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7.5 Hodgkin–Huxley Theory of Nerve Membranes:
FitzHugh–Nagumo Model

Neural communication is clearly a very important field. We make no attempt here to give
other than a basic introduction to it and discuss one of the key mathematical models
which has been studied extensively. Rinzel (1981) gives a short review of models in
neurobiology; see also Keener and Sneyd (1998).

Electric signalling or firing by individual nerve cells or neurons is particularly com-
mon. The seminal and now classical work by Hodgkin and Huxley (1952) on this aspect
of nerve membranes was on the nerve axon of the giant squid. (They were awarded a
Nobel prize for their work.) Basically the axon is a long cylindrical tube which extends
from each neuron and electrical signals propagate along its outer membrane, about 50 to
70 Ångströms thick. The electrical pulses arise because the membrane is preferentially
permeable to various chemical ions with the permeabilities affected by the currents and
potentials present. The key elements in the system are potassium (K+) ions and sodium
(Na+) ions. In the rest state there is a transmembrane potential difference of about −70
millivolts (mV) due to the higher concentration of K+ ions within the axon as compared
with the surrounding medium. The deviation in the potential across the membrane, mea-
sured from the rest state, is a primary observable in experiments. The membrane per-
meability properties change when subjected to a stimulating electrical current I : they
also depend on the potential. Such a current can be generated, for example, by a local
depolarisation relative to the rest state.

In this section we are concerned with the space-clamped dynamics of the system;
that is, we consider the spatially homogeneous dynamics of the membrane. With a real
axon the space-clamped state can be obtained experimentally by having a wire down
the middle of the axon maintained at a fixed potential difference to the outside. Later,
in Chapter 1, Volume II, we shall discuss the important spatial propagation of action
potential impulses along the nerve axon; we shall refer back to the model we discuss
here. We derive here the Hodgkin–Huxley (1952) model and the reduced analytically
tractable FitzHugh–Nagumo mathematical model (FitzHugh 1961, Nagumo et al. 1962)
which captures the key phenomena. The analysis of the various mathematical models
has indicated phenomena which have motivated considerable experimental work. The
theory of neuron firing and propagation of nerve action potentials is one of the major
successes of real mathematical biology.

Basic Mathematical Model

Let us take the positive direction for the membrane current, denoted by I , to be out-
wards from the axon. The current I (t) is made up of the current due to the individual
ions which pass through the membrane and the contribution from the time variation in
the transmembrane potential, that is, the membrane capacitance contribution. Thus we
have

I (t) = C
dv

dt
+ Ii , (7.35)
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where C is the capacitance and Ii is the current contribution from the ion movement
across the membrane. Based on experimental observation Hodgkin and Huxley (1952)
took

Ii = INa + IK + IL ,

= gNam3h(V − VNa) + gK n4(V − VK ) + gL(V − VL ),
(7.36)

where V is the potential and INa , IK and IL are respectively the sodium, potassium
and ‘leakage’ currents; IL is the contribution from all the other ions which contribute to
the current. The g’s are constant conductances with, for example, gNam3h the sodium
conductance, and VNa , VK and VL are constant equilibrium potentials. The m, n and h
are variables, bounded by 0 and 1, which are determined by the differential equations

dm

dt
= αm(V )(1 − m) − βm(V )m,

dn

dt
= αn(V )(1 − n) − βn(V )n,

dh

dt
= αh(V )(1 − h) − βh(V )h,

(7.37)

where the α and β are given functions of V (again empirically determined by fitting
the results to the data); see, for example, Keener and Sneyd (1998). αn and αm are
qualitatively like (1+ tanh V )/2 while αh(V ) is qualitatively like (1− tanh V )/2, which
is a ‘turn-off’ switch if V is moderately large. Hodgkin and Huxley (1952) fitted the data
with exponential forms.

If an applied current Ia(t) is imposed the governing equation using (7.35) becomes

C
dV

dt
= −gNam3h(V − VNa) − gK n4(V − VK ) − gL(V − VL ) + Ia . (7.38)

The system (7.38) with (7.37) constitute the 4-variable model which was solved numer-
ically by Hodgkin and Huxley (1952).

If Ia = 0, the rest state of the model (7.37) and (7.38) is linearly stable but is
excitable in the sense discussed in Chapter 6. That is, if the perturbation from the steady
state is sufficiently large there is a large excursion of the variables in their phase space
before returning to the steady state. If Ia �= 0 there is a range of values where regular
repetitive firing occurs; that is, the mechanism displays limit cycle characteristics. Both
types of phenomena have been observed experimentally. Because of the complexity
of the equation system various simpler mathematical models, which capture the key
features of the full system, have been proposed, the best known and particularly useful
one of which is the FitzHugh–Nagumo model (FitzHugh 1961, Nagumo et al. 1962),
which we now derive.

The timescales for m, n and h in (7.37) are not all of the same order. The timescale
for m is much faster than the others, so it is reasonable to assume it is sufficiently fast
that it relaxes immediately to its value determined by setting dm/dt = 0 in (7.37). If
we also set h = h0, a constant, the system still retains many of the features experi-
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Figure 7.11. Phase plane for the model system (7.39) with Ia = 0. As the parameters vary there can be (a)
one stable, but excitable state or, (b) three possible steady states, one unstable, namely, S1, and two stable,
but excitable, namely, (0, 0) and S2.

mentally observed. The resulting 2-variable model in V and n can then be qualitatively
approximated by the dimensionless system

dv

dt
= f (v) − w + Ia,

dw

dt
= bv − γw,

f (v) = v(a − v)(v − 1),

(7.39)

where 0 < a < 1 and b and γ are positive constants. Here v is like the membrane
potential V , and w plays the role of all three variables m, n and h in (7.37).

With Ia = 0, or just a constant, the system (7.39) is simply a 2-variable phase
plane system, the null clines for which are illustrated in Figure 7.11. Note how the

Figure 7.12. (a) The phase portrait for (7.39) with Ia = 0, a = 0.25, b = γ = 2 × 10−3 which exhibits the
threshold behaviour. With a perturbation from the steady state v = w = 0 to a point, P say, where w = 0,
v < a, the trajectory simply returns to the origin with v and w remaining small. A perturbation to A initiates
a large excursion along ABCD and then back to (0, 0), effectively along the null cline since b and γ are small.
(b) The time variation of v and w corresponding to the excitable trajectory ABC D0 in (a). (Redrawn from
Rinzel 1981)
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phase portrait varies with different values of the parameters a, b and γ . There can, for
example, be 1 or 3 steady states as shown in Figures 7.11(a) and (b) respectively. The
situation corresponds to that illustrated in Figure 7.5, except that here it is possible for v

to be negative—it is an electric potential. The excitability characteristic, a key feature in
the Hodgkin–Huxley system, is now quite evident. That is, a perturbation, for example,
from 0 to a point on the v-axis with v > a, undergoes a large phase trajectory excursion
before returning to 0. Figure 7.12 shows a specific example.

Periodic Neuron Firing

With Ia = 0 the possible phase portraits, as illustrated in Figure 7.11, show there can
be no periodic solutions (see Section 7.3). Suppose now that there is an applied current
Ia . The corresponding null clines for (7.39) are illustrated in Figures 7.13(a) to (c)
for several Ia > 0. The effect on the null clines is simply to move the v null cline,
with Ia = 0, up the w-axis. With parameter values such that the null clines are as in
Figure 7.13(a) we can see that by varying only Ia there is a window of applied currents
(I1, I2) where the steady state can be unstable and limit cycle oscillations possible, that
is, a null cline situation like that in Figure 7.13(b). The algebra to determine the various
parameter ranges for a, b, γ and Ia for each of these various possibilities to hold is
straightforward. It is just an exercise in elementary analytical geometry, and is left as an
exercise (Exercise 7). With the situation exhibited in Figure 7.13(d) limit cycle solutions
are not possible. On the other hand this form can exhibit switch properties.

The FitzHugh–Nagumo model (7.39) is a model of the Hodgkin–Huxley model.
So, a further simplification of the mechanism (7.39) is not unreasonable if it simplifies
the analysis or makes the various solution possibilities simpler to see. Of course such a
simplification must retain the major elements of the original, so care must be exercised.

Figure 7.13. Null clines for the FitzHugh–Nagumo model (7.39) with different applied currents Ia . Cases
(a), where Ia < I1, and (c), where Ia > I2, have linearly stable, but excitable, steady states, while in (b),
where I1 < Ia < I2, the steady state can be unstable and limit cycle periodic solutions are possible. With the
configuration (d), the steady states S1, S3 are stable with S2 unstable. Here a perturbation from either S1 or
S3 can effect a switch to the other.
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Figure 7.14. (a) Phase plane null clines for a piecewise linear approximation to the v null cline in the
FitzHugh–Nagumo model (7.30) with Ia = 0, where (v1, w1) and (v2, w2) are given by (7.40). (b) The
geometric conditions for possible periodic solutions, which require Ia > 0, are shown in terms of the
angle θ = tan−1[(w2 − w1)/(v2 − v1)]. (c) Geometric conditions for multiple roots and threshold switch
possibilities from one steady state S1 to S3 and vice versa.

From Figure 7.11 we can reasonably approximate the v null cline by a piecewise linear
approximation as in Figure 7.14, which in Figure 7.14(a) has zeros at v = 0, a, 1. The
positions of the minimum and maximum, (v1, w1) and (v2, w2) are obtained from (7.39)
as

v2, v1 = 1

3

[
a + 1 ±

{
(a + 1)2 − 3a

}1/2
]

,

wi = −vi (a − vi )(1 − vi ) + Ia, i = 1, 2.

(7.40)

The line from (v1, w1) to (v2, w2) passes through v = a if a = 1/2. The acute angle θ

the null cline makes with the v-axis in Figure 7.14 is given by

θ = tan−1
[
w2 − w1

v2 − v1

]
. (7.41)

We can now write down very simply a necessary condition for limit cycle oscil-
lations for the piecewise model, that is, conditions for the null clines to be as in Fig-
ure 7.14(b). The gradient of the v null cline at the steady state must be less than the
gradient, b/γ , of the w null cline; that is,

tan θ = w2 − w1

v2 − v1
<

b

γ
. (7.42)

Sufficient conditions for a limit cycle solution to exist are obtained by applying the re-
sults of Section 7.3 and demonstrating that a confined set exists. Analytical expressions
for the limits on the applied current Ia for limit cycles can also be found (Exercise 7).

A major property of this model for the space-clamped axon membrane is that it
can generate regular beating of a limit cycle nature when the applied current Ia is in
an appropriate range I1 < Ia < I2. The bifurcation to a limit cycle solution when Ia

increases past I1 is essentially a Hopf bifurcation and so the period of the limit cycle
is given by an application of the Hopf bifurcation theorem. This model with periodic
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beating solutions will be referred to again in Chapter 9 when we consider the effect of
perturbations on the oscillations. All of the solution behaviour found with the model
(7.39) have also been found in the full Hodgkin–Huxley model, numerically of course.
The various solution properties have also been demonstrated experimentally.

Some neuron cells fire with periodic bursts of oscillatory activity like that illustrated
in Figures 7.7(b) and (d). We would expect such behaviour if we considered coupled
neuronal cells which independently undergo continuous firing. By modifying the above
model to incorporate other ions, such as a calcium (Ca++) current, periodic bursting
is obtained; see Plant (1978, 1981). There are now several neural phenomena where
periodic bursts of firing are observed experimentally. With the knowledge we now have
of the qualitative nature of the terms and solution behaviour in the above models and
some of their possible modifications, we can now build these into other models to reflect
various observations which indicate similar phenomena. The field of neural signalling,
both temporal and spatial, is a fascinating and important one which will be an area of
active research for many years.

7.6 Modelling the Control of Testosterone Secretion
and Chemical Castration

The hormone testosterone, although present in very small quantities in the blood, is
an extremely important hormone; any regular imbalance can cause dramatic changes.
In man, the blood levels of testosterone can fluctuate periodically with periods of the
order of two to three hours. In this section we discuss the physiology of testosterone
production and construct and analyse a model, rather different from those we have so far
discussed in this chapter, to try and explain the periodic levels of testosterone observed.
Although the phenomenon is interesting in its own right, another reason for discussing
it is to demonstrate the procedure used to analyse this type of model. Perhaps most
important, however, is to try and understand the mechanism of production with a view
to aiding current research in controlling testosterone production in its use in (chemical)
male contraception and prostate cancer control.

Before describing the important physiological elements in the process of testos-
terone production, there are some interesting effects and ideas associated with this im-
portant hormone. Men have a testosterone level of between 10 to 35 nanomoles per litre
of blood, with women having between 0.7 to 2.7 nanomoles per litre. Reduced levels of
testosterone, or rather the level of a sex hormone binding globulin (SHBG) directly re-
lated to free testosterone, are often accompanied by personality changes—the individual
tends to become less forceful and commanding. On the other hand increased levels of
testosterone induce the converse. Although the actual differences in testosterone levels
are minute, the effects can be major.

In men the high level of testosterone primarily comes from the testes, which pro-
duces about 90%, with the rest from other parts of the endocrine system, which is why
women also produce it. The drug Goserelin, for example, which was introduced to treat
cancer of the prostate, can achieve chemical castration within a few weeks after the start
of treatment. The patient’s testosterone level is reduced to what would be achieved by
removal of the testes. The body does not seem to adjust to the drug and so effective
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castration continues only as long as the treatment is maintained. How the drug works
in blocking the production of testosterone is pointed out below when we discuss the
physiological production process. Enthusiasm for sex, or sex drive, depends on many
factors and not only the level of testosterone, which certainly plays a very significant
role. If we consider the problem of an excessive sex drive, it is not uncommon for
men sentenced for rape to ask to be treated with drugs to induce castration. There are
now several drugs which effect castration: the already mentioned Goserelin, such as
Lupron and Depo-provera which is more long lasting. The use of drugs to suppress
the production of testosterone has been used in Europe for more than 10 years. In fact
it is often a condition of release for convicted sex offenders. In Europe Depo-provera
has reduced the recidivism rate of child molesters to 2% whereas in the U.S., where
drugs are not generally used it is of the order of 50%. The role of testosterone-reducing
drugs, or generally chemical castration, is a controversial area of treatment for sex of-
fenders.

The full physiological process is not yet fully understood although there is general
agreement on certain key elements. The following shows how a first model had to be
modified to incorporate key physiological facts and points the way to more recent and
complex models. We first derive a model for testosterone (T) production in the male
suggested by Smith (1980); it is based on accepted basic experimental facts. We then
discuss a modification which results in a delay model which incorporates more realistic
physiology associated with the spatial separation of the various control regions. A more
complicated delay model which is consistent with a wider range of experiments was
proposed by Cartwright and Husain (1986): it incorporates more of the physiological
process. We discuss it very briefly below.

Let us now consider the basic physiology. The secretion of testosterone from the
gonads is stimulated by a pituitary hormone called the luteinising hormone (LH). The
secretion of LH from the pituitary gland is stimulated by the luteinising hormone releas-
ing hormone (LHRH). This LHRH is normally secreted by the hypothalmus (part of the
third ventricle in the brain) and carried to the pituitary gland by the blood. Testosterone
is believed to have a feedback effect on the secretion of LH and LHRH. Based on these,
Smith (1980) proposed a simple negative feedback compartment model, such as we dis-
cussed in Section 7.2, involving the three hormones T, LH and LHRH and represented
schematically in Figure 7.15.

Denote the concentrations of the LHRH, LH and T respectively by R(t), L(t) and
T (t). At the simplest modelling level we consider each of the hormones to be cleared
from the bloodstream according to first-order kinetics with LH and T produced by their
precursors according to first-order kinetics. There is a nonlinear negative feedback by
T (t) on R(t). The governing system reflecting this scheme is essentially the model
feedback system (7.3), which here is written as

d R

dt
= f (T ) − b1 R,

d L

dt
= g1 R − b2L ,

dT

dt
= g2L − b3T,

(7.43)
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