium of thickness d. According to the Bessel-Fubini solution [6], the amplitude of the
second harmonic at the exit from the layer is

2% £ £ .
Dow = pCoqug (-C%-Uuod)/(zgwuod) =~ Epwu%d. (6

Here ¢ is the nonlinearity parameter of the medium and J; is Bessel’s function. Comparing expressions (5
and (6) and using (6) as a definition of the equivalent nonlinearity parameter, we obtain for the particle

layer
co A 1 A /R\? :
o I~ A — . (7
wdnd3  27dn3  2x d \ d :

Formula (7) implies that since A 3> d, in the consideration of the near field the equivalent nonlinearit)

parameter satisfies the condition £ » 1. Consequently, such a system can efficiently generate oscillations o

the second harmonic (and also combination frequencies if the layer is exposed to a biharmonic signal).
Now we proceed to analysis of the distant field. Let us use a Lighthill-type equation [5):

1 3*P 1 p 8*? .
AP- S sm =32 @®,
where the potential character of the flow is taken into account and the right-hand side is nonzero only in the
vicinity of the inhomogeneity region and describes sources exciting the second harmonic. In Eq. (8) we have
P =p' + pv?/2, and in the distant zone the variable P coincides with the acoustic pressure p’.
Solving (8) by the method of retarded potentials, for the second harmonic wave produced by flowing
around a single spherical particle we obtain

1 2,2 p3
P(r,t) = —Pz,.,-l':cos(2ut - E—2ur), Py = Eﬁ‘é%}‘z“'

0

9

Now we add together the perturbations from all particles assuming that the layer is so thin that the inho-
mogeneities of the oscillating flow in the vicinity of each of the spherical particles radiate in phase. The

amplitude of the resultant field is
7 1
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Comparing (10) and (16) we obtain an estimate for the nonlinearity parameter:

T R3
£ §R3n., =<1, (11)

where a is the average distance between the particles. Thus, the geometrical nonlinearity produced by
introducing small inhomogeneities in an oscillating flow and exerting a strong effect near the obstacle, turns
out to be small in the wave zone. :

Amplification of nonlinear interactions can be achieved in experiments. To this end it is convenient to
introduce geometrical inhomogeneities produced by systems of similar elements, for instance, by a layer of
wires or a stack of plates aligned normally to the wave. The first of these problems is solved by analogy
with what was presented above, and to solve the other problem one must solve the Prandtl equation for the
boundary layer.

Let us discuss the field of applicability of the above approximations. The neglect of dissipative processes
is equivalent to the employment of the condition of a large Reynolds number Re. Using the expression
Re = upR/n, where 7 is the dynamic viscosity, the definition of the sound pressure level N = 20 log (p/po),
where po = 2 x 10~* dyn/cm?, and also the relation p = pegu, we can derive the expression

R
Re = oo X 10M/%0, (12)

Formula (12) implies that the condition Re > 1 is attained at sound pressure levels N > 110 dB (for
a spherical particle with R = 0.1 cm) and ¥ > 90 dB (for a sphere with R = 1 ¢cm). In the problem
under consideration the tangential velocity component on the surface of the spherical particle had a finite
value, whereas in a real viscous medium at large Reynolds numbers the velocity drops down to zero in a
thin near-wall liquid layer. Thus, the calculations are correct provided the thickness of the boundary layer
satisfies the condition § = (v/xf)/? < R.

This condition gives f > 500 Hz for a spherical particle of radius R = 0.1 cm and f > 5 Hz for
R=1cm.
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