IN LUA

PATTERNS

IN LUA

PATTERNS

IN LUA

IN LUA PATTERNS IN LUA PATTERNS

PATTERNS

Patterns in Lua“

The first example in the manual” is to extract the digits
%d) making up a date in a text string, s.

s = "Deadline is 30/05/1999, firm"

The search pattern is going to be this:

date = "%d%d/%d%d/%d%d%d%d"

In the lua interpreter:

string.find(s, date) -> 13 22

The string.find() function tells us that the first and last

digits which match the pattern are at positions 13 and 22.

We can extract this substring:

-> 30/05/1999

Nesting the string.find() and string.sub() functions gives

print (string.sub(s,13,22))

the same end result.
print (string.sub (s,
30/05/1999

string.find(s, date))) ->

The character classes:

for all characters,

for letters,

for control characters,

for single character integers,
for lower case letters,

for punctuation characters,
for space characters,

for upper case letters,

for alphanumeric characters,
for hexadecimal digits and
for the zero character.

e HoQo

X =

0® 0° 0% 0° o° of o° ° o o°
0 o

N

To invert a selection use upper case letters e.g. %A
would select all characters which are not letters.

The next example in the manual uses the global
substitution command.
string.gsub("hello, up-down!",
hello..up.down. 4

The 2nd parameter is the pattern for non-letter characters
that are to be replaced with dots. Gsub tells us that there
are 4 substitutions.

The search pattern for find(), sub() and gsub() can, of
course, also just be a plain string, as below.
string.gsub("hello, up-down!",
hallo, up-down! 1

"O/oA", ||.||) ->

||e||' nan) ->

The magic characters used in patterns are:

«c)y . % + - *= 2 [ 1 ~ %
The % symbol is used to turn off the normal meaning of a
character e.g. "%a" means that we are looking for all letters
rather than just the letter "a" itself. Hence the % 'escapes' the
character from its normal meaning.

This example replaces every letter with an "X".
string.gsub("hello, up-down!", "%a", "X") ->
XXXXX, XX-XXXX! 11

The "+" symbol is to get the longest sequence that matches
the pattern e.g. with "%a" which looks for single letters, we
can make it look for groups of letters (i.e. words) by saying
"%sa+" instead. This replaces every word with "X":
string.gsub ("hello, up-down!", "%a+", "X") ->
X, X-X! 3

Square brackets [] allow you to define a character class e.g.
to replace every letter "e", "' or "o" with "X":

string.gsub ("hello, up-down!", "[elo]l", "X") ->
hXXXX, up-dXwn! 5

Or if any of those three characters occur together, we might
want to put in only one "X":
string.gsub("hello, up-down!", "[elo]+", "X")

-> hX, up-dXwn! 2

Let's say we had the word "hello" typed incorrectly as "he[]o"
and we wanted to replace the "[]" with "II"
string.gsub("hel[lo, up-down!", "[]®, ®1llvw) ->
error

That fails because [ and ] are magic characters so we need to
escape their special meaning with the % sign as follows.
string.gsub ("he[lo, up-down!", "%[%]", "11") ->
hello, up-down! 1

Note %b allows balanced string pattern matches e.g. to

replace or extract strings within brackets, etc.

string.gsub ("he[xyz]o, up-down!", "%b[]", "11w)
-> hello, up-down! 1
string.match("he[joelo, up-down!", "%b[]") ->

[joe]

The ? magic character is for an optional match (i.e. 0 or 1
occurrence) and * is for 0 or more matching characters (-
is similar). If we are looking for +, - or a decimal point in a
string, e.g. to pull out a real number, we need to de-magic
these characters with a %, as shown here:
string.match("The temperature is -23.1 degrees
Centigrade.", "%-?2%d*%.?2%d+") -> -23.1

To grab all real numbers in a string, s, where:

s = "The data are 17.8,-16.3, +.2,22., +5 and
14.5."

we can do this:

for i in string.gmatch(s,"%-?2%d*%.?%d+") do
-16.3 .2 22 5 14.5

To grab separate parts of a string we can use captures
which are defined with ( )'s.

print(i) end -> 17.8

s = "Pi is 22/7 approx."

top, bottom = string.match(s," (%d+)/ (%d+)")
print (top, bottom) -> 22 7

To grab the fraction as text would be:
pi = string.match (s, "%d+/%d+")
print (pi) -> 22/7

The / is not a magic character so the % is not needed.

To split a string into words we look for everything that is

not a space. Note that %S is the complement of %s.
for i in string.gmatch(s,"%S+") do print (i)
22/7

The A symbol usually means the complement e.g. the above

end -> Pi is approx.
code works with " [A%s] +" instead of "%S+"

To blank out everything in string, s, except the fraction:
fraction_ text=string.gsub(s,"[A%d/]", "")
print (fraction_text) -> 22/7

If A occurs at the start of the pattern, it matches something
at the start of a string and § matches something at the end.
To check if a string consists only of an integer we can use:
string.match(s, "A[+-]12%d+$")

* Lua's semantics for pattern matching are a bit different
from POSIX regex and they are a bit easier to grasp.

# https://www.lua.org/pil/20.2.html

A cheat sheet for beginners by a beginner. Please contact jocooper@fastmail.net with any errors, omissions or suggestions (CCO).





