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Abstract—We demonstrate that the excitation of noise-induced oscillations of a pendulum with a
randomly vibrating suspension axis occurs via ‘on-off intermittency’. The dependence of the mean
duration of ‘laminar’ phase on the excess of the noise intensity over a certain critical value is calculated
analytically. These theoretical dependencies are confirmed by the results of numerical experiments.
Further, we study the influence of an additional harmonic action. It is shown that the oscillations are
intensified if the frequency of this action is low, and suppressed if the action frequency is high. It is
interesting that the suppression of the oscillations, much like their excitation, occurs via ‘on-off
intermittency’. The dependznce of the mean duration of ‘laminar’ phase on the action amplitude is
obtained from numerical experiments. © 1998 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

Noise-induced phase transitions in a pendulum with a randomly vibrating suspension axis
have been recently considered in detail in [1, 2]. This transition consists in the excitation of
pendulum’s oscillations anc the birth of an induced attractor owing to the random vibration
of the suspension axis. It has been detected numerically that the excitation of the pendulum’s
oscillations occurs via intermittency of a peculiar kind. In this contribution we study this kind
of intermittency more thoroughly. It is shown that it is the so-called on-off intermittency and
it statistical characteristics are calculated, both analytically and numerically in Section 2.

Next, the influence of an additional harmonic action is studied. This problem is very
important for controlling noise-induced oscillations. We demonstrate that the low-frequency
action intensifies the noise-induced pendulum’s oscillations, whereas the high-frequency
action suppresses them. In a certain region of the frequencies, the synchronization of the
pendulum’s oscillations by additional action takes place; the synchronization here is
understood as a coincidence of the mean frequency of noise-induced oscillations and that of
external force. The charactzristics of this phenomenon are studied in Section 3. In Section 4
we conclude our results.
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2. EXCITATION OF THE OSCILLATIONS OF A PENDULUM OWING TO RANDOM
VIBRATION OF ITS SUSPENSION AXIS. ON-OFF-INTERMITTENCY

In [1, 2] we have studied, both analytically and numerically, the equation for oscillations of
a pendulum with a randomly vibrating suspension axis. Now we generalize this system by
taking into account additive noise. The equation then reads as

¢+2B(1+ ap’)p + wi(l+ £,(1) sin ¢ = k&), (1)
where ¢ is the pendulum’s angular deviation from the equilibrium position, 28(1 + a@?)¢ is
the value proportional to the torque of the friction force which is assumed to be nonlinear,
w, Is the natural frequency of small pendulum’s oscillations, &,(¢) is the acceleration of the
suspension axis that is a comparatively wide-band random process with nonzero power
spectrum density at the frequency 2wy, and k¢,(¢) is the additive white noise.

First of all let us consider the case when the additive noise is absent, i.e. k=0. Setting
¢ = A cos(wyt + ¢) and solving eqn (1) approximately by the Krylov-Bogolyubov method, we
obtain the following truncated equations for the amplitude A and phase ¢ of the oscillations
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is the parameter characterizing the extent to which the noise intensity is in excess of its
critical value for which the phase transition arises, ¥ =y + aw?, y is the coefficient of the
first nonlinear term in the expansion of sin ¢, K, = k(2w,)/2, is the parameter characterizing
the intensity of suspension axis’ vibration, «(2w,) is power spectrum density of the noise
£,(1) at the frequency 2w,, {,(t) is a random process with zero mean value and the intensity
K,, M = (&, cos’y), and {,(r), much like to ¢,(7), is a random process with zero mean value
and the intensity K= (x(0)+K,)/4. The value of M depends on the characteristics of the
random process &,(7): if £,(¢) is a white noise then M =0, but if & 1(?) has a finite correlation
time, e.g. its power spectrum density is

()= 8’k (2wy)
O (6 = 2w + 82
then
M= — SwﬁK(Zw(,)

d(16w2+ 8%)

It is seen from this expression and from eqn (3) that in the last case the mean frequency of
oscillations is shifted to low-frequency region with the increase of noise intensity. This fact is
supported by the results of numerical experiment.

tThese equations are valid only for sufficiently small 7.
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The Fokker-Planck equation associated with eqns (2) and (3) is
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Finding from this equation the steady-state probability density for the amplitude A, we can
calculate the mean value of the steady-state amplitude and show that for 7 >0 the parametric
excitation of pendulum’s oscillations occur under the influence of noise. This manifests itself
in the fact that the mean value of the amplitude and the variance of the pendulum’s angular
deviation become different from zero [1, 2]. This phenomenon is interpreted as a noise-
induced phase transition and the birth of an induced attractor. The latter follows, firstly, from
the form of the truncated equation for the oscillation amplitude (see eqn (2)) which is similar
to the truncated equation for the oscillation amplitude of a noisy van der Pol generator, and,
secondly, from the fact that the correlation dimension of the attractor constructed from the
data obtained by the numerical simulation by using the Takens’ technique turns out to be
finite {1, 2]. However, this attractor is very noisy. This is made evident by the fact that the
embedding dimension calculated by both well-adapted basis technique [3] and Broomhead-
King’s method [4] is rather lerge.

Numerical simulation of eqn (1) showed that, as one would expect from the theoretical
results, when the intensity of the suspension axis vibration, characterized by the value of
k(2w,), exceeds a certain critical value «, proportional to the friction factor 8, the excitation
of pendulum’s oscillations occurs. Examples of such oscillations found by numerical
simulation of eqn (1) are depicted in Fig. 1. It is seen from this figure that close to the
excitation threshold the pendulum’s oscillations possess the property of a peculiar kind of
intermittency, i.e. over prolonged periods the pendulum oscillates in the immediate vicinity
of its equilibrium position (so-called ‘laminar’ phases); these slight oscillations alternate with
short strong bursts (‘turbulent’ phases). Away from the threshold the duration of laminar
phases decreases and that of turbulent ones increases, and finally laminar phases disappear.
The variance of the pendulum’s angular deviation increases during this process.

Interestingly enough that in the case of the pendulum. the intermittency observed is
different from all types of the intermittency described in [5-7], although they are similar in
their external manifestations. It is so-called ‘on-off intermittency’. This term was recently
introduced by Platt e al. in [8], though a map associated with the similar type of intermittent
behavior was first considered by Pikovsky [9] and then by Fujisaka and Yamada [10]. It is
essential that this type of intecrmittency can occur not only in dynamical systems but in
stochastic systems as well [11]. In [11] the statistical propertics of on-off intermittency were
obtained from the analysis of the map

Xn1 = a(l + Zn)xn + f(xn)~
where z, is either a certain deterministic chaotic process or a random process, a is the
bifurcation parameter, and f(x,) is a nonlinear function. For this map it was shown that the
mean duration of laminar phases has to be proportional to a .

Let us calculate the mean duration of laminar phase in our system, i.e. using eqns (2) and
(3) and the Fokker-Planck eqn (4) associated with them. We assume that the pendulum
oscillates in a laminar phase if the oscillation amplitude A is not larger than a certain value e.
Then the mean duration of the laminar phase 7, is determined by the mean duration of a

+The intermittency phenomenon is described, for example. in [5-7].
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random walk-like motion of a representative point inside the circle of radius € on the plane
@, ¢. This duration can be calculated (sce [12, 13,6]) using the steady-state solution of eqn (4)
with the boundary condition

w(A,d) |- =0. )
Because the value of € is assumed to be small, we can neglect the term (3/4) 37A? in eqn
(4). In so doing the solution of eqn (4) with the boundary condition (5) is

"A, — 17217A2n*1_1’ 6
w(A,¢) oK = 2mA (e ) (6)
where G, is the value of the probability flow
wiK, d 5
G= Aw — — — (A
(" Y7 aa W))
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Fig. 1. The time dependence of the pendulum angle ¢(f) for w,=1, 8=0.1, a =100, (k=0), and diffe{e_nt values of
noise intensity: (a) x(2)/k., =101, (b) k(2)/x, =15, (¢) x(2)/x,=2.44, and (d) x(2)/x., = 6.25.
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across any circumference inside the circle of radius e. The value of G, is determined from the
normalization condition by integrating the expression (6) over the circle of radius e. It was
shown in [12, 13] that the mean duration of reaching the circle boundary is equal to G, .
Taking into account that the representative point touching the boundary of the circle can
return back with a certain probability p, we obtain for the mean duration of the laminar
phase 7, the following expression:

7.=G, '1-p) > jp "

j=1
Summarizing the series and having regard to the expression for G, we get

8re _ 16me
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It is evident that p < 1/2 because the force which acts upon the representative point on the
circle boundary is directed outside the circle. For small % and € this force is very small and p
is close to 1/2. In this case 7. = 2G, '. As  and € increase the value of p decreases.

It follows from (7) that for small n» and € the mean duration of the laminar phase has to be
proportional to e and inversely proportional to 7. This result agrees quite well with the
findings for the rather simple map of [11]. Numerical simulation of eqn (1) showed that for
small n and e the formula (7) with p=1/2 is valid in a good approximation; whereas for
larger € some discrepancies are observed.

The dependencies of 7. on k(2w,) — k., for two values of e calculated by numerical
simulation are given in Fig. 2. The corresponding theoretical dependencies are shown by solid
lines. A discrepancy betwezn theoretical and numerical dependencies for large value of
«(2w,) — k., is caused by the nonlinear dependence of p on «(2w,) — ., and by the fact that
theoretical calculations are valid for small € only.

The excitation of oscillations of a pendulum owing to random vibration of its suspension
axis makes itself evident in the fact that the variance of the pendulum’s angular deviation
becomes nonzero. The depzndence of the variance of ¢ on the relative power spectrum
density k(2w,)/k, is shown in Fig. 3 both in the absence of additive noise (squares) and in its
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Fig. 2. The dependencies of the mean duration of the laminar phase 7. on the excess of the noise intensity over its
critical value &(2w,) — ko for e=0.06 (full circles) and e=0.1 (squares) from numerical simulation. The
correspoading theoretical dependencies are shown by solid lines.
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Fig. 3. The dependence of ; on «(2)/x.. in the absence of additive noise (squares) and with additive noise for

k*£3=10.0025 £7 (circles) (the straight line ¢ = 0.01151 (x(2)/x(2) — 1) is shown as a solid line).

presence (circles). We see that in the presence of additive noise the excitation threshold gets
fuzzy, and the dependence of ¢ on «(2w,)/k. becomes smooth. In this case the on-off
intermittency can be observed only when the intensity of multiplicative noise is under its
threshold value «, (see Fig. 4).

3. THE INFLUENCE OF AN ADDITIONAL HARMONIC ACTION ON THE NOISE-
INDUCED PENDULUM’S OSCILLATIONS

Numerical simulation of eqn (1) with an additional harmonic action shows that this action
intensifies the pendulum’s oscillations in the case when the action frequency is low.
Moreover, if the intensity of the suspension axis random vibration is under its threshold
value, then a small additional low-frequency action initiates the excitation of noise-induced
pendulum’s oscillations.

In the case when the frequency of an additional harmonic action is sufficiently high, the
suppression of noise-induced pendulum’s oscillations occurs rather than their intensification.
The results of numerical simulation of eqn (1) with ¢, +a cos w,t in place of E where
w,>> 1, are represented in Fig. 5 for the case when additive noise is absent (k =0). We see
that. for small amplitudes of the high-frequency action. this action has only a small or no
effect on the noise-induced oscillations. As the action amplitude increases the intensity of the
noise-induced oscillations decreases rapidly and for a certain value of the action amplitude

t

Fig. 4. On—off intermittency in the presence of the additive noisc. The intensity of the mulupllcatwe noise is below
the threshold of exitation of noise-induced oscillations: the dynamics of ¢(¢) is shown for k£3=0.000125 &3,
x(2) k=092




On-off intemittency phenomena in a pendulum 163

the oscillations are suppressed entirely. It is important to note that the suppression of the
oscillations, like their excitation, occur via ‘on-off intermittency’. As the action amplitude
increases, the duration of ‘laminar’ phases increases too. The dependence of the mean
duration of ‘laminar’ phases 7 on the multiplicative action amplitude a found numerically for
€=0.002, «(2w,)/x,=6.25 is shown in Fig. 6. Solid line shows the dependence
7=400€/(k(2w,) = ke — 0.00056a%); such a character of the dependence follows from
theoretical considerations. We see that this dependence fits the experimental data rather well.

We emphasize that the suppression of a noise-induced pendulum’s oscillations occurs not
only due to a multiplicative harmonic action, but due to an additive one as well. In the last
case, the action is found to be more effective. For example, the decrease of the oscillation
variance from 0.18 to 0.13 due to a high-frequency action can be achieved if the amplitude of
the additive force is equal to 1. For the same suppression effect the amplitude of the
multiplicative force should te 8 times larger.

It is evident that, if additive noise is present, then the noise-induced pendulum'’s
oscillations cannot be entirely suppressed, but the suppression can be impressive. This is seen
from Fig. 7 depicting the process ¢(f) and ¢(¢) for two values of the amplitude of action at
the frequency 19.757 (cf. with Fig. 5).

Next, we check whether this additive action leads to synchronization of the noise-induced
oscillations. The possibility of synchronization and its character can be demonstrated

t

Fig. 5. The dependencies of ¢(z) and ¢(t) on different amplitudes a of the additional harmonic action: (a) a =5, (b)
a=15. (¢) a=30, and (d) a=40. tw,=1. B=0.1, @ =100, x(2)/k(2)=5.6, k=0, w,=19.757). The increase of the
amplituce a leads to the suppression of pendulum’s oscillations.
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frequency, can be found. It should be noted that in the synchronous regime the oscillations of
the pendulum remain irregular, i.e. only the frequency of these oscillations is approximately
entrained by the external action, whereas their amplitude remains random. This is seen in
Fig. 8, where an example of the time dependencies of ¢ and the external force is given.
Comparing Fig. 8(a) with F.g. 1(c) we can conclude that the external force intensifies the
oscillations and makes them more ordered.

Such an approach was used in [14-16], where the effects of phase and frequency locking in
chaotic systems have been studied numerically. Here we demonstrate that synchronization of
such a kind can be observed in systems with noise-induced oscillations as well.

The mean frequency is defined as Q={(y)=w + (), where the instantaneous phase ¥ is
determined by means of the analytical signal approach based on the Hilbert transform (the
description of the technique and references can be found in [14,16]). In Fig. 9(a) we plot the
differences between the mean frequency of pendulum oscillations ©Q and the frequency of
external force w vs w for different values of the force amplitude B. From this plot one can
see, that if B is large enough, then Q= w in some range of w, i.e. frequency entrainment
occurs. These dependencies are similar to those known for synchronization of the van der Pol

MMWMWWr

(a)

Fig. 7. The dependencies of ¢(7) and (1) for k*£3 = 0.05£2. (a) a=40 and (b) a=>50; the remaining parameters are
the same as in Fig. S. It is seen tnat in the presence of the additive noise pendulum's oscillations can not been
entirely suppressed.
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generator in the presence of noise [17, 18,13]. We consider the system to be synchronized, if
|Q —w|<e&, where e is a certain threshold value. In this way we obtain synchronization
regions in the parameter plane (w, B) (Fig. 10) for different values of the noise intensity. We
see that, as the noise intensity increases the synchronization regions are shifted to lower
frequency regions.

We note, that in contrast to synchronization of chaotic systems [14,16], frequency locking
of the pendulum’s oscillations occur for rather strong driving only (amplitude of the external
force is of the same order or larger than the mean amplitude of the pendulum’s oscillations
in the absence of the harmonic action).

It is very interesting that, as differentiated from the ordinary synchronization of periodic
self-oscillatory systems, the intensity of oscillations at the center of synchronization region
has no maximum but decreases monotonically as the external force frequency increases (see
Fig. 9(b)).

4. CONCLUSIONS

To summarize, we have shown that the excitation of noise-induced oscillations of a
pendulum with a vibrating suspension axis is accompanied by on-off intermittency. The
statistical properties of this intermittency have been obtained by solving the first passage
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Fig. 8. (a) The time dependence of ¢ in a center of the synchronization region {(w =0.4) for K(2) ke =244, B=0.35.
The enlarged part of this dependence is shown in (b) along with the external force. The plots illustrate the

approximate equality of the frequencies of the pendulum's oscillations and of the external force. Note that
synchronized oscillations remain irregular.
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problem using the Fokker-Planck equation. These results are supported by numerical
simulation.

Further, we have studied the behavior of the pendulum under periodic external action,
both multiplicative and additive. We have found two effects: low-frequency action results in
intensification, or even initiation, of noise-induced pendulum’s oscillation, whereas the high-
frequency action suppresses them. These phenomena can be considered as analogues of
classical effects of asynchronous excitation and quenching. A very interesting finding is that
the suppression, much like the excitation, occurs via on-off intermittency.

In a certain range of the action frequencies the synchronization of noise-induced
oscillation takes place. This phenomenon was justified by the analysis of truncated equations
for amplitude and phase of oscillations.

The analysis of on—off intermittency is very important for understanding of the onset of
turbulence. The analogy of intermittency of such a kind, initially found for a two-dimensional
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Fig. 9. (a) The differences between the mean frequency of the pendulum's oscillations Q anq the external force

frequency w vs o for different values of the force amplitude B (the values of B are i{\dlcated close to the

corresponding curve. The region of synchronization, where_Q ~w, is clearly seen for sufficiently strong external
action (b). The plot of o = " vs w for B=0.35.
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10. The synchronization regions for different values of excess of the noise intensity over the critical value (the

values of «(2)/«., are indicated near the corresponding curves). With the increase of the noise intensity the

ma

synchronization regions are shifted to a lower frequency region.

p, with turbulent intermittency was noted by Fujisaka and Yamada [10]} and later discussed

in [19, 20]. The parallels between the control of pendulum’s oscillation and suppression or
intensification of turbulent processes in subsonic jets are reported elsewhere [20].
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