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Derivation of the general formula for unit cell volume

In the coordinate transformation essay we showed that fractional coordinates (x,  y,  z) measured
relative to the crystallographic unit cell vectors (a, b, c) can be converted to orthogonal coordinates
(X, Y, Z) by the following expression: 

(
X
Y
Z )=(

a bcos γ c cosβ
0 b sin γ −c sinβ cosα*

0 0 c sinβsinα
* )(

x
y
z )

We can refer to the orthogonal X, Y and Z coordinates in the context of unit vectors i, j and k which
are described in Chapter 2 of Crystals, X-rays and Proteins by D. Sherwood and J. Cooper (OUP,
2010, 2015), hereafter referred to as CXP. 

Considering the tip of the  a vector at fractional coordinate (1, 0, 0), by matrix multiplication we
obtain a = a i, and likewise for b at (0, 1, 0) and c at (0, 0, 1) we get: 

b=b cos γ i+b sin γ j  and 

c=c cosβi−c sinβ cosα* j+c sinβ sin α
* k

In Chapter 8 of CXP, we showed that the volume of the unit cell is given by V = a·bˆc. From the
properties of the vector triple scalar product (e.g. see Wikipedia), the formula can also be expressed
as V = aˆb·c . The volume V is therefore given by: 

V  = a i ^ (b cos γ i+b sin γ j)⋅(c cosβ i−c sinβcos α
* j+c sinβ sinα

* k)

and remembering that i^i=0 and i^j=k, etc, gives: 

V  = abc sin γk⋅(cosβ i−sinβ cosα* j+sinβsinα
* k)

From the properties of the dot product, e.g. k·i = k·j = 0 and k·k = 1, etc, we can say: 

V=abc sin α
* sin βsin γ

In  the  coordinate  transformations  essay  we  showed  that cosα*
=

cosβcos γ−cosα
sinβ sinγ

and  since

sinα
*
=√1−cos2

α
*  we can state: 

sinα
*
=√1−( cosβcos γ−cosα

sinβsin γ )
2
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=√
sin 2

βsin 2
γ−(cos2

β cos2
γ+cos2

α−2 cosα cosβ cos γ)

sin2
β sin2

γ

=√
sin 2

βsin 2
γ−((1−sin 2

β)(1−sin2
γ)+1−sin2

α−2cos αcosβcos γ)

sin2
βsin2

γ

=√
sin 2

βsin 2
γ−(1−sin2

γ−sin2
β+sin2

β sin2
γ)−1+sin2

α+2 cosαcosβ cos γ

sin2
β sin2

γ

=√ sin 2
βsin 2

γ−1+sin2
γ+sin2

β−sin2
β sin2

γ−1+sin2
α+2 cosα cosβ cos γ

sin2
β sin2

γ

=√−1+sin2
γ+sin2

β−1+sin 2
α+2cos αcosβcos γ

sin2
βsin2

γ

=
√sin 2

α+sin2
β+sin2

γ+2cosαcosβ cos γ−2
sinβsin γ

Substituting this into the formula for the unit cell volume gives: 

V=abc√sin2
α+sin2

β+sin 2
γ+2cos αcosβcos γ−2

Determining the d-spacing of lattice planes (resolution)

The scattering or reciprocal lattice vector, S, has amplitude |S| =  
1
d

, as described in Chapter 8

of  CXP.  The  following  well-known  formula:  S  = h a*
+k b*

+l c* suggests  that  if  we  can
orthogonalise  the  reciprocal  lattice  coordinates  (h,  k,  l)  we  could  then  use  3D  Pythagoras  to

determine |S| or
1
d

. A simple way to orthogonalise the reciprocal lattice coordinates is to use

the same convention for aligning the orthogonal axes with a*,  b* and c* as that used for the real
lattice vectors in the coordinate transformations essay. The orthogonal reciprocal lattice coordinates
(H, K, L) are immediately given by: 

(
H
K
L )=(

a* b* cos γ
* c* cosβ  *

0 b* sin γ
*

−c* sinβ
 * cosα

0 0 c* sinβ
 * sinα

)(
h
k
l )

H=ha*
+kb* cos γ

*
+lc* cosβ *

K=kb* sin γ
*
−lc* sinβ

 * cosα

L=lc* sinβ
 * sinα
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Squaring each term gives: 

H2
=(ha*

+kb*cos γ
*
+ lc*cosβ *

)
2

=h2 a* 2
+k2b* 2cos2

γ
*
+ l2 c* 2 cos2

β
 *
+2hk a*b*cos γ

*
+2 hla*c* cosβ *

+2 kl b* c* cosβ * cos γ
*

K2
=(kb* sin γ

*
−lc *sinβ

 * cosα)
2
=k2 b* 2 sin2

γ
*
+l2 c* 2 sin2

β
 * cos2

α−2kl b* c*cos α  sinβ
 * sin γ

*

L2
=l2 c* 2 sin2

β
 * sin2

α

Making use of the relationship sin2
θ  +  cos2

θ  =  1 gives: 

K2
+L2

=k2 b* 2 sin2
γ

*
+l2c* 2 sin2

β
 *
−2 kl b* c*cos α  sin β

 * sin γ
*

and 

H2
+ K2

+ L2
=h2 a* 2

+k 2b* 2
+l2 c* 2

+2 hk a*b*cos γ
*
+2 hla*c* cosβ  *

+2 kl b* c*
(cosβ  * cos γ

*
−cosα  sinβ

 * sin γ
*
)

=h2 a* 2
+k2b* 2

+ l2c* 2
+2 hk a* b* cos γ

*
+2 hl a*c* cosβ *

+2 kl b* c*
(cosβ * cos γ

*
+sinβ

 * sin γ
*cos (180 °−α))

From Fig. 2 of the coordinate transformations essay, we can simplify this expression to:  

1

d2
=h2 a* 2

+k2 b* 2
+l2 c* 2

+2hk a*b*cos γ
*
+2hl a*c* cosβ  *

+2 kl b* c* cosα*

A more elegant approach is to use the properties of the vector dot product as follows: 

|S|2=
1

d2
=S⋅S=(h a*

+k b*
+l c* )⋅(h a*

+k b*
+l c*)

=h2 a*
⋅a*

+k2 b*
⋅b*

+l2c*
⋅c*

+2 hk a*
⋅b*

+2 hla*
⋅c*

+2kl b*
⋅c*

since  the  dot  product  is  distributive  and  commutative.  Substituting  other  formulae  derived  in
Chapter 8 of CXP, we get exactly the same formula as that derived from using 3D Pythagoras on the
orthogonalised reciprocal lattice coordinates: 

|S|2=h2 a* 2
+k2 b* 2

+l2 c* 2
+2hk a* b* cos γ

*
+2hl a* c*cosβ *

+2klb*c* cosα*

We can express this equation in terms of the real lattice parameters as follows: 

|S|2=h2( bc sin α

V )
2

+k2( ac sin β

V )
2

+l2( ab sinγ

V )
2

+2 hk ( bc sin α

V )( ac sinβ

V )cos γ
*

+2 hl( bc sin α

V )( absin γ

V )cosβ*
+2 kl( ac sinβ

V )( ab sin γ

V )cosα*
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Given cosα*
=

cosβcos γ−cosα
sinβ sin γ

, cosβ*
=

cosαcos γ−cosβ
sin α sin γ

and cos γ
*
=

cos αcosβ−cos γ

sin α sinβ

from the coordinate transformations essay, we get: 

1
d2 =h2( bcsinα

V )
2

+k2( ac sinβ

V )
2

+l2( ab sin γ

V )
2

+2hk ( bc
V )( ac

V ) (cosα cosβ−cos γ )

+2hl( bc
V )( ab

V ) (cosαcos γ−cosβ )+2kl(ac
V )( ab

V )(cosβ cos γ−cosα )

=  
1

V 2 [h2 b2 c2sin2
α+k2 a2 c2sin2

β+l2 a2 b2 sin2
γ+2hkabc2

(cos αcosβ−cos γ)

+2hla b2 c (cosαcos γ−cosβ)+2kla2bc (cosβ cos γ−cosα)]

=  
1

V 2 [h2 b2 c2
(1−cos2

α)+k2 a2 c2
(1−cos2

β)+l2 a2b2
(1−cos2

γ)+2 hkabc2
(cosαcosβ−cos γ)

+2hlab2 c (cosα cos γ−cosβ)+2 kl a2bc (cosβ cos γ−cosα) ]

In Chapter 3 of the book  Crystals and X-rays by Kathleen Lonsdale (Bell, 1948) on page 54 an
interesting  determinant  version  of  this  formula  “which  is  easy  to  remember,  because  of  its
symmetry” is given: 

1
d2=

h
a|

h
a

cos γ cosβ

k
b

1 cosα

l
c

cosα 1 |+ k
b|

1
h
a

cosβ

cos γ
k
b

cosα

cosβ
l
c

1 |+ l
c |

1 cos γ
h
a

cos γ 1
k
b

cosβ cosα
l
c
|

|
1 cos γ cosβ

cos γ 1 cosα
cosβ cos α 1 |

To check that these formulae are consistent, expanding the first term of the numerator as described
in the Appendix of Chapter 2 of CXP, gives: 

( h
a )

2

(1−cos2
α )+

h
a

cos γ( l
c

cos α−
k
b )+ h

a
cosβ( k

b
cosα−

l
c )

the second: 

( k
b )( k

b
−

l
c

cosα)+ hk
ab

( cosαcosβ−cos γ )+
k
b

cosβ( l
c

cos γ−
k
b

cosβ)

and the third: 
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( l
c )( l

c
−

k
b

cosα)+ l
c

cos γ ( k
b

cosβ−
l
c

cos γ)+ hl
ac

(cosαcos γ−cosβ )

Expanding the denominator  gives: 

1−cos2
α+cos γ(cosαcosβ−cos γ)+cosβ(cosαcos γ−cosβ)

=  sin2
α+cos γcos αcosβ−cos2

γ+cosβ cosαcos γ−cos2
β

=  sin2
α+cos γcos αcosβ+sin 2

γ  −1+cosβ cosαcos γ+sin2
β  −1

=  sin2
α+sin2

β+sin2
γ+2 cosαcosβ cos γ−2 and we showed earlier that this equals ( V

abc )
2

. 

The determinant formula therefore becomes: 

1
d2=( abc

V )
2

[( h
a )

2

(1−cos2
α )+

h
a

cos γ( l
c

cosα−
k
b )+ h

a
cosβ( k

b
cosα−

l
c )

+( k
b )( k

b
−

l
c

cos α)+ hk
ab

(cos αcosβ−cos γ )+
k
b

cosβ( l
c

cos γ−
k
b

cosβ)
+( l

c )( l
c
−

k
b

cos α)+ l
c

cos γ( k
b

cosβ−
l
c

cos γ)+ hl
ac

(cosα cos γ−cosβ )]

=
1

V 2 [h2 b2 c2 (1−cos2
α )+hab2 c2cos γ ( l

c
cosα−

k
b )+hab2 c2 cosβ( k

b
cos α−

l
c )

+ (ka2 bc2 )( k
b
−

l
c

cosα)+hkabc2
(cosα cosβ−cos γ )+ka2bc2 cosβ( l

c
cos γ−

k
b

cosβ)
+ la2 b2 c ( l

c
−

k
b

cosα)+la2b2 ccos γ ( k
b

cosβ−
l
c

cos γ)+hlab2 c ( cosαcos γ−cosβ )]

=
1

V 2 [h2 b2 c2 (1−cos2
α )+hlab2 c cos γcosα−hkabc2 cos γ+hkabc2 cosβcosα−hlab2 ccosβ

+k2 a2 c2
−kla2 bccosα+hkabc2

(cos αcosβ−cos γ )+kla2bc cosβcos γ−k 2a2 c2 cos2
β

+l2 a2 b2
−kla2 bc cosα+kla2 bccosβ cos γ−l2a2b2cos2

γ+hlab2 c (cosαcos γ−cosβ ) ]

=
1

V 2 [h2 b2 c2 (1−cos2
α )+k2 a2 c2 (1−cos2

β )+l2 a2 b2 ( 1−cos2
γ )+2 hkabc2

(cosα cosβ−cos γ )

+2 hlab2c (cosα cos γ−cosβ )+2 kla2 bc (cosβ cos γ−cosα ) ]

and, with some grouping of terms by colour for clarity, the equivalence is demonstrated. 

The determinant formula is given again below: 
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1
d2=

h
a|

h
a

cos γ cosβ

k
b

1 cosα

l
c

cosα 1 |+ k
b|

1
h
a

cosβ

cos γ
k
b

cosα

cosβ
l
c

1 |+ l
c |

1 cos γ
h
a

cos γ 1
k
b

cosβ cosα
l
c
|

|
1 cos γ cosβ

cos γ 1 cosα
cosβ cos α 1 |

One rule-of-thumb for remembering it must be to start with the denominator, which has diagonal
mirror symmetry, and imagine that the top 3 determinants are empty. We can simply drop all of the
denominator  terms into  each empty  determinant  and replace  one  column with  h/a,  k/b and  l/c
depending on whether it is the first, second or third term of the numerator, as shown in cyan. 

The metric tensor

In the above notes we have converted our coordinates from fractional to the ijk orthogonal system
but it is possible to do the same mathematics with fractional coordinates. Consider a point at (x1, y1,
z1), its position vector with respect to the crystallographic axis vectors  a,  b and  c is given by the
matrix product: 

r1  =  (x1  y1  z1)(
a
b
c ) or r1=x1a+y1b+z1c 

and another point at (x2, y2, z2) will have position vector: 

r2  =  (x2  y2  z2)(
a
b
c ) or r2=x2a+y2b+z2c 

The dot product of r1 and r2 is as follows: 

r1⋅r2=(x1 a+ y1 b+ z1 c)⋅(x2a+ y2 b+z2c )

=x1 x2 a⋅a+x1 y2 a⋅b+x1 z2 a⋅c+ y1 x2 b⋅a+ y1 y2 b⋅b+ y1 z2 b⋅c+ z1 x2c⋅a+z1 y2 c⋅b+z1 z2 c⋅c

=(x1  y1  z1)(
x2a⋅a y2 a⋅b z2 a⋅c
x2 b⋅a y2 b⋅b z2 b⋅c
x2 c⋅a y2c⋅b z2c⋅c )

=(x1  y1  z1)(
a⋅a a⋅b a⋅c
b⋅a b⋅b b⋅c
c⋅a c⋅b c⋅c )(

x2

y2

z2
)
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The 3x3 matrix is called the metric tensor G and it has diagonal symmetry since a·b=b·a, etc. In the
ijk system, the metric tensor is a 3x3 identity matrix since i·i=1, i·j=0, etc. Expanding the terms of
G for the general case gives: 

G =(
a2 abcos γ accosβ

bacos γ b2 bccosα
cacosβ cbcosα c2 )

One practical application of the metric tensor is to calculate interatomic distances directly from
fractional coordinates without first orthogonalising them and then using 3D Pythagoras. Consider
two atoms differing in x, y and z by Δx, Δy and Δz, the interatomic distance, d, can be determined
from: 

d2  =(Δ x  Δ y  Δ z)G(
Δ x
Δ y
Δ z )

Another, quite often-quoted application is in calculating the angle (say θ) between two vectors e.g.
r1 and  r2 which can be given as  cosθ  =  r1⋅r2/r 1r2 . However, although the numerator of this
formula  can  be  expressed  in  terms  of  G,  as  shown previously,  it  hides  the  calculation  of  the
amplitudes in the denominator,  which requires orthogonalising the fractional coordinates, to the
point where I do not think it is very useful. 

Expanding G as a determinant gives: 
 

a2 b2 c2
−a2b2 c2 cos2

α+abcos γ(abc2 cosαcosβ−abc2 cos γ)+ac cosβ(ab2 c cosαcos γ−ab2c cosβ)

=  a2b2 c2
(1−cos2

α)+a2 b2 c2cos αcosβcos γ−a2b2c2 cos2
γ+a2b2c2 cosαcosβ cos γ−a2 b2 c2cos2

β

=  a2b2 c2 (sin2
α+cosαcosβcos γ−cos2

γ+cosα cosβ cos γ−cos2
β )

=  a2b2 c2 (sin2
α+sin2

β+sin2
γ+2 cosαcosβcos γ−2 )  =  V 2

The latter follows from the expression for the unit cell volume derived in the first section, namely: 

V=abc√sin2
α+sin2

β+sin 2
γ+2cos αcosβcos γ−2

and gives us the important result that the determinant of the metric tensor is the volume of the unit
cell squared. 

Given the general 3x3 matrix: 

A=(
x1 y1 z1

x2 y2 z2

x3 y3 z3
)

the formula for its inversion is: 
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A−1=
1
Δ (

y2 z3−z2 y3 z1 y3− y1 z3 y1 z2−z1 y2

z2 x3−x2 z3 x1 z3−x3 z1 z1 x2−x1 z2

x2 y3− y2 x3 x3 y1−x1 y3 x1 y2−x2 y1
)

where Δ is the determinant of A. The inverse of G is therefore given by: 

G−1
=

1
V 2 (

b2c2
−b2 c2 cos2

α abc2 cosαcosβ−abc2 cos γ ab2c cosαcos γ−ab2 c cosβ
abc2 cosαcosβ−abc2 cos γ a2c2

−a2 c2 cos2
β a2bc cosβcos γ−a2bc cosα

ab2c cosαcos γ−ab2 ccosβ a2bc cosβcos γ−a2bc cosα a2 b2
−a2 b2cos2

γ
)

=
1
V 2 (

b2c2
(1−cos2

α) abc2
(cosα cosβ−cos γ) ab2 c(cosαcos γ−cosβ)

abc2
(cosαcosβ−cos γ) a2 c2

(1−cos2
β) a2bc (cosβ cos γ−cosα)

ab2 c(cosαcos γ−cosβ) a2 bc (cosβcos γ−cosα) a2 b2
(1−cos2

γ)
)

=
1

V 2 (
b2c2 sin2

α abc2 sinα sinβ cos γ
* ab2 c sin αsin γ cosβ*

abc2 sinα sin βcos γ
* a2 c2sin2

β a2 bcsin βsin γcos α
*

ab2 c sin α sin γcosβ* a2bc sinβ sin γcosα* a2 b2sin 2
γ

)
The latter  follows from the formulae derived in the coordinate transformations essay using the
spherical cosine rule. Using the equations for the reciprocal cell dimensions derived in Chapter 8 of
CXP, we get: 

G−1  =(
a*

⋅a* a*
⋅b* a*

⋅c*

b*
⋅a* b*

⋅b* b*
⋅c*

c*
⋅a* c*

⋅b* c*
⋅c*)

The last step demonstrates that the inverse of the metric tensor for the real lattice is in fact the
metric  tensor  of  the  reciprocal  lattice,  although that  will  probably  be  very  obvious  anyway to
someone with a decent understanding of matrices. 

There is a theorem in Mathematical Crystallography by M. B. Boisen and G. V. Gibbs (Ed. P. H.
Ribbe) Reviews in Minerology 15 (1985) which states in effect that: 

1
d2=(h k l)G−1(

h
k
l )

This can be seen by substituting for G-1 as below: 

1

d2=(h k l)(
a*
⋅a* a*

⋅b* a*
⋅c*

b*
⋅a* b*

⋅b* b*
⋅c*

c*
⋅a* c*

⋅b* c*
⋅c* )(

h
k
l )
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and expanding this gives: 

1

d2=(h k l)(
h a*

⋅a*
+k a*

⋅b*
+ la*

⋅c*

h b*
⋅a*

+k b*
⋅b*

+l b*
⋅c*

h c*
⋅a*

+k c*
⋅b*

+l c*
⋅c* )

=h2 a*
⋅a*

+k2 b*
⋅b*

+l2c*
⋅c*

+2hk a*
⋅b*

+2hla*
⋅c*

+2kl b*
⋅c*

which we showed earlier follows from the definition of S, thus proving the theorem. 

Angles between lattice planes

We showed earlier  that  the  coordinates  of  a  reciprocal  lattice  vector  can  be  orthogonalised  as
follows: 

H=ha*
+kb* cos γ

*
+lc* cosβ *

K=kb* sin γ
*
−lc* sinβ

 * cosα

L=lc* sinβ
 * sinα

and these can be converted to directions cosines. Considering the angles  which the vector makes
with  the  orthogonal  X,  Y and  Z axes as  θ,  Φ and  Ψ,  respectively,  we  get  direction  cosines:

cosθ=
H
|S|

=Hd ,  cosϕ=Kd and  cos ψ=Ld .  The following figure shows two reciprocal

lattice vectors (h1,  k1,  l1) and (h2,  k2,  l2) which make angles  θ1,  Φ1,  Ψ1 and  θ2,  Φ2,  Ψ2 with the
Cartesian axes, respectively. These angles can be considered as arcs of great circles making the
system amenable to spherical trigonometry. 
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The arcs  shown as  dashed lines  are  90° in  length  since they  represent  the angles  between the
orthogonal axes. The arc of length δ represents the angle between the two reciprocal lattice vectors
and since these are normal to the corresponding lattice planes, δ is also the interplanar angle. From
the spherical cosine rule, looking at the triangle formed by arcs θ1, θ2 and δ we can see that: 

cosδ=cosθ1cosθ2+sinθ1sin θ2cos (B−A)

which demonstrates  that  we need to determine the angles A and B before  δ can be calculated.
Considering the triangle formed by the right hand 90° arc along with arcs θ1 and Φ1 we can see that:

cosϕ1=cosθ1 cos90 °+sinθ1 sin 90° cos A

and this simplifies to cosϕ1=sin θ1cos A . Likewise for the spherical triangle formed by the same
90° arc with θ2 and Φ2 we get cosϕ2=sinθ2cos B and this gives us the following formulae:  

A=arccos(
cosϕ1

sin θ1
) and B=arccos(

cos ϕ2

sinθ2
) . 

We can now calculate the interplanar angle from the formula we gave earlier: 

cosδ=cosθ1cosθ2+sinθ1sin θ2cos (B−A)
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However, we need to be aware that none of the formulae above considered the angular distance
from the Z-axis. This is important since one of the reciprocal lattice vectors may be in the adjacent
octant with a Z coordinate of opposite sign to the other. In this case the formula becomes: 

 cosδ=cosθ1cosθ2+sinθ1sinθ2cos (B+ A )

and determining which equation to use involves a simple check on the signs of the Z coordinates of
the two vectors. 

Angles between crystal direction vectors

Given the orthogonalisation matrix derived in the coordinate transformations essay, 

(
X
Y
Z )=(

a bcos γ c cosβ
0 b sin γ −c sinβ cosα*

0 0 c sinβsinα
* )(

x
y
z )

any direction vector in the crystal lattice r= p a+q b+r c where p, q and r are integers, will have
components on orthogonal axes as follows: 

X=pa+qb cos γ+rc cosβ

Y=qb sin γ−rc sinβcos α
*

Z=rc sinβ sin α
*

and its length will be √ X2
+Y 2

+Z2 . Hence we can determine the direction cosines of each vector
and the angle between them can be calculated by the same spherical trigonometry as with reciprocal
lattice vectors. 

Angles between lattice planes and direction vectors

This  is  the hybrid  situation  in  which we:  a)  calculate  the (X,  Y,  Z)  components  of  the crystal
direction vector [pqr] with the orthogonalisation matrix for the real lattice, and b) calculate the (H,
K,  L) components of the reciprocal lattice vector, S. The intervening angle follows from the same
spherical trigonometry as in the previous two cases.  However, there is a problem with using the
orthogonalisation matrix for the reciprocal lattice that we derived earlier since the reference frame is
different  from that  which  we  used  for  the  real  unit  cell  vectors.  Hence,  instead,  we  need  to
orthogonalise the reciprocal lattice coordinates using the X, Y and Z axes as defined for the real unit
cell and shown in the figure below. 
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Note that to be consistent with the coordinate transformations essay, this figure assumes that α*, β*
and  γ* are obtuse although the standard convention is for them to be acute. However, everything
works out the same so it does not matter! Starting with H, since the X axis is perpendicular to b*
and c* , H only depends on ha*. To determine the component of a* on X we need to consider the
following spherical triangles in which the angle between a* and a is shown as δ.

Application of the spherical cosine rule to the lowermost triangle gives the following: 
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cosδ  =  cos90 ° cosβ  *
+sin 90 °sinβ

 * cos (90 °−γ)  =  sinβ
 * sin γ

Hence: H  = h a* sin β
 * sin γ . 

Considering the outer spherical triangle we get: 

cosϵ  =  cos90 ° cosβ *
+sin 90 ° sinβ

 * cos(180 °−γ)  =  −sin β
 * cos γ

Hence, ha* has a component of −h a* sinβ
 * cos γ on the K axis. Since the angle between b* and

the Y axis is α*-90° we can see that the component of kb* on the K axis is k b* cos (α  *
−90°) or

k b* sinα
 * . In contrast,  the c* vector has no component on the K axis since they are at 90° to

each other. Hence: 

K  = −h a* sinβ
 * cos γ+k b*sin α

 *

Finally,  since  c* is  parallel  to  the  Z axis  and  makes  angles  of  α* and  β* with  b* and  a*,
respectively, we can see that: 

L  =  h a* cosβ *
+kb*cos α

 *
+l c*

So to summarise, we have the following matrix equation which should orthogonalise the reciprocal
lattice coordinates using exactly the same reference frame that we have used for the real lattice. 

(
H
K
L )=(

a* sinβ
 * sin γ 0 0

−a* sinβ
 * cos γ b* sin α

 * 0
a*cosβ * b* cosα  * c*)(

h
k
l )

The angle between the zone and the reciprocal lattice vector can then be calculated by the spherical
trigonometry  described earlier.  Note  that  the  Very Simple Crystallographic Calculator uses  this
matrix to orthogonalise the reciprocal lattice coordinates, rather than the one given earlier. 

I am very grateful to Dr Ian J. Tickle (Global Phasing, Cambridge, UK) for commenting on this manuscript. 
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