UCL spin-out Quantemol helps industries accelerate tech innovation

Specialist chemical modelling software developed at UCL is supporting innovations in technologies from spacecraft propulsion to telecommunications.

“We provide specialist software to companies whose technologies rely on complex chemical interactions taking place under exacting conditions, for example in the manufacture of silicon chips,” explains Professor Jonathan Tennyson (UCL Physics & Astronomy), chief scientist of Quantemol, the UCL spin-out he established in 2004 with Dr Daniel Brown (UCL Computer Science).

The company develops and licenses software tools that simulate what happens to atoms and molecules in their plasma phase – an unstable state that gases can reach under extreme heat or low pressure.

Informed by research at UCL, its products have been widely used by companies in the semiconductor industry. It is now helping customers in industries as diverse as medical devices and generating cheap energy through fusion.

The research is helping manufacturers gain a better understanding of quantum-level processes for molecules that are difficult to isolate and study experimentally.

“By reducing experimental trial and error, we are speeding up the innovation process, so that products reach the market more quickly,” adds Professor Tennyson.

Water-based technology helps fuel improvements in materials for car batteries

A ‘green’ technology developed at UCL is providing faster ways to discover new materials for more sustainable high-performance batteries that will help to increase the range of electric cars and reduce vehicle charging times.

Chemists at UCL have developed a high throughput chemical process to produce tiny metal oxide nanoparticles – a thousand times smaller than the width of a human hair. The technology can be used in several applications from batteries to healthcare products.

“Only a handful of similar hydrothermal flow process reactors like this are known in the world,” explains Professor Jawwad Darr (UCL Chemistry), Head of UCL’s Clean Materials Technology Group.

The flow reactors form nanomaterials by efficiently mixing superheated water (higher than 450 °C) with metal salts in a controlled way, without the need for toxic organic solvents.

Build resilient infrastructure, promote inclusive and sustainable industrialisation and foster innovation

Helping to achieve Target 9.4
Helping to achieve Target 9.4

“What's different about our system is we've patented a special mixing design called a 'confined jet mixer' that prevents the reactor from getting blocked as material is generated in the process,” explains Professor Darr. “As a flow process, it can be more easily scaled up and consistently makes very well-defined particles.”

This adaptation also speeds up nanoparticle production and means new materials can be made in larger quantities, speeding up its application in industrial production. “Our environmentally friendly technology is bridging the gap between laboratory discovery and industrial-scale production to accelerate sustainable innovation,” Professor Darr says.

Putting cement under the microscope to help improve its performance

Manufacture of cement worldwide accounts for approximately eight per cent of all human-produced carbon dioxide.

By understanding and changing how crystals form in cement, scientists are finding ways to reduce the impact of concrete on the environment. A research team at the UCL Centre for Nanotechnology is aiming to adjust the composition of cement so it can act as a carbon sink and offset some of the carbon dioxide produced during its manufacture, while maintaining its performance.

“An important component of cement manufacture called cement clinker is produced at a high temperature in a kiln,” explains Professor Ian Robinson (UCL Centre for Nanotechnology).

Taught modules at UCL supporting SDG9 in 2021–22

Source: PPMI, a partner in the UN AI Lab – more details in the methodology.
who is leading the research. By replacing this with appropriate amounts of industry by-products such as fly ash and granulated blast furnace slag, we are aiming to save energy and reduce CO₂ emissions.”

Using X-ray imaging, the researchers can check for irregularities and defects in the crystal structure that could affect the concrete’s performance. “If chemical reactions within the cement are suboptimal, the concrete weakens, which can end in disaster,” warns Professor Robinson. For example, adulterated cement contributed to the widespread collapse of buildings during the 1999 earthquake in Izmit, Turkey (pictured, right).

Helping to achieve Target 9.4
Helping to achieve Target 11.6
Helping to achieve Target 13.2

Number of UCL’s research publications supporting SDG9 by faculty in 2016–20

Graph based on keywords searches of publication databases using a set of SDG keywords developed by Elsevier. Read more about the methodology used on the SDGs Initiative website

25.9% of UCL’s SDG9-related publications are in the top 10% most cited for all research of similar papers in 2016–20

56.5% of UCL’s SDG9-related research publications are international collaborations, 2016–20

DISCOVER MORE
Read more on these activities and other examples of how UCL is helping to achieve SDG9 are on the UCL SDGs Initiative website.