An Atlas of Stellar Spectra

WITH AN OUTLINE
OF SPECTRAL
CLASSIFICATION
W. W. Morgan Philip C. Keenan Edith Kellman

Astrophysical Monographs

Sponsored by
The Astrophysical Journal

Edited by

Paul W. Merrill

Harlow Shapley
Harvard College Observatory
Cambridge, Massachusetts

J. H. Moore
Lick Observatory
Luck Observatory University of California

Otto Struve
Yerkes Observatory
of the University of Chicago

An Atlas of Stellar Spectra with an Outline of Spectral Classification

The University of Chicago Press
 Chicago, Illinois \star

The Baker \& Taylor Company New York

The Cambridge University Press
London

AN ATLAS
 OF STELLAR SPECTRA

With an Outline of Spectral Classification

By
W. W. Morgan, Philip C. Keenan and Edith Kellman

Copyright 1943 by the University of Chicago. All rights Reserved. Published January 1943. Composed and printed by the University of Chicago Press, Chicago, Illinois, USA.

Preface to the ULO Version

This version of the MKK Atlas was produced by M. M. Dworetsky and W. R. Reece at the University of London Observatory, University College London, with permission from the copyright holders, The University of Chicago Press.

While every effort has been made to ensure that this version of the Atlas is a faithful copy of the original, mistakes may have occurred. Please submit CORRECTIONS TO mmd@ulo.ucl.ac.uk.

This version includes a table of contents, a list of tables and a star name index not included in the original version of the Atlas.

High resolution scans of the catalogue plates are available on the World Wide Web. The home page for these is:

```
www.ulo.ucl.ac.uk/catalogues/mkkatlas/
```

We thank Miss Deborah Scammell for performing the plate scanning.

University of London Observatory, Mill Hill Park, London. July 2004.

Typeset using EATEX. 2.

Contents

List of Tables v
I Introduction 1
II The 05-F2 Stars 4
1 The O Stars 5
2 O9.5 6
3 B0 6
4 B0.5 7
5 B1 7
6 B2 7
7 B3 8
8 B5 9
9 B8 9
10 The Spectrum of ζ Draconis 10
11 The A Stars 10
12 B9 10
13 A0 11
14 A1 11
15 A2 12
16 A3 12
17 A5 12
18 A7 13
19 F0 13
20 F2 13
21 The Peculiar A Stars 14
22 The Metallic-Line Stars 16
23 The Spectrum of λ Bootis 16
III The F5-M Stars 17
24 F5 17
25 F6 17
26 F8 18
27 G0 18
28 G2 18
29 G5 19
30 G8 19
31 K0 20
32 K2 21
33 K3 22
34 K5 23
35 The M Stars 23
IV The Supergiants of Classes B8-M2 24
V Five Composite Spectra 25
VI Conclusion 27
Index 30

List of Tables

1 Classification of the O Stars 5
2 Standards at O9.5 6
3 Standards at B0 6
4 Standards at B0.5 7
5 Standards at B1 7
6 Standards at B2 8
7 Standards at B3 9
8 Standards at B5 9
9 Standards at B8 9
10 Standards at B9 11
11 Standards at A0 11
12 Standards at A1 11
13 Standards at A2 12
14 Standards at A3 12
15 Standards at A5 13
16 Standards at O9.5 13
17 Standards at F0 13
18 Standards at F2 14
19 Standards at F5 17
20 Standards at F6 17
21 Standards at F8 18
22 Standards at G0 18
23 Standards at G2 19
24 Standards at G5 19
25 Standards at G8 20
26 Standards at K0 and K1 21
27 Standards at K2 22
28 Standards at K3 22
29 Standards at K5 23
30 Standard M Giants 24
31 The Supergiants of Classes B8-M2 25

I Introduction

The Atlas of Stellar Spectra and the accompanying outline have been prepared from the viewpoint of the practical stellar astronomer. Problems connected with the astrophysical interpretation of the spectral sequence are not touched on; as a consequence, emphasis is placed on "ordinary" stars. These are the stars most important statistically and the only ones suitable for large-scale investigations of galactic structure. The plan of the Atlas can be stated as follows:
a. To set up a classification system as precise as possible which can be extended to stars of the eighth to twelfth magnitude with good systematic accuracy. The system should be as closely correlated with color temperature (or color equivalent) as is possible. The criteria used for classification should be those which change most smoothly with color equivalent.
b. Such a system as described under (a) requires a classification according to stellar luminosity, that is, the system should be two-dimensional. We thus introduce a vertical spectral type, or luminosity class; then, for a normal star, the spectrum is uniquely located when a spectral type and a luminosity class are determined. The actual process of classification is carried out in the following manner: (1) an approximate spectral type is determined; (2) the luminosity class is determined; (3) by comparison with stars of similar luminosity an accurate spectral type is found.

As it may not be immediately apparent why an increase in accuracy in spectral classification is desirable, a short digression on some problems of stellar astronomy will be made.

The problem of stellar distribution in the most general sense does not require any spectroscopic data. Stars of all types and temperatures may be considered together, and some general features of the distribution of stars in the neighborhood of the sun can be found. For this purpose a certain frequency distribution of stellar luminosities must be assumed. This luminosity function has a large dispersion and must be varied with galactic latitude. In addition, there are certain regional fluctuations in the frequency of stars of higher luminosity of classes B, A, and M .

As a result of these considerations (and because of difficulties with interstellar absorption) the general method has very definite limitations; the large dispersion of the luminosity function means we must have a large sample, and this in itself precludes detailed analyses of limited regions. In addition, there is evidence of clustering tendencies for stars of certain spectral type - a cluster or star cloud might be well marked for stars of type A, for example, and be not at all apparent from a general analysis of star counts.

There is, then, for certain kinds of problems a great advantage in the use of spectral types of the accuracy of the Henry Draper Catalogue. Consider, for example, the stars of classes B8-A0 as a group. The dispersion in luminosity is far less than in the case of the general luminosity function, and the space distribution of stars of this group can be determined with a correspondingly higher accuracy. In addition, we are able to correct for systematic errors due to interstellar absorption from observations of the color excesses of these stars. We have thus gained in two particulars: we have limited at one time the dispersion in luminosity and in normal color.

The further refinement of a two-dimensional classification makes possible an even greater reduction in the dispersion in absolute magnitude for groups of stars. The mean distance of a group of stars of the same spectral type and luminosity class can be determined with great precision, even when the group consists of a relatively small number of stars. Even for individual stars distances of good accuracy can be derived. A corresponding gain is made in problems concerned with intrinsic colors and interstellar absorption.

In the fifty-five prints which make up the accompanying atlas an attempt has been made to show most of the common kinds of stellar spectra observed in stars brighter than the eighth magnitude. The dispersion selected is intermediate between that used for very faint stars, where only a few spectral features are visible, and the larger-scale slit spectra which show a multitude of details. A sufficient number of lines and bands are visible to allow an accurate classification to be made, both by temperature and by luminosity equivalent, while the relatively low dispersion makes it possible to observe bright and faint stars in a uniform manner and avoids the possibility of appreciable systematic differences in their classification.

A small one-prism spectrograph attached to the 40-inch refractor was used to obtain the plates. The reduction of collimator to camera is about 7; this makes it possible to use a fairly wide slit and still have good definition in the resulting spectra. The spectrograph was designed by Dr. Van Biesbroeck and constructed in the observatory shop by Mr. Ridell. The camera lens was constructed by J. W. Pecker, according to the design of Dr. G. W. Moffitt. The usable spectral region on ordinary blue-sensitive plates is from the neighborhood of K to $H \beta$ ($\lambda \lambda$ 3920-4900).

The dispersion used ($125 \AA$ per mm at $H \gamma$) is near the lower limit for the determination of spectral types and luminosities of high accuracy. The stars of types F5-M can be classified with fair accuracy on slit spectra of lower dispersion, but there is probably a definite decrease in precision if the dispersion is reduced much below $150 \AA$ per mm.

The lowest dispersion capable of giving high accuracy for objective-prism spectra is greater; the limit is probably near $100 \AA$ per mm . The minimum dispersion with which an entirely successful two-dimensional classification on objective-prism plates can be made is probably near $140 \AA$ per mm. This value was arrived at from a study of several plates of exquisite quality taken by Dr. J. Gallo, director of the Astronomical Observatory at Tacubaya, Mexico; for plates of ordinary good quality the limit is probably considerably higher.

The Atlas and the system it defines are to be taken as a sort of adaptation of work published at many observatories over the last fifty years. No claim is made for originality; the system and the criteria are those which have evolved from a great number of investigations. Specific references to individual investigations are, as a rule, not given.

By far the most important are those of the investigators at Harvard and Mount Wilson. The idea of a temperature classification is based on the work of Miss Maury and Miss Cannon at Harvard and of Sir Norman Lockyer. We owe to Adams the first complete investigation of luminosity effects in stellar spectra. If we add to this the work of Lindblad on cyanogen and the wings of the Balmer lines in early-type stars and the investigations of the late E. G. Williams, we have the great majority of the results on which the new classification is based. References to individual papers are given in the Handbuch der Astrophysik.

The present system depends, then, to a considerable extent on the work of these investigators, combined with data which were not available until recently. These data are of two kinds: accurate color equivalents for many of the brighter stars and accurate absolute magnitudes for a number of the same stars. These results have been used to define the system of classification more precisely, both in the temperature equivalents and in the luminosity class. The most important of the determinations of color equivalents for this purpose are the photoelectric colors of Bottlinger and of Stebbins and his collaborators and the spectrophotometric results of the Greenwich Observatory and those of Hall.

The absolute magnitudes used depend on a variety of investigations. There are the classical catalogue of trigonometric parallaxes of Schlesinger; the catalogue of dynamical parallaxes of Russell and Miss Moore; various cluster parallaxes, principally due to Trumpler; and, in the case of the stars of earlier class, parallaxes from interstellar line intensities and from the effects of galactic rotation.

Throughout the discussion emphasis will be laid on the "normal" stars. A number of peculiar objects are noted; but the main aim of the investigation has been to make the classification of the more frequent, normal stars as precise as possible for the use of the general stellar astronomer. This investigation is not concerned with the astrophysical aspects of stellar spectra or with the spectra of the dwarfs of low luminosity. Relatively few of the latter are met with among stars brighter than the eighth magnitude, and their classification can be considered as a separate problem.

There appears to be, in a sense, a sort of indefiniteness connected with the determination of spectral type and luminosity from a simple inspection of a spectrogram. Nothing is measured; no quantitative value is put on any spectral feature. This indefiniteness is, however, only apparent. The observer makes his classification from a variety of considerations-the relative intensity of certain pairs of lines, the extension of the wings of the hydrogen lines, the intensity of a band-even a characteristic irregularity of a number of blended features in a certain spectral region. To make a quantitative measure of these diverse criteria is a difficult and unnecessary undertaking. In essence the process of classification is in recognizing similarities in the spectrogram being classified to certain standard spectra.

It is not necessary to make cephalic measures to identify a human face with certainty or to establish the race to which it belongs; a careful inspection integrates all features in a manner difficult to analyze by measures. The observer himself is not always conscious of all the bases for his conclusion. The operation of spectral classification is similar. The observer must use good judgment as to the definiteness with which the identification can be made from the features available; but good judgment is necessary in any case, whether the decision is made from the general appearance or from more objective measures.

The problem of a classification according to luminosity is a difficult one. In the first place, lines or blends which may be useful at one spectral type may be quite insensitive at another. In fact, some lines which show a positive absolute-magnitude effect for some spectral classes may show a negative one for others. This is true for certain lines of $H, S r$ II, and $B a$ II .

Besides the variation with spectral type, there is also a very marked change in appearance with the dispersion of the spectrograms used. Some of the most useful indicators of absolute magnitude are lines and blends which can be used only with low dispersion. The hydrogen lines, for example, show marked variations with absolute magnitude in spectra as early as

B 2 and B 3 on plates of low dispersion; with higher dispersion the wings which contribute to the absolute-magnitude effect are not apparent to the eye, and the lines look about the same in giants and dwarfs. In stars of classes G2-K2 the intensity of the $C N$ bands in the neighborhood of $\lambda 4200$ is one of the most important indicators of absolute magnitude. The band absorption has a different appearance on spectrograms of high and low dispersion, and it is doubtful whether high-dispersion plates show the luminosity effects of $C N$ as well as those of low dispersion.

On the other hand, a considerable number of sensitive line ratios are available on highdispersion spectra which cannot be used with lower dispersion. One of the most sensitive lines to absolute-magnitude differences for the F8-M stars is $B a$ II 4554; this line is too weak to be observed on low dispersion spectra. A number of the other ratios found by Adams to be sensitive indicators of absolute magnitude are also too weak to be used with low dispersion.

These considerations show that it is impossible to give definite numerical values for line ratios to define luminosity classes. It is not possible even to adopt certain criteria as standard, since different criteria may have to be used with different dispersion. In the Atlas some of the most useful features for luminosity classification have been indicated, but it should be emphasized that each dispersion has its own problems, and the investigator must find the features which suit his own dispersion best.

The luminosity classes are designated by Roman numerals; stars of class I are the supergiants, while those of class V are, in general, the main sequence. In the case of the B stars the main sequence is defined by stars of classes IV and V. For the stars of types F-K, class IV represents the subgiants and class III the normal giants. Stars of class II are intermediate in luminosity between the super-giants and ordinary giants.

II The 05-F2 Stars

The varying degree of diffuseness in line character for stars earlier than class F5 presents an additional difficulty in their classification. On plates having a dispersion of around $30 \AA$ per mm the lines have such a varied appearance that it is almost impossible to classify the spectra on a uniform system. If the dispersion is reduced to lessen this effect, the lines in general become fainter.

The best compromise seems to be a dispersion of around $125 \AA$ per mm and greatly broadened spectra on high-contrast plates. Spectra of this dispersion can be classified with high accuracy for stars of classes $\mathrm{O}-\mathrm{B} 5$ inclusive, if a fine-grain emulsion is used. The varying widths of the spectral lines are not very noticeable, except for a very few stars with exceedingly broad lines.

Spectra of classes B9-A2 are most difficult of all to classify accurately. All lines with the exception of the Balmer series are weak, and the broad-line stars show few spectral features that can be used. By the time class A3 is reached, numerous metallic lines make their appearance, and classification becomes progressively easier on passing toward lower temperature.

Dispersions higher than $125 \AA$ per mm can be used to classify the early-type stars, if a certain rough ratio is preserved between the dispersion and the spectrum width. For the
highest accuracy the width of the spectrum should be about one-third the distance between $H \gamma$ and $H \delta$. With plates of higher dispersion a corresponding reduction in the magnifying power of the viewing eyepiece should be made. For spectra later than F0 a width of about one-sixth the distance between $H \gamma$ and $H \delta$ is sufficient, unless the dispersion is less than $125 \AA$ per mm. Wide spectra for the late-type stars allow the use of the G band and other important blended features. The advantage of using broad spectra is somewhat similar to that of extra-focal images in stellar photometry.

1 The O Stars

Star	$\mathrm{Sp}_{M K K}$	$\mathrm{Sp}_{H H P}$	α	δ	m	HD	Notes
ζ Pup	O5	\ldots	$08: 00$	$-39^{\circ} 43^{\prime}$	2.3	Od	
9 Sgr	O5	O5	$17: 57$	-2422	5.9	Oe5	1
λ Cep	O6	O6	$22: 08$	+5855	5.2	Od	
HD 5005	O6	\ldots	$00: 47$	+5605	7.7	B2	1
θ^{1} Ori C	O6	O7	$05: 30$	-0527	5.4	Oe5	2
HD 165052	O7	O6	$17: 50$	-2424	6.8	Oe5	1
S Mon	O7	O7	$06: 35$	+0959	4.7	Oe5	
ξ Per	O7	\ldots	$03: 52$	+3530	4.1	Oe5	
λ Ori A	O8	O8	$05: 29$	+0952	3.7	Oe5	
ι Ori	O9 V	O9	$05: 30$	-0559	2.9	Oe5	3
10 Lac	O9 V	O9	$22: 34$	+3832	4.9	Oe5	3
HD 188209	O9 I	\ldots	$19: 49$	+4647	5.5	B0	4
HD 218915	O9 I	\ldots	$23: 06$	+5231	7.1	B0	4

[^0]Table 1: Classification of the O Stars
No luminosity classification has been attempted for stars earlier than O9. The spectral type has been determined from the ratio $H e$ I 4471: He II 4541. The types determined from this ratio appear to be consistent with the appearance of other spectral features in a sequence of effective excitation. The types obtained in this manner are in very close agreement with those determined by H. H. Plaskett. ${ }^{1}$

If the spectral types of the O stars are determined from the single ratio of the absorption lines He I 4471: He II 4541, results accurate to a tenth of a class between O5 and O9 can be obtained on plates of the dispersion used ($125 \AA$ per mm at $H \gamma$). This single ratio appears to be the most useful criterion of spectral type for O5-O9 stars on spectra similar to those used. The classification of the Wolf-Rayet stars as a group will not be discussed;

[^1]the number of stars in this class is very small, and individual description of each spectrum seems to be necessary.

The standard O stars are listed in Table 1. Notes concerning spectral features for some of the stars are given; in the case of those of class O9, luminosity differences are also noted.

$2 \quad 09.5$

At class O9.5 the line at $\lambda 4200$ is intermediate in intensity between O9 and B0. He II 4541* is weaker than in class O9. The absolute-magnitude differences are shown by the ratios λ 4068: $\lambda 4089, \lambda 4119: \lambda 4144, \lambda 4387: \lambda 4516$, and $\lambda 4650: \lambda 4686$.

Star	MKK	α	δ	m	HD	Notes
9 Cam	O9.5 I	$04: 44$	$+66^{\circ} 10^{\prime}$	4.4	B0	
δ Ori	O9.5 III	$05: 26$	-0022	2.5	B0	
σ Ori	O9.5 V	$05: 33$	-0239	3.8	B0	
ζ Ori	O9.5 III	$05: 35$	-0200	2.1	B0	
ζ Oph	O9.5 V	$16: 31$	-1022	2.7	B0	1
19 Cep	O9.5 I	$22: 02$	+6148	5.2	Oe5	

[^2]Table 2: Standards at O9.5

3 B0

The line at $\lambda 4200$ is very much weaker than $\lambda 4387$. Si IV 4089 is stronger than $S i$ III 4552 . The blend near $\lambda 4650$ is sharply defined on the violet side.

Star	MKK	α	δ	m	HD	Notes
γ Cas	B0 IV	$00: 50$	$+60^{\circ} 11^{\prime}$	var	B0p	1
ϕ^{1} Ori	B0 III	$05: 29$	+0925	4.5	B0	
η Ori	B0 I	$05: 31$	-0116	1.8	B0	
κ Ori	B0 II	$05: 43$	-0942	2.2	B0	
δ Sco	B0 IV	$15: 54$	-2220	2.5	B0	
τ Sco	B0 V	$16: 29$	-2801	2.9	B0	2

[^3]Table 3: Standards at B0

[^4]Luminosity differences are shown by the ratios λ 4009: λ 4089, $\lambda 4072: \lambda 4089$, and λ 4119: λ 4144. The line $H e$ iI 4686 is present in class V.

$4 \quad$ B0. 5

The blend at $\lambda \lambda 4640-4650$ is strongest at the red edge and is intermediate in appearance between B0 and B1. Si III 4552 is approximately equal to $S i$ IV 4089. Luminosity differences are shown by the lines of O II near $H \gamma$. They are very strong in the spectrum of the supergiant κ Cas. The line ratios used for luminosity classification are λ 3995: λ 4009, $\lambda 4119: \lambda 4144, \lambda 4349: \lambda 4387$, and $\lambda 4416: \lambda 4387$.

Star	MKK	α	δ	m	HD
κ Cas	B0.5 I	$00: 27$	$+62^{\circ} 23^{\prime}$	4.2	B0
ϵ Per	B0.5 III	$03: 51$	+3943	3.0	B1
139 Tau	B0.5 II	$05: 51$	+2556	4.9	B2
β Sco	B0.5 IV	$15: 59$	-1932	2.9	B1

Table 4: Standards at B0.5

5 B1

The blend at $\lambda \lambda 4640-4650$ is fairly uniform in intensity; the red edge may still be slightly stronger, however. Si III 4552 is stronger than $S i$ IV 4089, and the broad blend near $\lambda \lambda$ 4070-4076 is well marked. The line ratios used for luminosity classification are λ 3995: λ 4009, $\lambda 4121: \lambda 4144, \lambda 4144: \lambda 4416$, and λ 4387: λ 4416. The $S i$ iII lines and the wings of the H lines are also sensitive to luminosity differences.

Star	MKK	α	δ	m	HD
o Per	B1 IV	$03: 38$	$+31^{\circ} 58^{\prime}$	3.9	B1
ζ Per	B1 V	$03: 47$	+3135	2.9	B1
η Ori	B1 V	$05: 19$	-0229	3.4	B1
β CMa	B1 II-III	$06: 18$	-1754	2.0	B1
ϵ CMa	B1 II	$06: 54$	-2850	1.6	B1
ρ Leo	B1 I	$10: 27$	+0949	3.9	B0p
α Vir	B1 III-IV	$13: 19$	-1038	1.2	B2
σ Sco	B1 III	$16: 15$	-2521	3.1	B1
β Cep	B1 IV	$21: 27$	+7007	3.3	B1

Table 5: Standards at B1

$6 \quad$ B2

The blend near $\lambda 4072$ is weaker than at B1. Si II $4128-4130$ is fainter than in class B3. The luminosity classes were determined from the ratios λ 3995: $\lambda 4009, \lambda 4121: \lambda 4144, \lambda$

4387: $\lambda 4552$ and from the appearance of the wings of the hydrogen lines. The stars γ Peg and ζ Cas are located between classes B2 and B3.

Star	MKK	α	δ	m	HD	Notes
γ Peg	B2.5 IV	$00: 08$	$+14^{\circ} 38^{\prime}$	2.9	B2	
ζ Cas	B2.5 IV	$00: 31$	+5121	3.7	B3	
γ Ori	B2 IV	$05: 19$	+0616	1.7	B2	
χ^{2} Ori	B2 I	$05: 58$	+2008	4.7	B2p	
π Sco	B2 IV	$15: 52$	-2550	3.0	B2	
ρ Oph	B2 V	$16: 19$	-2313	5.2	B5	1
θ Oph	B2 IV	$17: 15$	-2454	3.4	B3	
λ Sco	B2 IV	$17: 26$	-3702	1.7	B2	
9 Cep	B2 I	$21: 35$	+6138	4.9	B2p	2
12 Lac	B2 III	$22: 37$	+3942	5.3	B2	

[^5]Table 6: Standards at B2
The luminosity effects are so well marked at B2 that there is no ambiguity in the location of any of the stars in the five luminosity classes used.

$7 \quad$ B3

The blend $S i$ II $4128-4130$ is stronger than at class B2, relative to $H e$ I 4121. The luminosity classification depends on the ratios λ 3995: $\lambda 4009$ and $\lambda 4121: \lambda 4144$ and on the appearance of the wings of the H lines.

Star	MKK	α	δ	m	HD	Notes
ϵ Cas	B3 III	$01: 47$	$+63^{\circ} 11^{\prime}$	3.4	B3	1
η Aur	B3 V	$04: 59$	+4106	3.3	B3	
χ Aur	B3 I	$05: 26$	+3207	4.9	B1	
σ^{2} CMa	B3 I	$06: 58$	-2341	3.1	B5p	
η UMa	B3 V	$13: 43$	+4949	1.9	B3	2
ι Her	B3 IV	$17: 36$	+4604	3.8	B3	
σ Sgr	B3 IV-V	$18: 49$	-2625	2.1	B3	
55 Cyg	B3 I	$20: 45$	+4545	4.9	B2	

[^6]Table 7: Standards at B3

$8 \quad$ B5

The spectral type is determined from the ratio of $S i$ II $4128-4130$ to $H e$ I 4144 . The luminosity class is determined from the appearance of the wings of the hydrogen lines.

Star	MKK	α	δ	m	HD
δ Per	B5 III	$03: 35$	$+47^{\circ} 28^{\prime}$	3.1	B5
η CMa	B5 I	$07: 20$	-2906	2.4	B5p
κ Hya	B5 V	$09: 35$	-1353	5.0	B3
τ Her	B5 IV	$16: 16$	+4633	3.9	B5
67 Oph	B5 I-II	$17: 55$	+0256	3.9	B5p

Table 8: Standards at B5

$9 \quad$ B8

The spectral type is determined principally from the ratio of $S i$ II $4128-4130$ to He I 4144. The luminosity class is determined from the appearance of the wings of the hydrogen lines.

Star	MKK	α	δ	m	HD
β Per	B8 V	$03: 01$	$+40^{\circ} 34^{\prime}$	2.2	B8
η Tau	B8 III	$03: 41$	+2348	3.0	B5p
β Ori	B8 Ia	$05: 09$	-0810	0.3	B8p
β Tau	B8 III	$05: 20$	+2831	1.8	B8
β CMi	B8 V	$07: 21$	+0829	3.1	B8
α Leo	B8 V	$10: 03$	+1227	1.3	B8
β Lib	B8 V	$15: 11$	-0901	2.7	B8

Table 9: Standards at B8

10 The Spectrum of ζ Draconis

From the lines of $H e$ I, $M g$ II, and Si II the spectral type would be judged to be B8. The Balmer lines are very peculiar; they are weak but do not have the sharp-edged appearance associated with high luminosity. A superficial examination might indicate that the star belongs in luminosity class II at B8. A comparison with the A0 Ib star η Leo shows, however, that the shape of the Balmer lines-in particular $H \delta$ and $H \epsilon$ is not similar to a highluminosity star; the contours of the H lines are more nearly like those in an early B-type dwarf. The trigonometric parallax of ζ Dra is 0 " 039 ± 7 (two modern determinations). The absolute magnitude is probably fainter than zero, and it is likely that the star lies somewhat below the main sequence.

11 The A Stars

Of all spectral types from B to M the stars of class A are the most difficult to classify. The spectral lines are weak and may be greatly broadened; in addition, the frequency with which peculiar spectra are encountered makes any sort of accurate classification a difficult problem.

When spectra of very low dispersion are used, the classification seems to be a rather simple matter. If the c-stars and peculiar objects are omitted from consideration, the growth of K with respect to the hydrogen lines from B9 to F0 appears to be smooth and rapid and a sensitive criterion of spectral type. When spectra of higher dispersion are examined, however, it is seen that the intensity of K is by no means a unique indicator of spectral type. Stars are frequently encountered whose spectra have many characteristics of class F , while the K line indicates a class of A2 or A3. To make the problem even more difficult, it appears that the colors of these stars are in disagreement with the type derived from the K line and probably correspond to the later class indicated by certain other spectral features.

From investigations of several galactic clusters by Titus it appears that these pseudocomposite spectra may have a high space frequency and a corresponding importance in problems of stellar astronomy. As the problem of their classification is of considerable importance, the spectra of several of the brightest objects of this class will be described in detail later.

In addition to these "metallic-line" A stars, there are several other groups of peculiar spectra. Stars of these classes form only a small fraction of the total, and their peculiarities can be recognized in general on low-dispersion spectrograms. It is possible, then, to eliminate them from problems in which mean absolute magnitudes or color indices are used.

The B9-F0 stars have been reclassified with the particular object of obtaining as pure a temperature sequence as is possible. In the early A subdivisions the general increase in intensity of the enhanced lines of iron and titanium appears to be closely correlated with color, while for the later subdivisions the $M n$ I blend near $\lambda 4032$ appears to be the most useful index of type on spectrograms of the dispersion used. The supergiants are discussed in another place.

12 B9

The line He I 4026 is weaker relative to K than in class B8. He I 4471 is considerably fainter than $M g$ II 4481. The luminosity classification is based on the appearance of the
wings of the H lines.

Star	MKK	α	δ	m	HD
δ Crv	B9 V	$12: 24$	$-15^{\circ} 58^{\prime}$	3.1	A0
γ Lyr	B9 III	$18: 55$	+3233	3.3	A0p
α Peg	B9 V	$22: 59$	+1440	2.6	A0

Table 10: Standards at B9

13 A0

The lines of He I are faint or absent in the dwarfs. The strongest enhanced lines of iron are faintly present in main-sequence stars and increase in strength with increasing luminosity. The hydrogen lines show a marked negative absolute-magnitude effect.

Star	MKK	α	δ	m	HD	Notes
C Hya	A0 V	$08: 20$	$-03^{\circ} 35^{\prime}$	4.0	A0	
γ UMa	A0 V	$11: 48$	+5415	2.5	A0	
α CrB	A0 V	$15: 30$	+2703	2.3	A0	
α Lyr	A0 V	$18: 33$	+3841	0.1	A0	
δ Cyg	A0 III	$19: 41$	+4453	3.0	A0	1

[^7]Table 11: Standards at A0
The luminosity classification was made on the basis of the wings of the hydrogen lines.

14 A1

The metallic lines are stronger than at class A0. The blend $M n$ I $4030-4034$ is first well seen in this class. The line $\lambda 4385$ is stronger relative to $\lambda 4481$ than in class A0.

Star	MKK	α	δ	m	HD
γ Gem	A1 V	$06: 31$	$+16^{\circ} 29^{\prime}$	1.9	A0
α CMa	A1 V	$06: 40$	-1635	-1.6	A0
α Gem A	A1 V	$07: 28$	+3206	2.0	A0
β UMa	A1 V	$10: 55$	+5655	2.4	A0

Table 12: Standards at A1

The luminosity class was determined from the appearance of the wings of the hydrogen lines. It is possible that the wings are slightly less pronounced in the spectrum of γ Gem than in the other stars listed.

15 A2

The line at $\lambda 4385$ is stronger relative to $M g$ II 4481 than in class A1. The blend at $\lambda 4129$ is considerably stronger than $M n$ I 4030-4034.

Star	MKK	α	δ	m	HD
β Aur	A2 IV	$05: 52$	$+44^{\circ} 56^{\prime}$	2.1	A0p
λ UMa	A2 IV	$10: 11$	+4425	3.5	A2
ζ UMa(br)	A2 V	$13: 19$	+5527	2.4	A2p
β Ser	A2 IV	$15: 41$	+1544	3.7	A2
η Oph	A2 V	$17: 04$	-1536	2.6	A2

Table 13: Standards at A2
Luminosity differences are shown by the ratios of the blends $\lambda \lambda 4128-4131: \lambda \lambda 4171-4179$, by the intensity of the blend centered near $\lambda 4555$, and by the appearance of the wings of the hydrogen lines.

16 A3

The spectral type is determined from the intensity of the blend at $\lambda 4032$ and the ratio λ $4300: \lambda 4385$. The luminosity class depends on the ratios $\lambda 4416: \lambda 4481, \lambda 4175: \lambda 4032$, and $\lambda 4226: \lambda 4481$, and on the appearance of the wings of the H lines.

Star	MKK	α	δ	m	HD	Notes
38 Lyn	A3 V	$09: 12$	$+37^{\circ} 14^{\prime}$	3.8	A2	
β Leo	A3 V	$11: 44$	+1508	2.2	A2	1
δ UMa	A3 V	$12: 10$	+5735	3.4	A2	
ζ Vir	A3 V	$13: 20$	-0005	3.4	A2	
γ UMi	A3 II-III	$15: 20$	+7211	3.1	A2	2
δ Her	A3 IV	$17: 10$	+2457	3.2	A2	3
α PsA	A3 V	$22: 52$	-3009	1.3	A3	4

[^8]Table 14: Standards at A3

$17 \quad$ A5

The principal line ratio for determining the spectral type is $\lambda \lambda 4030-4034: \lambda \lambda 4128-4132$. The luminosity class is determined from the ratios $\lambda 4417: \lambda 4481$ and $\lambda 4417: \lambda 4300$.

Star	MKK	α	δ	m	HD
δ Cas	A5 V	$01: 19$	$+50^{\circ} 43^{\prime}$	3.0	A5
β Ari	A5 V	$01: 40$	+2019	2.7	A5
β Tri	A5 III	$02: 03$	+3431	3.1	A5
g UMa	A5 V	$13: 21$	+5531	4.0	A5
α Oph	A5 III	$17: 30$	+1238	2.1	A5

Table 15: Standards at A5

18 A7

The ratios $\lambda \lambda 4030-4034: \lambda \lambda 4128-4132$ and $\lambda 4300: \lambda 4385$ were used to determine the spectral type. The luminosity classes depend on the ratio $\lambda 4417: \lambda 4481$.

Star	MKK	α	δ	m	HD
γ Boo	A7 III	$14: 28$	$+38^{\circ} 45^{\prime}$	3.0	F0
α Aql	A7 V	$19: 45$	+0836	0.9	A5
α Cep	A7 V	$21: 16$	+6210	2.6	A5

Table 16: Standards at O9.5

19 F0

The spectral type is determined from the ratio $\lambda \lambda 4030-4034: \lambda \lambda 4128-4132$ and the appearance of the spectrum in the neighborhood of $\lambda 4300$. The luminosity class is determined from the relative intensity of $\lambda 4172$ and $\lambda 4132$ (red edge of broad blend) and the ratio λ 4172: $\lambda 4226$.

Star	MKK	α	δ	m	HD	Notes
ζ Leo	F0 III	$10: 11$	$+23^{\circ} 55^{\prime}$	3.7	F0	
γ Vir	F0 V	$12: 34$	-0054	2.9	F0	1
γ Her	F0 III	$16: 17$	+1923	3.8	F0	
ϵ Cep	F0 V	$22: 11$	+5633	4.2	F0	

[^9]Table 17: Standards at F0

20 F2

The ratio of intensity $\lambda \lambda 4030-4034: \lambda \lambda 4128-4132$ is greater than in the corresponding luminosity class at F0. A shading is observed degrading toward the red from $\lambda 4300$. The luminosity class is determined from the ratios $\lambda 4171: \lambda 4226$ and $\lambda 4077: \lambda 4045$.

Star	MKK	α	δ	m	HD
β Cas	F2 III	$00: 03$	$+58^{\circ} 36^{\prime}$	2.4	F5
δ Gem	F2 IV	$07: 14$	+2210	3.5	F0
v UMa	F2 III	$09: 43$	+5931	3.9	F0
78 UMa	F2 V	$12: 56$	+5654	4.9	F0
σ Boo	F2 V	$14: 30$	+3011	4.5	F0
ζ Ser	F2 IV	$17: 55$	-0341	4.6	F0
π Sgr	F2 II	$19: 03$	-2111	3.0	F2

Table 18: Standards at F2

21 The Peculiar A Stars

The most frequently encountered of the peculiar A stars are the "silicon," "strontium," and "manganese" groups and the so-called "metallic-line" stars. The spectra of the last-named consist essentially of features which seem to belong to two different spectral types and are considered separately.

The silicon and strontium stars can be identified on spectrograms of fairly low dispersion, but a satisfactory description of the details can be made only from medium- or highdispersion spectra. Some of the brighter of the peculiar stars whose spectra can be used as prototypes are described below.
α And. - B9p. Manganese. The lines of $M n$ II are abnormally strong. On considerably widened, fine-grain spectrograms having a dispersion of $125 \AA$ per mm at $H \gamma$ a number of peculiar faint lines are visible, which are sufficient to distinguish this type of spectrum from others.
ι Lib. - B9p. Silicon. The K line is very faint. The appearance of the wings of the H lines indicates that the star is brighter than the ordinary main-sequence stars.
θ Aur. - A0p. Silicon. The K line is exceedingly faint. The lines of $C r$ II vary in intensity. The star appears to be of luminosity class III and is brighter than the main sequence. The absolute magnitude is probably around -1 to -2 .
$\alpha \operatorname{CVn}$ (brighter). - A0p. Silicon-europium. The spectrum is exceedingly complex and requires the highest dispersion for adequate study. The lines of $S i$ II and $E u$ II are both strong. Many spectral lines vary in intensity. The appearance of the wings of the hydrogen lines indicates that the star is more luminous than an ordinary A dwarf. The absolute magnitude is probably around -1 to -2 .
ϵ UMa. - A0p. A number of peculiar features which distinguish the spectrum of 78 Vir are present but are in general fainter. The $S i$ II lines are not abnormally strong. The K line and a number of other spectral features vary in intensity within a period of a few days. This star is the brightest of the "spectrum variables."

17 Com. - A2p. Chromium-europium. The spectrum is similar to 78 Vir. The K line is weak. The star is a member of the Coma cluster.

78 Vir. - Chromium-europium. The general level of excitation corresponds roughly to an A2 star. There may be a faint, broad K line superposed over the sharp component. The blended feature at $\lambda 4171$, indicative of strong $C r$ II, is outstanding on spectrograms of low dispersion. $S i$ II is weak; the blend at $\lambda 4$ I28- $\lambda 4132$ is not due principally to $S i$ II but is indicative of a "europium star." The K line is weak. 78 Vir is a member of the Ursa Major cluster.

73 Dra. - Ap. Strontium-europium-chromium. A number of the lines, including λ 4077 and $\lambda 4215$, are variable in intensity. The K line is about as strong as in a normal B 8 spectrum. The effective excitation is considerably lower than in $\alpha \mathrm{CVn}$ and the spectrum is crowded with metallic lines.

ι Cas. - A5p. Strontium.

γ Cap. - Strontium. The spectrum can be classified as near F0 III. The strontium line at $\lambda 4077$ is abnormally strong but not so strong as in γ Equ. In both spectra the line is stronger than in any normal luminosity class at F0. There is no well-marked absolutemagnitude effect for $\lambda 4077$ at F0; this is near the place at which the effect changes from a negative one (early A-stars) to the strongly positive one observed in the F5-M stars.
γ Equ. - Strontium-europium. The type is near F0, but the spectrum is so peculiar that a luminosity class cannot be determined. The Sr II lines $\lambda 4077$ and $\lambda 4215$ are stronger than in any other F0 star observed at Yerkes. This should not, however, be taken as evidence of high luminosity, since $S r$ II is insensitive to luminosity changes near F0 and more sensitive lines do not indicate that the star is a supergiant. The blend at $\lambda \lambda$ 4128-4132 is strong, but this is not due to Si II . In stars later than A0 it appears to be indicative of the presence of $E u \mathrm{II}$.
β CrB. - Chromium-europium. The spectral type is near F0, but the spectrum is so peculiar that no luminosity class can be estimated. The blend at $\lambda \lambda 4128-4132$ is very strong; this appears to be indicative of strong $E u$ II and not of abnormal strength of the Si II doublet. The blend at $\lambda 4171$ is strong; this is an indication of abnormal strength of Cr II . A considerable amount of the intensity of the line near $\lambda 4077$ is due to blended lines of $C r$ II . The lines of $E u$ II may be stronger than in any other bright star, with the possible exception of the spectrum-variable HR 5355.

Generalities. The manganese stars appear to be present at $\mathrm{B} 8-\mathrm{B} 9$, the silicon stars at B9-A0, the europium stars at A0-F0, and the strontium stars at A0-F0. These groups can all be identified on low-dispersion spectrograms, but any kind of detailed discussion requires higher dispersion. The bright silicon stars observed at Yerkes appear to be around, 1 or 2
mag. above the main sequence at B9 and A0. All the peculiar groups of stars lie near class A, and an association with the maximum intensity of the hydrogen lines is suggested.

22 The Metallic-Line Stars

63 Tau. The K line has an intensity about equal to a star of class A1. The general metallic-line spectrum resembles closely the star ζ Leo (F0 III). 63 Tau is in the Taurus cluster and has an absolute magnitude of +2.8 . As ζ Leo is certainly much more luminous, the absolute-magnitude effect observed for 63 Tau is a false one. There seems to be no explanation of the spectrum on the basis of two normal stars.
$\alpha \operatorname{Gem}(f t)$. The spectral type from the K line is about A1; from the metallic lines it is about A5. All lines appear to originate in one star, since $\alpha \operatorname{Gem}(f t)$ is a spectroscopic binary with only one spectrum visible.
ζ UMa (ft). The spectral type from the K line is about A2 and from the metallic lines is around A7. ζ UMa $(f t)$ is a member of the Ursa Major cluster and has an absolute magnitude of about +2.0 .
ϵ Ser. The spectral type from the K line is near A2 and from the metallic lines about A7.
α^{2} Lib. The spectral type from the K line is about A3 and from the metallic lines near A7. The absolute magnitude is probably in the neighborhood of +1.5 .
ζ Lyr A. The spectral type from the K line is about A3 and from the metallic lines around A7. ζ Lyr B appears to be an ordinary main-sequence star of type F0. The intensities of the lines are closely similar to ϵ Cep.

15 UMa. The spectral type from the K line is around A 3 ; the metallic lines appear to be fairly similar in intensity to ρ Pup (F6 II). The absolute-magnitude effect observed is probably false, as 15 UMa has a proper motion of 0 " 132 .
τ UMa. The K line has an intensity similar to a normal A3 star. The metallic-line spectrum matches closely that of ρ Pup (F6 II). The high absolute magnitude indicated from the metallic lines is probably illusory; τ UMa has a proper motion of $0^{\prime \prime} 122$.

23 The Spectrum of λ Bootis

The spectral type of λ Boo is near A0, as far as can be determined. The spectral lines, while not unusually broad, are very weak, so that the only features easily visible are a weak K line and the Balmer series of hydrogen. The trigonometric parallax indicates that the star is probably located below the main sequence. The star θ Hya has similar, but less pronounced, spectral peculiarities. It may be a high-velocity star.

III The F5-M Stars

$24 \quad$ F5

The G band is observed as a broad absorption with the violet part of the band somewhat stronger than the red edge. Fe I 4045 and $\lambda 4226$ are very much weaker than $\mathrm{H} \gamma$ and $\mathrm{H} \delta$.

Star	MKK	α	δ	m	HD
α Tri	F5 III	$01: 47$	$+20^{\circ} 06^{\prime}$	3.6	F5
ξ Gem	F5 III	$06: 39$	+1300	3.4	F5
α CMi	F5 IV	$07: 34$	+0529	05	F5
110 Her	F5 IV	$18: 41$	+2027	4.3	F3
β Del	F5 III	$20: 32$	+1415	3.7	F5
ι Peg	F5 V	$22: 02$	+2451	4.0	F5

Table 19: Standards at F5
The most sensitive criteria of luminosity are the ratios of $\lambda 4077$ to $\lambda 4226$ and to the $F e$ I lines at $\lambda 4045$ and $\lambda 4063$.

25 F6

The G band is slightly stronger than at class F5. Fe I 4045 and $\lambda 4226$ are stronger relative to $\mathrm{H} \gamma$ and $\mathrm{H} \delta$.

The ratios of $\lambda 4077$ to $\lambda 4226$ and to the $F e$ lines at $\lambda \lambda 4045,4063$, and 4071 are sensitive criteria of luminosity, Luminosity classes III, IV, and V, which are separated from one another by about 1 mag., are distinguishable without ambiguity. Spectroscopic parallaxes of high accuracy can be determined for the low-luminosity stars of classes F5-F8.

Star	MKK	α	δ	m	HD
π^{3} Ori	F6 V	$04: 44$	$+06^{\circ} 47^{\prime}$	3.3	F8
ρ Pup	F6 II	$08: 03$	-2401	2.9	F5
σ^{2} UMa	F6 IV	$09: 01$	+6732	4.9	F8
θ UMa	F6 III	$09: 26$	+5208	3.3	F8p
τ Boo	F6 IV	$13: 42$	+1757	4.5	F5
ι Vir	F6 III	$14: 10$	-0531	4.2	F5
θ Boo	F6 IV	$14: 21$	+5219	4.1	F8
γ Ser	F6 IV	$15: 51$	+1559	3.9	F5
χ Dra	F6 V	$18: 22$	+7241	3.7	F8
ξ Peg	F6 III-IV	$22: 41$	+1140	4.3	F5

Table 20: Standards at F6

26 F8

The spectral type is determined from the ratios $\lambda 4045: H \delta$ and $\lambda 4226: H \gamma$. The most sensitive criterion of absolute magnitude is probably the ratio $\lambda 4077: \lambda 4226$ for normal giants and dwarfs; while in the range from supergiants to giants the ratios λ 4077: $H \delta$ and $\lambda \lambda 4171-4173: \lambda 4226$ allow a very accurate luminosity classification to be made.

Star	MKK	α	δ	m	HD
50 And	F8 IV	$01: 30$	$+40^{\circ} 54^{\prime}$	4.2	G0
36 UMa	F8 V	$10: 24$	+5630	4.8	F5
β Vir	F8 V	$11: 45$	+0220	3.8	F8
θ Dra	F8 IV	$16: 00$	+5850	4.1	F8
v Peg	F8 III	$23: 00$	+2251	4.6	G0

Table 21: Standards at F8

27 G0

The spectral type is determined from the ratios λ 4045:H and λ 4226:H . Luminosity differences are well shown by the ratios $\lambda 4077: \lambda 4226$, and $\lambda 4077: \lambda 4045$ and for the highluminosity stars by $\lambda 4077: H \delta$.

Star	MKK	α	δ	m	HD	Notes
η Cas A	G0 V	$00: 43$	$+57^{\circ} 17^{\prime}$	3.6	F8	
δ Tri	G0 V	$02: 10$	+3346	5.1	G0	
ι Per	G0 V	$03: 01$	+4914	4.2	G0	
χ^{1} Ori	G0 V	$05: 48$	+2015	4.6	F8	
ϵ Hya	G0 III	$08: 41$	+0647	3.5	F8	1
47 UMa	G0 V	$10: 53$	+4058	5.1	G0	
ξ UMa	G0 V	$11: 12$	+3206	3.9	G0	2
β CVn	G0 V	$12: 29$	+4154	4.3	G0	
β Com	G0 V	$13: 07$	+2823	4.3	G0	
η Boo	G0 IV	$13: 49$	+1854	2.8	G0	
ζ Her	G0 IV	$16: 37$	+3147	3.0	G0	

[^10]Table 22: Standards at G0

28 G2

The spectral type is determined by the ratios λ 4045:H and $\lambda 4226: H \gamma$. Luminosity line ratios are $\lambda 4077: \lambda 4226$ and $\lambda 4077: \lambda 4045$.

Star	MKK	α	δ	m	HD
λ Aur	G2 IV-V	$05: 12$	$+40^{\circ} 01^{\prime}$	4.9	G0
β Lep	G2 II	$05: 24$	-2050	3.0	G0
μ Cnc	G2 IV	$08: 01$	+2152	5.4	G0
λ Ser	G2 V	$15: 41$	+0740	4.4	G0
η Peg	G2 II-III	$22: 38$	+2942	3.1	G0
π Cep	G2 III	$23: 04$	+7451	4.6	G5

Table 23: Standards at G2

29 G5

The spectral type (except for the supergiants) is determined from the ratios λ 4144:H H and $\lambda 4096: H \delta$ and the blend at λ 4030-4034: the violet side of the G band. On spectrograms of low dispersion $H \delta$ appears to be stronger in dwarfs of this class than in giants and sub-giants.

Star	MKK	α	δ	m	HD	Notes
μ Cas	G5 V	$01: 01$	$+54^{\circ} 26^{\prime}$	5.3	G5	1
κ Cet	G5 V	$03: 14$	+0300	5.0	G5	
o UMa	G5 II	$08: 22$	+6103	3.5	G0	
β Crv	G5 II	$12: 29$	-2251	2.8	G5	
γ Hya	G5 III	$13: 13$	-2239	3.3	G5	
70 Vir	G5 IV-V	$13: 23$	+1419	5.2	G0	2
β Her	G5 II-III	$16: 25$	+2142	2.8	K0	
η Her	G5 III	$16: 39$	+3007	3.6	K0	
μ Her	G5 IV	$17: 42$	+2747	3.5	G5	
ξ Her	G5 III	$17: 53$	+2916	3.8	K0	

[^11]Table 24: Standards at G5
Absolute-magnitude effects are shown by the ratios λ 4226: λ 4077, λ 4063: λ 4077, λ 4144: $\lambda 4077, \lambda 4085: \lambda 4077, \lambda 4250: \lambda 4215, \lambda 4226: \lambda 4045$, and the relative intensity of the continuous spectrum on each side of $\lambda 4215$.

30 G8

The spectral type (except for the supergiants) is determined from the ratios $\lambda 4144: H \delta$ and $\lambda 4096: H \delta$ and the ratio of the blend at $\lambda \lambda 4030-4034$ to the violet side of the G band. On the spectrograms used, $H \delta$ appears to be stronger in dwarfs of this class than in giants and subgiants.

Star	MKK	α	δ	m	HD	Notes
τ Cet	G8 V	$01: 39$	$-16^{\circ} 28^{\prime}$	3.7	K0	
δ Lep	G8 pec	$05: 47$	-2053	3.9	K0	1
ι Gem	G8 III	$07: 19$	+2800	3.9	K0	
κ Gem	G8 III	$07: 38$	+2438	3.7	G5	
α UMa	G8 II-III	$10: 57$	+6217	2.0	K0	
61 UMa	G8 V	$11: 35$	+3446	5.5	G5	
S 3582	G8 V	$11: 47$	+3826	6.5	G5	
ϵ Vir	G8 III	$12: 57$	+1130	3.0	K0	
ξ Boo A	G8 V	$14: 46$	+1931	4.8	G5	
β Boo	G8 III	$14: 58$	+4047	3.6	G5	
δ Boo	G8 III	$15: 11$	+3341	3.5	K0	
ϵ Oph	G8 III	$16: 13$	-0427	3.3	K0	
η Dra	G8 III	$16: 22$	+6144	2.9	G5	
δ Dra	G8 III	$19: 12$	+6729	3.2	K0	
κ Cyg	G8 III	$19: 14$	+5311	4.0	K0	
β Aql	G8 IV	$19: 50$	+0609	3.9	K0	
ζ Cyg	G8 II	$21: 08$	+2049	3.4	K0	
μ Per	G8 III	$22: 45$	+2404	3.7	K0	
λ And	G8 III-IV	$23: 32$	+4555	4.0	K0	

[^12]Table 25: Standards at G8
Some of the most important luminosity line ratios are λ 4045: λ 4077, λ 4063: λ 4077, and λ 4144: λ 4077. The break in the continuous spectrum at $\lambda 4215$ is one of the most sensitive discriminants of absolute magnitude. Other features are noted on the Atlas print.

31 K0

Spectral type is determined from the ratios $\lambda \lambda 4030-4034: \lambda 4300, \lambda 4290: \lambda 4300$, and $H \delta: \lambda$ 4096. Luminosity differences are shown by the ratios $\lambda 4063: \lambda 4077, \lambda 4071: \lambda 4077, \lambda 4144: \lambda$ 4077, and by the intensity difference of the continuous spectrum on each side of $\lambda 4215$.

Star	MKK	α	δ	m	HD	Notes
54 Psc	K0 V	$00: 34$	$+20^{\circ} 43^{\prime}$	6.1	K0	
α Cas	K0 II-III	$00: 34$	+5559	2.3	K0	
δ Eri	K0 Iv	$03: 38$	-1006	3.7	K0	1
δ Aur	K0 III	$05: 51$	+5417	3.9	K0	
β Gem	K0 III	$07: 39$	+2816	1.2	K0	
ζ Hya	K0 III	$08: 50$	+0620	3.3	K0	
λ Hya	K0 III	$10: 05$	-1152	3.8	K0	
γ Leo A	K0 pec	$10: 14$	+2021	2.6	K0	2
46 LMi	K0 III-IV	$10: 47$	+3445	3.9	K0	
ν Oph	K0 III	$17: 53$	-0946	3.5	K0	
70 Oph A	K0 V	$18: 00$	+0231	4.3	K0	
η Ser	K0 III-IV	$18: 16$	-0255	3.4	K0	
σ Dra	K0 V	$19: 32$	+6929	4.8	K0	
η Cyg	K0 III	$19: 52$	+3449	4.0	K0	
52 Cyg	K0 III	$20: 41$	+3021	4.3	K0	
ϵ Cyg	K0 III	$20: 42$	+3336	2.6	K0	
η Cep	K0 IV	$20: 43$	+6127	3.6	K0	
ι Cep	K0 III	$22: 46$	+6540	3.7	K0	
107 Psc	K1 V	$01: 37$	+1947	5.3	G5	
θ Her	K1 II	$17: 52$	+3716	4.0	K0	
γ Cep	K1 IV	$23: 35$	+7704	3.4	K0	

[^13]Table 26: Standards at K0 and K1

32 K2

The spectral type is determined from the ratios $\lambda 4290: \lambda 4300$ and $\lambda 4226: \lambda 4325$. Absolutemagnitude differences are shown by the ratios $\lambda 4063: \lambda 4077$ and $\lambda 4071: \lambda 4077$, and the break in the continuous spectrum at $\lambda 4215$.

Star	MKK	α	δ	m	HD	Notes
S 222	K2 V	$00: 43$	$+04^{\circ} 46^{\prime}$	5.8	G5	
ϵ Eri	K2 V	$03: 28$	-0948	3.8	K0	
ν Hya	K2 III	$10: 44$	-1540	3.3	K0	
ψ UMa	K2 III	$11: 04$	+4502	3.2	K0	
χ UMa	K2 III	$11: 40$	+4820	3.9	K0	
ϵ Cry	K2 III	$12: 05$	-2204	3.2	K0	
α Boo	K2 pec	$14: 11$	+1942	0.2	K0	1
ι Dra	K2 III	$15: 22$	+5919	3.5	K0	
α Ser	K2 III-IV	$15: 30$	+0644	2.8	K0	
κ Oph	K2 III	$16: 52$	+0932	3.4	K0	
β Oph	K2 III-IV	$17: 38$	+0437	2.9	K0	
κ Lyr	K2 III	$18: 16$	+3601	4.3	K0	
109 Her	K2 III	$18: 19$	+2143	3.9	K0	
ϵ Aql	K2 III	$18: 55$	+1456	4.2	K0	

[^14]Table 27: Standards at K2
The mean absolute magnitude of stars of class III is probably somewhat brighter than in types G5-K0.

33 K3

The spectral type is determined from the ratios $\lambda 4226: \lambda 4325$ and $\lambda 4290: \lambda 4299$. Luminosity classes are determined from the ratios λ 4071: $\lambda 4077, \lambda 4063: \lambda 4077, \lambda 4045: \lambda 4077, \lambda 4260: \lambda$ 4215 and $\lambda 4325: \lambda 4340$.

Star	MKK	α	δ	m	HD
δ And	K3 III-IV	$00: 34$	$+30^{\circ} 19^{\prime}$	3.5	K2
ι Aur	K3 II	$04: 50$	+3300	2.9	K2
α Hya	K3 III	$09: 22$	-0814	2.2	K2
ρ Boo	K3 III	$14: 27$	+3049	3.8	K0
ϵ CrB	K3 III	$15: 53$	+2710	4.2	K0
π Her	K3 II	$17: 11$	+3655	3.4	K5
λ Her	K3 III	$17: 26$	+2611	4.5	K0
α Sct	K3 III	$18: 29$	-0819	4.1	K0
1 Lac	K3 III	$22: 11$	+3715	4.2	K0
S 7259	K3 V	$23: 08$	+5637	5.7	K2

Table 28: Standards at K3

The mean absolute magnitude of the stars of luminosity class III is probably higher than at type K0. No subgiants were observed at K3.

34 K5

The spectral type is determined from the ratios $\lambda 4226: \lambda 4325, \lambda 4290: \lambda 4299$, and λ 4383: λ 4406. Luminosity classes are determined from the ratios $\lambda 4063: \lambda 4077$ and λ 4260: $\lambda 4215$.

Star	MKK	α	δ	m	HD
α Tau	K5 III	$04: 30$	$+16^{\circ} 18^{\prime}$	1.1	K5
β Cnc	K5 III	$08: 11$	+0930	3.8	K2
β UMi	K5 III	$14: 51$	+7434	2.2	K5
γ Dra	K5 III	$17: 54$	+5130	2.4	K5
61 Cyg A	K5 V	$21: 02$	+3815	5.6	K5

Table 29: Standards at K5
The mean absolute magnitude of the stars of class III is probably brighter than at type K0. No subgiants were observed at K5.

35 The M Stars

Discussion of the M dwarfs is outside the range of the present Atlas. Since no stars have been observed intermediate between M dwarfs and giants, the latter can be considered separately.

The titanium oxide bands in the photographic region increase smoothly in intensity with decreasing temperature, and spectral classification from the intensity of the bands is a temperature classification (Pl. 52). The four stars illustrated in Plate 51 as standards of the M-giant sequence are on the Mount Wilson system. We are greatly indebted to Dr. Joy for checking our types at Mount Wilson. He has noted that some M stars probably vary slightly in spectral type, so that some of the standards illustrated may have a slightly different appearance at times.

The absolute magnitudes of some of the giant M stars have been discussed recently by Keenan ${ }^{2}$ and the details of the luminosity classification are given there. Keenan's spectral types require systematic corrections to reduce them to the Mount Wilson system. Some luminosity effects in the early M giants are illustrated in Plate 53.

Table 30 gives a selection of stars whose luminosity classes have been taken from Keenan's paper. The spectral types are from the Mount Wilson catalogue of spectroscopic parallaxes. Luminosity line ratios are $\lambda 4045: \lambda 4077, \lambda 4215: \lambda 4250, \lambda 4376: \lambda 4383$ and $\lambda 4383: \lambda 4390$.

[^15]| Star | MW + Kn | α | δ | m | HD | Notes |
| :--- | :--- | :---: | :---: | :---: | :--- | :---: |
| RW Cep | M0: Ia | $22: 19$ | $+55^{\circ} 27^{\prime}$ | $6.2-7.6^{*}$ | Ma | 1 |
| μ Cep | M2 Ia | $21: 40$ | +5819 | 4.4^{*} | Ma | |
| SU Per | M4 Ia-Ib | $02: 15$ | +5609 | 7.3^{*} | Ma | |
| α Ori | M2 Ib | $05: 49$ | +0723 | 0.9^{*} | Ma | |
| α Sco | M1 Ib | $16: 23$ | -2613 | 1.2 | Ma | |
| 5 Lac | M0 II | $22: 25$ | +4712 | 4.6 | $\mathrm{K0}$ | |
| π Aur | M3 II | $05: 52$ | +4556 | 4.6 | Ma | |
| β Peg | M2 II-III | $22: 58$ | +2732 | 2.6^{*} | Ma | |
| χ Peg | M2 III | $00: 09$ | +1939 | 4.9 | Ma | |
| β And | M0 III | $01: 04$ | +3505 | 2.4 | Ma | |
| η Gem | M3 III | $06: 08$ | +2232 | 3.7^{*} | Ma | |

*Light Variable
${ }^{1}$ The spectrum indicates that the absolute magnitude is brighter than μ Cep. Spectral type by Keenan.
Table 30: Standard M Giants

IV The Supergiants of Classes B8-M2

The general appearance of the spectra of the supergiants of types A-K is different from that of stars of lower luminosity; and, when an attempt is made to classify the high-luminosity stars by the ratios used for ordinary giants and dwarfs, a number of difficulties are encountered. Ratios which include a hydrogen line are strongly affected by absolute-magnitude effects in classes B8-F0 and G8-K5; in the first spectral interval the H lines are greatly weakened in the supergiants, and in the second they are considerably strengthened. The lines used to classify the A5-F5 spectra are disturbed by blends in the supergiants which have a marked absolutemagnitude effect. In addition, the G band appears as a fairly continuous absorption only for types later than F8 in the supergiants; while in ordinary giants and dwarfs it is present at F5 on plates similar to the ones used in preparing the Atlas.

For these reasons, if a highly accurate system is to be defined for supergiants and cepheids, it is important to set up a sequence of standard supergiants by criteria suitable for the high-luminosity stars. The system defined by the supergiants in Table 31 is in fairly good systematic agreement with the Henry Draper Catalogue. The stars listed define the system accurately to about a tenth of a class, except in the case of the late A and early F subdivisions, where the accuracy is appreciably lower.

Some ratios useful in determining the spectral type of the super-giants are: $\lambda 4128-\lambda$ 4130: $\lambda 4172-\lambda 4179$ (A0-F0), $\lambda 4226: H \delta$ (F5-G5), $\lambda 4045: H \delta$ (F5-G8), $\lambda 4226: H \gamma(\mathrm{~F} 5-\mathrm{K} 5)$, $\lambda 4325: H \gamma$ (F5-G2), blend at λ 4176: blend at $\lambda 4200$ (G5-K5), $\lambda 4383: \lambda 4406$ (G8-K5), and the appearance of the region of the G band (F0-K5).

No stars have been classified as Ia between F8 and M2; it is possible that certain luminous irregular variable stars may belong to this class in the G and K types. It is also possible that stars of the highest luminosity develop TiO bands at slightly lower temperatures than the F8 Ia stars δ CMa and ρ Cas; they might then be classified among the M stars, while
their line spectra correspond to class G or K .

Star	MKK	α	δ	m	HD	Notes
β Ori	B8 Ia	$05: 09$	$-08^{\circ} 19^{\prime}$	0.3	B8p	
4 Lac	B8 Ib	$22: 20$	+4858	4.6	B8p	
σ Cyg	B9 Ia	$21: 13$	+3859	4.3	A0p	
HR 1040	A0 Ia	$03: 21$	+5832	4.8	A0p	1
13 Mon	A) Ib	$06: 27$	+0724	4.5	A0p	
η Leo	A0 Ib	$10: 01$	+1715	3.6	A0p	
α Cyg	A2 Ib	$20: 38$	+4455	1.3	A2p	
ν Cep	A2 Ia	$21: 42$	+6040	4.5	A2p	
ϕ Cas	A5 Ia	$01: 13$	+5742	5.3	F5p	
ϵ Aur	F0 Ia	$04: 54$	+4341	(3.3)	F5p	
α Lep	F0 Ib	$05: 28$	-1754	2.7	F0	
α Per	F5 Ib	$03: 17$	+4930	1.9	F5	
δ CMa	F8 Ia	$07: 04$	-2614	2.0	F8p	
ρ Cas	F8 Ia	$23: 49$	+5657	(4.4)	F8p	
γ Cyg	F8 Ib	$20: 18$	+3956	2.3	F8p	
β Aqr	G0 Ib	$21: 26$	-0601	3.1	G0	
ϵ Leo	G0 I-II	$09: 40$	+2414	3.1	G0p	
α Aqr	G1 Ib	$22: 00$	-0048	3.2	G0	
ζ Cap	G4 Ib?	$21: 21$	-2251	3.9	G5p	2
9 Peg	G5 Ib	$21: 39$	+1653	4.5	G5	
ϵ Gem	G8 Ib	$06: 37$	+2514	3.2	G5	
56 Peg	G8 Ib	$23: 02$	+2456	5.0	K0	
ζ Cep	K1 Ib	$22: 07$	+5742	3.6	K0	
ϵ Peg	K3 Ib	$21: 39$	+0925	2.5	K0	
γ Aql	K3 I-II	$19: 41$	+1022	2.8	K2	
ξ Cyg	K5 Ib	$21: 01$	+4332	3.9	K5	
α Sco	M1 Ib	$16: 23$	+2613	1.2	Ma	3
μ Cep	M2 Ia	$21: 40$	+5819	var	Ma	3
α Ori	M2 Ib	$05: 49$	+0723	var	Ma	3

[^16]Table 31: The Supergiants of Classes B8-M2

V Five Composite Spectra

γ Per. From the ratios $\lambda 4045: H \delta$ and $\lambda 4226: H \gamma$ and the intensity of the G band a spectral type of F6 is derived on the system of the present Atlas. The following features indicate that the spectrum in the blue region comes from two stars.

1. The $C N$ absorption, having a sharp head at $\lambda 4215$, is present and is about as strong as in a giant G2 star. This absorption was not seen in any normal star earlier than G0 examined while preparing the Atlas.
2. There is a broad, faint absorption at $H \delta$ which makes the appearance of the region different from that in a normal F6 star. This is probably due to a broad A-type hydrogen line superposed on the narrower one.
3. The strongest absorption at K is narrow and is similar to a star near type A5, and there is almost certainly present a faint, broad K line superposed on the sharp one.
The spectral type of the component of later type is probably near G5. Its luminosity class is probably III.
α Equ. The spectrum is similar to γ Per. The $C N$ absorption toward the violet from $\lambda 4215$ is present and indicates that the later-type spectrum is near G5. The integrated spectral type at $\lambda \lambda 4000-4300$ is somewhat earlier than γ Per-about F5-owing to the greater strength of the H lines. The A star appears to be somewhat brighter relative to the later-type component. The line at $\lambda 4077$ is stronger relative to $\lambda 4045$ than in γ Per.
o Leo. The $C N$ absorption near $\lambda 4215$ is not observed and the later-type spectrum is therefore almost certainly earlier than G0. This spectrum is combined with one of early type which, to judge by the narrow K line, is near class A2. The two components form a spectroscopic binary. The spectrograms used were obtained on April 22, 1942; on them the K line is composite, the sharp A component lying near the red edge of a faint, diffuse component. The line $\lambda 4077$ is strong, and from its intensity a similarity in luminosity to an F supergiant $[\alpha$ Per (F5) or γ Cyg (F8)] might be assumed. The region of the G band, however, does not have an appearance like that of a supergiant of type F, and other line ratios suggest a luminosity class of around II-III. This value is uncertain; it could be determined more accurately if spectrograms on a high-contrast emulsion were available. The spectral type of the component of later type is probably near F6.
α Aur. The combined spectral type of the two components is G2 II-III. An unpublished determination made several years ago from high-dispersion plates on which the components were resolved gives, on the system of the present Atlas,

Spectral type of primary G5
Spectral type of secondary F6
Combined spectral type G2 II-III

The separate values for the two components are very uncertain and may be in error by a considerable fraction of their separation.
β Cyg. The spectral type of the component of late type is probably K3 II. At the position of K there is a broad, shallow absorption. It is estimated that the spectral type of the component of early type is probably earlier than A0. The features described all belong to the spectrum of β Cyg A .

VI Conclusion

The relation between the revised types of the B2-G0 dwarfs and color is shown in Figure 1. An approximate calibration of the luminosity classes is given in Figure 2. While any definitive calibration requires the use of many more stars than are considered here, we do not think that any of the curves should be in error anywhere by much more than a half-magnitude.

Since about a year was needed for the making of the photographic prints for the Atlas, there is a difference in epoch of that time between the classification as illustrated there and as expounded here. It was unavoidable that certain improvements and alterations should have suggested themselves in the interim. These have been incorporated in the text; and there are therefore several discrepancies between the Atlas plates and the text. In all such cases the text is to be taken as final, and the data on the Atlas prints should be altered to agree with the outline. The most important of the changes has been the shifting in spectral type of two standard stars. These are μ Peg (Pls. 36, 41, 44), whose type should be changed from G5 to G8, and $\sigma^{2} \mathrm{UMa}$ (Pl. 37), whose type has been altered from F 8 to F 6 .

The characteristics of the system described here can be summarized as follows: The two-dimensional classification can be used to describe accurately the spectra of the normal stars brighter than the eighth apparent magnitude. Since this includes all but a very small percentage of the total number of stars brighter than that limiting magnitude, it is possible to derive from the extension of the classification to fainter objects certain general information concerning the distribution in space of the stars absolutely brighter than the sun.

In the course of the investigation several interesting details have been noted. Among the Be stars very broad absorption lines have been observed, which suggest maximum stellar rotational velocities somewhat higher than those found earlier. The most striking example of this is the star ϕ Per. Other stars having lines suggesting higher rotational velocities than the Bnn star, $\eta \mathrm{UMa}$, are ζ Oph, 25 Ori, and β Mon A.

Also of interest is the discovery of similar spectral peculiarities in several G- and K-type high-velocity giants. The high-velocity stars δ Lep, Boss 2527, γ Leo, and probably α Boo have similar peculiar features. The most striking of these on low dispersion is the abnormal weakness of the $C N$ absorption extending toward the violet from $\lambda 4215$.

When carefully calibrated, the luminosity classification should allow the determination of accurate spectroscopic parallaxes on low-dispersion plates of stars of all classes from O9 to M2 (with the possible exception of classes B8-A2).

The spectral classification defines with accuracy a system of color standards which can be used in investigations of interstellar absorption and determinations of systematic errors in spectral classification of faint stars. It should be emphasized that the actual features used for classification are dependent on the dispersion used and that some or most of the criteria listed here might be unsuitable for use on spectra having greatly different dispersion.

Figure 1: Color equivalents of B2-G0 main-sequence stars. The photoelectric color indices of Bottlinger (above) and Greenwich gradients (below) are plotted against the spectral types of the present Atlas. The stars included are those of luminosity classes IV and V which appear to be definitely less than 100 parsecs distant from the sun. The same stars are plotted in the two diagrams for types earlier than F5. Stars of class V only are shown for classes F6-G0. The multiple system ξ UMa has not been plotted. The two relationships between color equivalent and spectral type are not similar; a simple change of zero point and scale will not suffice to change one color system to the other. There is a marked depression in the curve for the early A stars in (a) which is not present in (b). The curve in (a) is definitely concave upward from B8 to F5, while it is sensibly linear in (b). This difference is interpreted as an effect of the hydrogen lines on the violet wave lengths for the photoelectric color indices. The same effect is present to a varying degree in other catalogues of color equivalents. The two straight lines connect the centers of gravity at B8-B9 and F0-F5. In the G and K stars other spectral features appear to affect observed color equivalents. In particular, the strong absorption due to $C N$ in giants tends to increase the color differences between giants and dwarfs observed with short base-line photoelectric color indices. In the K stars of high luminosity a heavy absorption extending toward the violet from the vicinity of $\lambda 4300$ cannot fail to have an appreciable effect on colors determined in this region.

Figure 2: Preliminary calibration of luminosity classes in terms of visual absolute magnitude.

We wish to acknowledge our indebtedness to the following persons : to Dr. Struve for making the publication of the Atlas possible; to Dr. Joaquin Gallo, director of the Astronomical Observatory of Mexico at Tacubaya, for the loan of a number of objectiveprism plates; to Dr. A. H. Joy, of Mount Wilson, for determining the spectral types of several M giants which we have used as standards; to Dr. A. N. Vyssotsky, of the Leander McCormick Observatory, for several discussions of the problem of spectral classification; and to Dr. G. P. Kuiper for a discussion of the dynamical parallax of δ Cygni. We are also indebted to the following persons for taking a considerable number of the spectrograms used in the investigation: Mrs. Frances Sherman Bailey, Dr. J. A. O’Keefe, Dr. L. R. Henrich, Mr. W. P. Bidelman, and Mr. Frank R. Sullivan. All the photographic prints for the Atlas were made by Miss Kellman and Miss Phyllis Anderson.

YERKES OBSERVATORY

August 19, 1942

Index

1 Lac, 22
10 Lac, 5
107 Psc, 21
109 Her, 22
110 Her, 17
12 Lac, 8
13 Mon, 25
139 Tau, 7
15 UMa, 16
17 Com, 15
19 Cep, 6
25 Ori, 27
36 UMa, 18
38 Lyn, 12
4 Lac, 25
$46 \mathrm{LMi}, 21$
47 UMa, 18
5 Lac, 24
50 And, 18
52 Cyg, 21
54 Psc, 21
55 Cyg, 9
56 Peg, 25
61 Cyg A, 23
61 UMa, 20
63 Tau, 16
67 Oph, 9
70 Oph A, 21
70 Vir, 19
73 Dra, 15
78 UMa, 14
78 Vir, 14, 15
9 Cam, 6
9 Cep, 8
9 Peg, 25
9 Sgr, 5
alpha And, 14
alpha Aql, 13
alpha Aqr, 25
alpha Aur, 26
alpha Boo, 21, 22, 27
alpha Cas, 21
alpha Cep, 13
alpha CMa, 11
alpha CMi, 17
alpha $\mathrm{CrB}, 11$
alpha CVn, 14, 15
alpha Cyg, 25
alpha Equ, 26
alpha Gem, 16
alpha Gem A, 11
alpha Hya, 22
alpha Leo, 9
alpha Lep, 25
alpha Lyr, 11
alpha Oph, 13
alpha Ori, 24, 25
alpha Peg, 11
alpha Per, 25, 26
alpha PsA, 12
alpha Sco, 24, 25
alpha Sct, 22
alpha Ser, 22
alpha Tau, 23
alpha Tri, 17
alpha UMa, 20
alpha Vir, 7
alpha ${ }^{2}$ Lib, 16
beta And, 24
beta Aql, 20, 25
beta Ari, 13
beta Aur, 12
beta Boo, 20
beta Cas, 14
beta Cep, 7
beta CMa, 7
beta CMi, 9
beta Cnc, 23
beta Com, 18
beta $\mathrm{CrB}, 15$
beta Crv, 19
beta CVn, 18
beta Cyg, 27
beta Cyg A, 27
beta Del, 17
beta Gem, 21
beta Her, 19
beta Leo, 12
beta Lep, 19
beta Lib, 9
beta Mon A, 27
beta Oph, 22
beta Ori, 9,25
beta Peg, 24
beta Per, 9
beta Sco, 7
beta Ser, 12
beta Tau, 9
beta Tri, 13
beta UMa, 11
beta UMi, 23
beta Vir, 18
Boss 2527, 22, 27
C Hya, 11
chi Aur, 9
chi Dra, 17
chi Peg, 24
chi UMa, 22
chi ${ }^{1}$ Ori, 18
chi ${ }^{2}$ Ori, 8
delta And, 22
delta Aur, 21
delta Boo, 20
delta Cas, 13
delta CMa, 24, 25
delta Crv, 11
delta Cyg, 11, 30
delta Dra, 20
delta Eri, 21
delta Gem, 14
delta Her, 12
delta Lep, 20-22, 27
delta Ori, 6
delta Per, 9
delta Sco, 6
delta Tri, 18
delta UMa, 12
epsilon Aql, 22
epsilon Aur, 25
epsilon Cas, 9
epsilon Cep, 13, 16
epsilon CMa, 7
epsilon CrB, 22
epsilon Cry, 22
epsilon Cyg, 21
epsilon Eri, 22
epsilon Gem, 25
epsilon Hya, 18
epsilon Leo, 25
epsilon Oph, 20
epsilon Peg, 25
epsilon Per, 7
epsilon Ser, 16
epsilon UMa, 14
epsilon Vir, 20
eta Boo, 18
eta Cas, 9
eta Cas A, 18
eta Cep, 21
eta CMa, 9
eta Cyg, 21
eta Dra, 20
eta Gem, 24
eta Her, 19
eta Leo, 10, 25
eta Oph, 12
eta Ori, 6, 7
eta Peg, 19
eta Ser, 21
eta Tau, 9
eta UMa, $6,8,9,27$
g UMa, 13
gamma Aql, 25
gamma Boo, 13
gamma Cap, 15
gamma Cas, 6
gamma Cep, 21
gamma Cyg, 25, 26
gamma Dra, 23
gamma Equ, 15
gamma Gem, 11
gamma Her, 13
gamma Hya, 19
gamma Leo, 21, 27
gamma Leo A, 21
gamma Lyr, 11
gamma Ori, 8
gamma Peg, 8
gamma Per, 26
gamma Ser, 17
gamma UMa, 11, 12
gamma UMi, 12
gamma Vir, 13
HD 165052, 5
HD 188209, 5
HD 218915, 5
HD 5005, 5
HR 5355, 15
iota Aur, 22
iota Cas, 15
iota Cep, 21
iota Dra, 22
iota Gem, 20
iota Her, 9
iota Lib, 14
iota Ori, 5
iota Peg, 17
iota Per, 18
iota Vir, 17
kappa Cas, 7
kappa Cet, 19
kappa Cyg, 20
kappa Gem, 20
kappa Hya, 9
kappa Lyr, 22
kappa Oph, 22
kappa Ori, 6
lambda And, 20
lambda Aur, 19
lambda Boo, 16
lambda Cep, 5
lambda Her, 22
lambda Hya, 21
lambda Ori A, 5
lambda Sco, 8
lambda Ser, 19
lambda UMa, 12
mu Cas, 19
mu Cep, 24, 25
mu Cnc, 19
mu Her, 19
mu Peg, 27
mu Per, 20
nu Cep, 25
nu Hya, 22
nu Oph, 21
omicron Leo, 26
omicron Per, 7
omicron UMa, 19
phi Cas, 25
phi Per, 6, 27
phi ${ }^{1}$ Ori, 6
pi Aur, 24
pi Cep, 19
pi Her, 22
pi Sco, 8
pi Sgr, 14
pi 3 Ori, 17
psi UMa, 22
rho Boo, 22
rho Cas, 24, 25
rho Leo, 7
rho Oph, 8
rho Pup, 16, 17
RW Cep, 24
S 222, 22
S 3582, 20
S 7259, 22
S Mon, 5
sigma Boo, 14
sigma Cyg, 25
sigma Dra, 21
sigma Ori, 6
sigma Sco, 7
sigma Sgr, 9
sigma 2 CMa, 9
sigma ${ }^{2}$ UMa, 17, 27
SU Per, 24
tau Boo, 17
tau Cet, 20
tau Her, 9
tau Sco, 6
tau UMa, 16
theta Aur, 14
theta Boo, 17
theta Dra, 18
theta Her, 21
theta Hya, 16
theta Oph, 8
theta UMa, 17
theta ${ }^{1}$ Ori C, 5
upsilon Peg, 18
upsilon UMa, 14
xi Boo A, 20
xi Cyg, 25
xi Gem, 17
xi Her, 19
xi Peg, 17
xi Per, 5
xi UMa, 18, 28
zeta Cap, 25
zeta Cas, 8
zeta Cyg, 20
zeta Dra, 10
zeta Her, 18
zeta Hya, 21
zeta Leo, 13, 16
zeta Lyr A, 16
zeta Lyr B, 16
zeta Oph, 6, 27
zeta Ori, 6
zeta Per, 7
zeta Pup, 5
zeta Ser, 14
zeta UMa, 16
zeta $\mathrm{UMa}(\mathrm{br}), 12$
zeta Vir, 12

[^0]: ${ }^{1}$ No emission lines visible on low-dispersion spectrograms. He II 4686 is much stronger than $\lambda 4650$.
 ${ }^{2}$ The H lines are abnormally broad in comparison to other absorption lines.
 ${ }^{3}$ Main-sequence star. Luminosity differences at O9 are shown by the following ratios: λ 4068: $\lambda 4089, \lambda$ 4387: λ 4541, and $\lambda 4650: \lambda 4686$.
 ${ }^{4} \mathrm{O}$-type supergiants.

[^1]: ${ }^{1}$ Pub. Dom. Ap. Obs.,I,365,1922.

[^2]: ${ }^{1}$ The He I lines are exceedingly broad-considerably broader than in such Bnn stars as $\eta \mathrm{UMa}$ and γ Cas. The lines are intermediate in width between η UMa and ϕ Per. The interstellar K line appears to be abnormally strong for the spectroscopic luminosity. The line He II 4686 is strong on low-dispersion plates taken especially to minimize the effect of the broad lines. The spectroscopic luminosity is similar to that of σ Ori.

[^3]: ${ }^{1}$ Spectrograms taken on January 6, 1941. No emission lines visible.
 ${ }^{2}$ The luminosity appears to be definitely lower than any other star in the table.

[^4]: * Corrected in transcription: original had $H e$ I .

[^5]: ${ }^{1}$ The $H e$ I lines are as strong as in other B2 stars and are considerably stronger than at class B5. The H lines are strong and broad; this has been taken to be an effect of low luminosity in a B2 spectrum rather than a reason for classifying the star as B5. The H lines are somewhat weaker than in η UMa (B3). All spectral lines are very broad.
 ${ }^{2}$ The star 9 Cep is a pronounced supergiant but spectroscopic evidence (λ 3995: $\lambda 4009, \lambda 4387: \lambda 4552$, intensity of H lines) indicates that it is definitely less luminous than χ^{2} Ori.

[^6]: ${ }^{1}$ The lines $H e$ I 4026 and 4471 are considerably weaker than in other B3 stars. The broad H wings observed for stars of luminosity class V are not seen.
 ${ }^{2} \mathrm{~A}$ very broad, faint K line has been observed on low-dispersion spectra of $\eta \mathrm{UMa}$. This line appears to be definitely stellar in origin.

[^7]: ${ }^{1}$ The hydrogen lines in δ Cygni have less pronounced wings than in the other stars listed. Dr. Kuiper has found that the measures of the visual system made during the last 30 years indicate a dynamical parallax of 0"013-0."018.

[^8]: ${ }^{1}$ The hydrogen lines are weaker in the spectrum of β Leo than in the other dwarfs listed.
 ${ }^{2}$ The hydrogen lines in γ UMi are narrower than in the other stars in the table; the broad wings associated with low luminosity are absent.
 ${ }^{3}$ The lines are very broad, and the classification is uncertain.
 ${ }^{4} \alpha$ PsA gives spectroscopic evidence of having the lowest luminosity of any star in the table.

[^9]: ${ }^{1}$ The spectral type is that of the integrated light of the two components.

[^10]: ${ }^{1}$ The absorption extending toward the violet from $\lambda 4215$ is faintly present.
 ${ }^{2}$ Integrated light of system.

[^11]: ${ }^{1}$ Considerably fainter spectroscopically than other dwarfs in table.
 ${ }^{2}$ The star appears to be definitely less luminous than μ Her.

[^12]: ${ }^{1}$ The luminosity criteria of this high-velocity star are conflicting. The ratio $\lambda 4071: \lambda 4077$ indicates a giant, while the $C N$ break at $\lambda 4215$ is is almost invisible, as in class IV-V.

[^13]: ${ }^{1}$ The spectrum indicates a lower luminosity than η Cep.
 ${ }^{2}$ Luminosity criteria are conflicting. From the ratio $\lambda 4063: \lambda 4077 \gamma$ Leo A would be judged more luminous than β Gem (class III), while the intensity of the $C N$ break at $\lambda 4215$ is less than in stars of class III. The double star γ Leo is a high-velocity system, and the spectral peculiarities are similar to those of the high-velocity stars α Boo and δ Lep.

[^14]: ${ }^{1}$ The spectral type is slightly earlier than the mean for class K2. The luminosity criteria are conflicting; from the intensity of $\lambda 4077$ relative to neighboring $F e$ lines a luminosity class of III or even slightly brighter would be obtained, while the $C N$ break at $\lambda 4215$ is considerably weaker than in other stars of class III. α Bootis is a high-velocity giant and the spectral peculiarities observed are similar to those in the case of the high-velocity giants δ Lep and Boss 2527.

[^15]: ${ }^{2}$ Ap.J.,95,461,1942.

[^16]: ${ }^{1}$ The H lines are slightly stronger than in β Ori.
 ${ }^{2}$ The line $S r$ II 4077 is very strong.
 ${ }^{3}$ The Mount Wilson spectral types of the M giants have been assumed.

