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1 Background

I have quite often heard it said that structures which are rhombohedral are
actually treated as being in a pseudo-hexagonal space group, called H3, i.e.
it has 3-fold symmetry, rather than 6-fold which would be needed for it to be
a proper hexagonal system. Thankfully, I have only had to work with one or
two such proteins. Beyond seeing H3 as the space group in the data processing
files or entering it as the space group when needed, I had very little idea what
it meant. I had also heard it referred to as the obverse setting, that it was
complicated, that it was done to allow the maps to be calculated by FFT (fast
Fourier transform) and that you need triangular graph paper to understand it.
But, that’s about it!

I found an exercise on it in the book Mathematical Crystallography (Boisen
and Gibbs, 1985, pp. 89-90) which got me interested because it has a figure
which, although extremely helpful, was also extremely baffling and the legend,
I believe, has a minor error in it.

The normal convention for rhombohedral is for the a, b and c vectors to be
of equal magnitude and for the unit cell angles to be equal. Note that if the
angles were all 90◦, then having all cell dimensions equal, too, would normally
indicate a cubic system. However, cubic space groups require additional sym-
metry and in principle there is nothing to stop a rhombohedral crystal having
cell angles of 90◦. With this in mind, at this point the best thing is to watch
the following video by Frank Hoffmann (Hamburg):

https://youtu.be/Ks1TNkG6tXY

The video explains the system infinitely better than a thousand words ever
could.

2 The rhombohedral lattice

As the video says, a rhombohedral cell is made by stretching or squashing a
cube along one of its body-diagonals. This diagonal is then the axis of highest
symmetry, which is a 3-fold. Since it is generally helpful to have the axis of
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highest symmetry aligned with the crystallographic z axis, this body diagonal
becomes the c unit cell vector of the pseudo-hexagonal cell, as shown in Fig. 1.
Viewing the unit cell along this axis, the 3 lattice points one third of the way
up (coloured pale green as in the video) appear to form an equilateral triangle
and the 3 lattice points two thirds of the way up (pale blue as in the video)
form another equilateral triangle that is rotated by 60 ◦around z relative to the
first triangle.

Figure 1: A rhombohedral unit cell with vectors a1, b1 and c1 drawn in red,
green and blue, respectively, i.e. using the abbreviation RGB as an aide mem-

oire. The vectors which are labelled are drawn with a perspective effect to
indicate that a1 and b1 project towards the viewer whereas c1 points away.
This is true for all the vectors shown although the remainder are just drawn as
plane arrows. The unit cell vectors are all of equal amplitude, i.e. a1 = b1 = c1
and they diverge from one another by an equal angle, i.e. α1 = β1 = γ1 (not
shown). The yellow arrow indicates the direction in which the rhombohedral
cell has been distorted from a cube. It is labelled c2 since it forms the c unit
cell vector of the pseudo-hexagonal lattice. This vector is the body-diagonal of
the rhombohedral cell and two layers of lattice points (shown pale green and
blue with a perspective effect) divide it equally into thirds, as shown.

2



3 Making it hexagonal

If we imagine looking down the c2 unit cell vector in Fig. 1, the 3 green lattice
points would from an equilateral triangle, as shown in Fig. 2. The a1, b1 and
c1 appear to originate from the orange lattice point directly below the centroid
of this triangle. This lattice point is also the origin of the pseudo-hexagonal
cell which is shown in yellow along with the a2 and b2 unit cell vectors.
The hexagonal cell is centred, containing the pale green lattice point at the tip

Figure 2: The rhombohedral and pseudo-hexagonal unit cell vectors viewed
along the body-diagonal of the rhombohedral cell. This diagonal forms the
3-fold or c2 unit cell vector (not labelled) of the pseudo-hexagonal lattice. The
rhombohedral unit cell vectors a1, b1 and c1 originate from an orange lattice
point, as in Fig. 1, and point roughly towards the viewer. The choice of
hexagonal cell is shown in yellow with the corresponding a2 and b2 unit cell
vectors labelled. The hexagonal cell therefore possesses 3 lattice points: the
small orange one at the origin, the pale green one at the tip of the a1 vector
and the pale blue one formed by a subsequent translation along b1. As shown
in Fig. 1, the pale green and pale blue lattice points occur at heights of 1/3 c2
and 2/3 c2, respectively.

of a1 and the pale blue lattice point, which is generated from the pale green one
by application of the b1 unit cell vector. Therefore, in contrast to the rhom-
bohedral cell, which is primitive, the pseudo-hexagonal cell contains 3 lattice
points which lie along a body-diagonal. The volume of the pseudo-hexagonal
cell is therefore 3 times that of the rhombohedral unit cell.

Anyhow, I am beginning to see why, in macromolecular crystallgraphy, space
group R3 is usually referred to as H3 and R32 as H32. The notation R3:h or
R32:h is also used to refer to the pseudo-hexagonal setting and R3:r and R32:r
for the corresponding rhombohedral cell. As long as the unit cell is given (and
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ideally the symmetry operators), there should be no ambiguity.

4 Obverse and reverse settings

The terms obverse and reverse refer to alternative choices of the hexagonal cell,
in much the same way that they can refer to the alternative sides of a coin i.e.

the ’heads’ and ’tails’ sides, respectively. The yellow hexagonal cell shown in
Fig. 2 is in fact the obverse choice and we can see that for this setting the 3
lattice points within this cell occur at (0, 0, 0), (2/3, 1/3, 1/3) and (1/3, 2/3, 2/3)
with respect to the a2, b2 and c2 axes.

However, there exists an alternative choice of the hexagonal cell which is
obtained by rotating the yellow unit cell in Fig. 2 by 60◦ around the z axis, as
shown in Fig. 3.

Figure 3: The reverse setting of the pseudo-hexagonal unit cell. As in Fig. 2
(which shows the obverse setting), we are looking down the body-diagonal of
the rhombohedral cell such that its unit cell vectors a1, b1 and c1, point out of
the page roughly towards the viewer. The alternative choice of hexagonal cell
is shown in yellow with the corresponding unit cell vectors in the plane of the
page, a2 and b2, labelled. The heights above the page of the pale green and
pale blue lattice points, 1/3 c2 and 2/3 c2, are indicated.

The yellow hexagonal cell shown in Fig. 3 is the reverse choice and we can
see that the 3 lattice points occur at (0, 0, 0), (2/3, 1/3, 2/3) and (1/3, 2/3, 1/3)
with respect to the a2, b2 and c2 axes. This is where we differ from Boisen and
Gibbs (Mathematical Crystallography, 1985, pp. 89-90), which I believe has a
typo, since we are consistent with Wikipedia (the free encyclopedia) and the
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International Tables for Crystallography.

Put simply, if we look first at the tip of the a2 vector in Fig. 2, we see
that moving from the pale green centred lattice point to the pale blue one, we
move away from the plane of the page in the obverse setting. In contrast, in
the reverse setting, starting at the tip of a2, stepping from the pale blue lattice
point to the pale green one, along the body diagonal, we move towards the
plane of the page.

Note that the obverse setting is the one most commonly used i.e. if the
setting is not stated, it can be assumed to be obverse. Note also that having
a mixture of obverse and reverse lattices within a rhombohedral crystal is a
common form of twinning known as reticular merohedry (see Andrea Thorne’s
slides from her 2011 IUCr Computing School presentation on Twinning).

5 Relating the two lattices

From Figs. 1 and 2, the following formulae given by Boisen and Gibbs (1985)
for the obverse setting arise from vector addition:

a2=a1-b1

b2=b1-c1
c2=a1+b1+c1

and inspection of the triangular graph paper establishes that:

a1= 2/3 a2 + 1/3 b2 + 1/3 c2
b1= -1/3 a2 + 1/3 b2 + 1/3 c2
c1= -1/3 a2 - 2/3 b2 + 1/3 c2

Similarly, for the reverse setting:

a2=a1-c1
b2=b1-a1
c2=a1+b1+c1
a1= 1/3 a2 - 1/3 b2 + 1/3 c2
b1= 1/3 a2 + 2/3 b2 + 1/3 c2
c1= -2/3 a2 - 1/3 b2 + 1/3 c2
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6 Systematic absences

From the previous section we know that the additional lattice points for the
obverse setting are at the following positions relative to the hexagonal axes:

r1= 2/3 a2 + 1/3 b2 + 1/3 c2
r2= 1/3 a2 + 2/3 b2 + 2/3 c2

If we consider the scattering from a molecule (or molecules) at a single lattice
point, the diffraction amplitudes will be of the form:

F
′

hkl =
∑

j

fje
2πi(hxj+kyj+lzj) (1)

Hence, the total scattering from all three lattice points is given by:

Fhkl = F
′

(1 + e2πi((
2/3)h+(1/3)k+(1/3)l) + e2πi((

1/3)h+(2/3)k+(2/3)l)) (2)

The systematic absences will, of course, arise when Fhkl = 0 and this can
only happen when the terms making up the sum in brackets cancel out. This
requires that the phases of the second and third terms are 120◦ and 240◦, respec-
tively, or -120◦ and -240◦, respectively. In other words the three components of
this sum form an equilateral triangle in an Argand diagram, as shown in Fig.
4. The triangle can be above or below the real axis, corresponding to the above
two situations of the phases being either positive or negative. Of course, it is
possible for multiples of 360◦ to be added to or subtracted from these phases
and the effect would be exactly the same.

Given that 120◦ and 240◦ correspond to 1/3 and 2/3 of a full circle, for the
upper triangle in Fig. 4, we can say that:

(2/3)h+ (1/3)k + (1/3)l = 1/3 + p (3)

and

(1/3)h+ (2/3)k + (2/3)l = 2/3 + q (4)

where p and q are integers. OK, so how can we solve these equations for h, k
and l? One possibility might be to add them giving:

h+ k + l = 1 + p+ q (5)

However, the right-hand side of this equation can be any integer (e.g. n) so we
are left with:

h+ k + l = n (6)
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Figure 4: An Argand diagram showing how a systematic absence arises in
the hexagonal setting. The three components of the bracketed term in the
equation for Fhkl (equation 2) are shown. The horizontal red arrow of unit
length represents scattering from the lattice point at the origin and the other
two solid arrows show the additional scattering due to the centred lattice points
at (2/3, 1/3, 1/3) in green and (1/3, 2/3, 2/3) in blue. The phases of the latter
two components can be 120◦ and 240◦, respectively, as shown by the upper
equilateral triangle. It is also possible for the phases of these components to be
-120◦ and -240◦, respectively, and this is shown by the lower equilateral triangle
with the arrows drawn dashed.

where n is any positive or negative integer. Hence, for a reflection to be a sys-
tematic absence, the symmetry of the pseudo-hexagonal setting does not place
any restrictions on the value of h + k + l. If instead we subtract equation (4)
from equation(3), we get the following:

(1/3)h− (1/3)k − (1/3)l = −1/3 + p− q (7)

and multiplying by -3 gives:

− h+ k + l = 1 + 3(q − p) (8)

and since q-p can be any integer:

− h+ k + l = 1 + 3n (9)

7



Hence, the symmetry dictates that for a reflection to be systematically absent,
its indices must obey the above rule i.e. there is a restriction on the value of
−h+ k + l but not on the value of h+ k + l. Interesting.

For the lower triangle in Fig. 4, we can say:

(2/3)h+ (1/3)k + (1/3)l = −1/3 + p (10)

and

(1/3)h+ (2/3)k + (2/3)l = −2/3 + q (11)

and subtracting these two equations gives:

(1/3)h− (1/3)k − (1/3)l = 1/3 + p− q (12)

Multiplying by -3 again gives:

− h+ k + l = −1 + 3(q − p) (13)

Hence, another possible way that a reflection can be systematically absent is if
its indices obey this rule:

− h+ k + l = −1 + 3n (14)

where n is any positive or negative integer. Combining the systematic absence
rules for the upper and lower triangles in Fig. 4 gives us:

− h+ k + l = 3n± 1 (15)

as the general requirement for a reflection to systematically have zero ampli-
tude in the pseudo-hexagonal setting. Hence, diffraction only occurs when the
above rule is disobeyed, but how often does that happen? This can be seen
by generating a short series of 3n±1 numbers: 1, 2, 4, 5, 7, 8, 10, 11, 13, etc,
which evidently includes every integer except those which are multiples of 3,
i.e. 3n, which has values of 0, 3, 6, 9, 12, etc. Hence, 2/3 of the reflections are
systematically absent, which matches our expectations given that the hexag-
onal setting has two centred lattice points. The general arrangement of the
systematic absences and presences is shown in Fig. 5.

It turns out that we can also simplify equation 2 for reflections which are
systematically present. If we take the equation −h+ k+ l = 3n and add 3h to
each side we get:

2h+ k + l = 3(n+ h) (16)
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Figure 5: One layer of the diffraction pattern of a rhombohedral crystal indexed
in the pseudo-hexagonal system. The left-hand picture shows the h and k axes,
l being perpendicular to the page. The right-hand figure shows a zoomed-up
region of the pattern with the underlying hexagonal symmetry of the reciprocal
lattice drawn in pale grey lines. The hollow circles indicate the positions of
systematic absences which outnumber the observed spots by a factor of 2.

Dividing by 3 we get part of the first exponential term of equation 2:

(2/3)h+ (1/3)k + (1/3)l = n+ h (17)

which becomes:

e2πi(n+h) = 1 (18)

since any integral multiple of 2π is equivalent to a phase of zero.

If we take the equation −h + k + l = 3n, multiply through by -1 and add
3(k + l) we get: h+ 2k + 2l = 3(k + l − n) then dividing by 3 gives:

(1/3)h+ (2/3)k + (2/3)l = k + l − n (19)

This shows that the second exponential term of equation 2 also becomes 1 since
k + l − n is an integer giving a phase of zero to this component in the Argand
diagram. Therefore, Fhkl = 3F

′

hkl when −h + k + l = 3n. Hence, whilst 2/3 of
the reflections are systematically absent in the hexagonal setting, the scattering
power of all 3 lattice points in the unit cell goes into the 1/3 of the reflections
that are observable. As remarkable as the mathematics seems to be, this re-
sult is really only to be expected since the triply-centred hexagonal lattice is
essentially just an artificial construction.

Now, for the reverse setting. In Section 4 we showed that the additional
lattice points are at the following positions relative to the hexagonal axes:
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r1= 1/3 a2 + 2/3 b2 + 1/3 c2
r2= 2/3 a2 + 1/3 b2 + 2/3 c2

from which we derive a structure factor equation:

Fhkl = F
′

(1 + e2πi((
1/3)h+(2/3)k+(1/3)l) + e2πi((

2/3)h+(1/3)k+(2/3)l)) (20)

in which the two exponential terms must have phases of 120◦and 240◦ in order
to form the upper equilateral triangle in the Argand diagram (Fig. 4) and give
zero diffraction amplitude. Hence:

(1/3)h+ (2/3)k + (1/3)l = 1/3 + p (21)

and

(2/3)h+ (1/3)k + (2/3)l = 2/3 + q (22)

Subtracting the first of these two equations from the second and multiplying
by 3 gives us h− k + l = 3n+ 1 and the same treatment for the lower triangle
in Fig. 4 yields h− k + l = 3n− 1. Hence we can say the systematic absences
will occur in the reverse setting when:

h− k + l = 3n± 1 (23)

and reflections will be observable when:

h− k + l = 3n (24)

Thus, it is possible to determine from the systematic absences whether the data
have been indexed in the obverse or reverse setting.

This section was based entirely on J. W. Jeffery’s book Methods in X-ray

Crystallography, Academic Press, London (1971) pp. 343-4.

7 Notes on twinning

We touched on the subject of obverse/reverse twinning in rhombohedral crys-
tals. This arises when regions or domains of the crystal differ in orientation in
the same way as the two choices of pseudo-hexagonal cell shown earlier. This
can happen when there is a pseudo 2-fold axis parallel either with the pseudo-
hexagonal axis or with a2-b2 (Herbst-Irmer, R. & Sheldrick, G. M. (2002).
Acta Crystallogr. B 58, 477-481). With this type of twinning there are four
types of reflection to think about. Firstly consider those with −h+ k+ l = 3n
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and h − k + l 6= 3n. These reflections are systematically present for the ob-
verse domain but are systematically absent for the reverse one, so only the
obverse domain contributes to the diffraction. Then there are reflections with
−h + k + l 6= 3n and h − k + l = 3n which are absent for the obverse do-
main but present for the reverse one. Reflections with −h + k + l 6= 3n and
h−k+ l 6= 3n are absent for both domains and reflections with −h+k+ l = 3n
and h−k+ l = 3n have contributions from both. Quoting exactly from Herbst-
Irmer & Sheldrick (2002): ”Since only one third of the reflections (with l = 3n)
are affected by the twinning, structure solution is normally not a severe prob-
lem, because two thirds of the reflections have contributions from only one
domain and are often sufficient for structure solution.” OK, so where does the
l = 3n come from? Adding together −h+ k + l = 3n and h− k + l = 3n gives
us 2l = 6n or l = 3n. Sorted. So the point is that only 1/3 of the reflections for
an obverse-indexed dataset will obey this rule and will therefore be affected by
the twinning, while the rest won’t. Nice.

8 Worked example

The final part of the exercise in Mathematical Crystallography (Boisen and
Gibbs, 1985, pp. 89-90) involves calculating the a1, b1, c1, α1, β1 and γ1 values
of a rhombohedral unit cell given that a2 = b2 = 15.951 Å and c2=7.24 Å.

Refering to Fig. 2, we can determine the projection of a1 onto the plane of
a2 and b2, shown as OB in Fig. 6.

Figure 6: Deriving the length of the component of a1 in the horizontal plane.

The grey +1/3 symbol next to the pale green dot (B) in Fig. 6 indicates that
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the tip of a1 vector is at a height of (1/3)c2 above this point, as shown on the
left hand side of Fig. 7. Basic trigonometry allows us to calculate a1 (9.52 Å)
and the angle shown as θ which is essentially the latitude of the point where a1
emerges from the sphere shown on the right of Fig. 7. The b1 vector emerges
at the same latitude and the spherical triangle formed by these two points and
the north pole allows γ1 to be calculated.

Figure 7: Deriving the amplitude of a1 and the angle it makes with the horizon-
tal plane (θ) is shown on the left. The construction on the right shows how the
γ1 angle can be calculated using spherical trigonometry. The vectors a1 and b1

emerge from the sphere at the brown-coloured points which differ in longitude
by 120◦ and are both at an angular distance of (90◦ - 14.68◦) or 75.32◦ from the
north pole, where the pseudo-hexagonal c2 axis emerges. All the arcs shown
are great circles (i.e. their centres are at the centre of the sphere) so we can
use the spherical cosine rule to calculate γ1.

With reference to Fig. 8 the following equation is known as the spherical
law of cosines:

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A) (25)

and we can identify b = c = 75.32◦ and A = 120◦. The unknown rhombohedral
unit cell angle, γ1 (or a in Fig. 8), can then be calculated as 113.8◦ which agrees
with the answer in the book.

One final point, I don’t think this is how the authors expect the calculation
to be done because the preceding pages are about vector and matrix operations.
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Figure 8: A general spherical triangle with sides a, b and c which are arcs
formed by great circles. Note that a, b and c are actually the angles subtended
by each arc at the centre of the sphere. A given arc defines a plane and the
angles between these planes are shown in capital letters as A, B and C.
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- Written with Gummi - the simple LATEX editor -
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