
The character classes:

. for all characters,
%a for letters,
%c for control characters,
%d for single character integers,
%l for lower case letters,
%p for punctuation characters,
%s for space characters,
%u for upper case letters,
%w for alphanumeric characters,
%x for hexadecimal digits and
%z for the zero character.

To invert a selection use upper case letters e.g. %A
would select all characters which are not letters.

The first example in the manual# is to extract the digits

(%d) making up a date in a text string, s.

s = "Deadline is 30/05/1999, firm"

The search pattern is going to be this:

date = "%d%d/%d%d/%d%d%d%d"

In the lua interpreter:

string.find(s, date) ­> 13 22

The string.find() function tells us that the first and last

digits which match the pattern are at positions 13 and 22.

We can extract this substring:

print(string.sub(s,13,22)) ­> 30/05/1999

Nesting the string.find() and string.sub() functions gives

the same end result.

print(string.sub(s, string.find(s, date))) ­>

30/05/1999

P a t t e r n s i n L u a *
The ? magic character is for an optional match (i.e. 0 or 1

occurrence) and * is for 0 or more matching characters (­

is similar). If we are looking for +, ­ or a decimal point in a

string, e.g. to pull out a real number, we need to de­magic

these characters with a %, as shown here:

string.match("The temperature is ­23.1 degrees

Centigrade.","%­?%d*%.?%d+") ­> ­23.1

To grab all real numbers in a string, s, where:

s = "The data are 17.8,­16.3, +.2,22., +5 and

14.5."

we can do this:

for i in string.gmatch(s,"%­?%d*%.?%d+") do

print(i) end ­> 17.8 ­16.3 .2 22 5 14.5

To grab separate parts of a string we can use captures

which are defined with ()'s.

s = "Pi is 22/7 approx."

top, bottom = string.match(s,"(%d+)/(%d+)")

print(top, bottom) ­> 22 7

To grab the fraction as text would be:

pi = string.match(s,"%d+/%d+")

print(pi) ­> 22/7

The / is not a magic character so the % is not needed.

To split a string into words we look for everything that is

not a space. Note that %S is the complement of %s.

for i in string.gmatch(s,"%S+") do print(i)

end ­> Pi is 22/7 approx.

The ^ symbol usually means the complement e.g. the above

code works with "[^%s]+" instead of "%S+"

To blank out everything in string, s, except the fraction:

fraction_text=string.gsub(s,"[^%d/]","")

print(fraction_text) ­> 22/7

If ^ occurs at the start of the pattern, it matches something

at the start of a string and $ matches something at the end.

To check if a string consists only of an integer we can use:

string.match(s, "^[+­]?%d+$")

The next example in the manual uses the global

substitution command.

string.gsub("hello, up­down!", "%A", ".") ­>

hello..up.down. 4

The 2nd parameter is the pattern for non­letter characters

that are to be replaced with dots. Gsub tells us that there

are 4 substitutions.

The search pattern for find(), sub() and gsub() can, of

course, also just be a plain string, as below.

string.gsub("hello, up­down!", "e", "a") ­>

hallo, up­down! 1

The magic characters used in patterns are:

() . % + ­ * ? [] ^ $

The % symbol is used to turn off the normal meaning of a

character e.g. "%a" means that we are looking for all letters

rather than just the letter "a" itself. Hence the % 'escapes' the

character from its normal meaning.

This example replaces every letter with an "X".

string.gsub("hello, up­down!", "%a", "X") ­>

XXXXX, XX­XXXX! 11

The "+" symbol is to get the longest sequence that matches

the pattern e.g. with "%a" which looks for single letters, we

can make it look for groups of letters (i.e. words) by saying

"%a+" instead. This replaces every word with "X":

string.gsub("hello, up­down!", "%a+", "X") ­>

X, X­X! 3

Square brackets [] allow you to define a character class e.g.

to replace every letter "e", "l" or "o" with "X":

string.gsub("hello, up­down!", "[elo]", "X") ­>

hXXXX, up­dXwn! 5

Or if any of those three characters occur together, we might

want to put in only one "X":

string.gsub("hello, up­down!", "[elo]+", "X")

­> hX, up­dXwn! 2

Let's say we had the word "hello" typed incorrectly as "he[]o"

and we wanted to replace the "[]" with "ll"

string.gsub("he[]o, up­down!", "[]", "ll") ­>

error

That fails because [and] are magic characters so we need to

escape their special meaning with the % sign as follows.

string.gsub("he[]o, up­down!", "%[%]", "ll") ­>

hello, up­down! 1

Note %b allows balanced string pattern matches e.g. to

replace or extract strings within brackets, etc.

string.gsub("he[xyz]o, up­down!", "%b[]", "ll")

­> hello, up­down! 1

string.match("he[joe]o, up­down!", "%b[]") ­>

[joe]

P
A

T
T

E
R

N
S

IN
L

U
A

P
A

T
T

E
R

N
S

IN
L

U
A

P
A

T
T

E
R

N
S

IN
L

U
A

P
A

T
T

E
R

N
S

IN
L

U
A

P
A

T
T

E
R

N
S

IN
L

U
A

A
ch

ea
ts

he
et

fo
rb

eg
in

ne
rs

by
a

be
gi

nn
er

.P
le

as
e

co
nt

ac
tj

bc
oo

pe
r@

fa
st

m
ai

l.n
et

w
ith

an
y

er
ro

rs
,o

m
is

si
on

s
or

su
gg

es
tio

ns
(C

C
0)

.

* Lua's semantics for pattern matching are a bit different

from POSIX regex and they are a bit easier to grasp.

https://www.lua.org/pil/20.2.html

