Feed icon


chromosome 22q deletion

Parkinson's chromosome deletion linked to other genetic disorders

Researchers, led by BRC-supported Professor Nicholas Wood, UCL Institute of Neurology, have made a breakthrough in their understanding of Parkinson’s disease after they discovered a chromosome deletion linked to Parkinson’s disease and other genetic disorders. More...

Prof John Hardy

Prof John Hardy is the first UK winner of $3m Breakthrough Prize in Life Sciences

Professor John Hardy (UCL Institute of Neurology) has been awarded the $3 million Breakthrough Prize in Life Sciences for his pioneering research into the genetic causes of Alzheimer’s disease, other forms of dementia and Parkinson’s disease. More...

John Hardy, PhD, right, accepted the 2015 Robert A. Pritzker Prize from MJFF VP Brian Fiske, PhD, and Michael J. Fox on April 15.

John Hardy awarded 2015 Robert A. Pritzker Prize for Leadership in Parkinson's Research

One of the UK Parkinson's Disease Consortium Principal Investigators, Prof John Hardy, has been awarded the 2015 Robert A. Pritzker Prize for his leadership in Parkinson's genetics research. The award was presented by Michael J. Fox at a ceremony in New York on April 15. From the Michael J. Fox Foundation website: More...

Webcast - Prof Nicholas Wood - Advances in Genetic Understanding of Parkinson's Disease.

Video: Advances in Genetic Understanding of Parkinson's Disease

Webcast of the presentation entitled ‘Advances in Genetic Understanding of Parkinson's Disease’ given by Nicholas Wood (University College London, United Kingdom) presented at the Biochemical Society Hot Topic event, PINK1-Parkin Signalling in Parkinson’s Disease and Beyond, held in December 2014. More...

Pedigrees and I-FP-CIT SPECT scan images of the four families with GCH1 mutations involved in this study.

GCH1 gene and Parkinson's risk

A study published in Brain, led by researchers at UCL Institute of Neurology, has shown that genetic mutations which cause a decrease in dopamine production in the brain and lead to a form of childhood-onset Dystonia, also play a role in the development of Parkinson’s disease.

Parkinsonism and Lysosomal Storage Disorders share etiology

5 March 2012

There are several genes in which we now know that mutations cause Parkinson's disease (PD). These range from fairly frequent mutations, like those in LRRK2, to rarer ones such as those in SNCA.

One of the rare genes is ATP13A2, known to cause Kufor-Rakeb syndrome (KRS), a form of autosomal recessive hereditary parkinsonism with dementia and juvenile onset. Although little is known about the function of this gene, it is suspected to act in the lysosomal membrane, and to be responsible for the maintenance of lysosomal pH. The lysosomal pathway has, in the last few years, attracted interest as a novel mechanism involved in the pathogenesis of PD, following not only the identification of ATP13A2 mutations, but also the risk conferred by GBA mutations for the development of this disorder.

A team of researchers led by Drs. Rita Guerreiro and Jose Bras at UCL has identified mutations in ATP13A2 as a cause of a separate disease entity called Neuronal Ceroid-Lipofuscinosis (NCL) in a large family from Belgium.

Figure: Identification of a homozygous mutation in ATP13A2

Figure: Identification of a homozygous mutation in ATP13A2.

NCLs are a clinically and genetically heterogeneous group of neurodegenerative disorders, characterized by the intracellular accumulation of autofluorescent lipopigment storage material. It is well known that the lysosome plays a pivotal role in these disorders.

These results show undisputable evidence that the lysosomal pathway plays a role in the pathogenesis of parkinsonian phenotypes and further suggest that KRS and NCL may share pathobiological features.


Mutation of the Parkinsonism Gene ATP13A2 Causes Neuronal Ceroid-Lipofuscinosis, Hum. Mol. Genet., 2 March 2012, doi: 10.1093/hmg/dds089

Rita Guerreiro's profile

Jose Bras' profile

Page last modified on 05 mar 12 12:25