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1 Introduction
The UK Climate Projections (UKCP) provide several products giving information about the future
climate of the UK, including projections at global (60km), regional (12km) and local (2.2km)
scales. While the regional projections are proving beneficial in understanding future climate risks
(for example, Kennedy-Asser et al., 2021; Arnell et al., 2021), these were derived by perturbing the
physical parameters of a single global climate model (GCM) and a single regional climate model
(RCM), and so may not sample the full range of possible futures that is consistent with current
scientific understanding. Project CR20-3 aims to complement the UKCP regional projections by
combining them with information from the EuroCORDEX ensemble (Jacob et al., 2014) at the
same resolution. This combined set will allow a better understanding of structural uncertainty in
UK climate projections (Murphy et al., 2019; Arnell et al., 2021) and substantially enhances the
information base available to support future climate change risk assessments.

A major contribution of the project has been to analyse and understand the EuroCORDEX outputs
(both the GCM and the RCM components) over the UK region, in particular comparing them
with the existing information from UKCP18. The results of this analysis are summarised in
Barnes et al. (2022a): they include evaluations of global and regional projections with respect
to historical observations, as well as descriptive summaries of future projections from the various
sources. These analyses provide a comprehensive overview which is useful both as a summary
of the information available, and to support the work of users who need qualitative climate
information to provide context for their planning and decision-making.

A key message from the previous analyses is that at specified future time points the ranges of
projections — and projected changes — can differ noticeably between ensembles, although the
extent of these differences depends on the quantity being considered. Some of the differences can
be resolved, to a greater or lesser degree, by considering changes over periods corresponding to
fixed thresholds of global mean temperature change in the driving GCMs (Barnes et al., 2022b,
Section 4): this ‘warming level’ approach has also been adopted in the IPCC’s Sixth Assessment
Report (Chen et al., 2021). In some respects however, such an approach addresses the symptom
rather than the cause of differences between ensemble members; and the focus on warming levels
is arguably unhelpful for users who typically need to plan for specified time frames e.g. relating
to the design lifetimes of infrastructure projects or to the cost of adaptation measures over a
specified planning horizon.

An alternative approach to resolving differences between ensembles is to postprocess their out-
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puts, in such a way as to produce information that is deemed more relevant for users according
to some criteria. Many approaches have been suggested for carrying out such postprocessing:
Brunner et al. (2020) provide a recent review, and Section 3 provides more details. Nonetheless,
the results of any such postprocessing exercise are inevitably subject to uncertainty; and few
existing techniques attempt to provide information that is suitable for use with formal frame-
works for decision-making under uncertainty (again, see Section 3). Indeed, decision-relevant
characterisation of uncertainty and risk has been identified as a key knowledge gap for the UK
Climate Resilience Programme under which the current project is funded.1 This report describes
a first step towards addressing this issue in the context of the UKCP18 and EuroCORDEX re-
gional ensembles, noting that decision-relevant risk assessment requires consideration of multiple
sources of uncertainty, and typically also requires an assessment of how, if at all, the ensemble
simulations relate to reality (e.g. Stainforth et al. 2007).

The UKCP18 and EuroCORDEX ensembles each sample some but not all sources of uncertainty:
in the work reported below, the omitted sources are handled by allowing for structured time-varying
discrepancies between the ensemble members and the real climate system. The relationships
between the ensemble simulations and reality are handled by extending the conceptual framework
of Chandler (2013), which was developed explicitly to address many of the issues highlighted by
Brunner et al. (2020). The extensions developed herein are twofold: the first is to move beyond a
simplified conceptual framework to an operational procedure for postprocessing ensembles of time
series, and the second is to handle structured ensembles in which the members are not necessarily
exchangeable (see Section 4). The extension to time series uses ideas that are very similar to
those proposed independently in the context of global temperature projections by Sansom et al.
(2021), albeit differing in the precise details and in the computational implementation which, here,
is designed to ensure that the methodology is suitable for routine application to large numbers
of series.

The results reported below are potentially relevant for users who need more than a qualitative as-
sessment of future UK climate, and who are comfortable with the use of probabilistic approaches
to the assessment of risk as reviewed by, for example, Economou et al. (2016). Nonetheless, the
results — particularly those relating to precipitation — should be regarded as a proof-of-concept
pending more experience with the methodology. In particular, at the current stage of develop-
ment the methodology only handles one quantity at a time (e.g. annual temperature, annual
precipitation, summer temperature, winter precipitation and so forth) and does not attempt to

1See, for example, https://www.ukri.org/what-we-offer/browse-our-areas-of-investment-and-support/
uk-climate-resilience-programme/ (accessed 28th November 2022).
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characterise relationships between different quantities.

The next section summarises the datasets used in this report. Section 3 provides a brief re-
view of approaches for postprocessing and combining information from ensembles of climate
projections; while Section 4 describes the methodological development (this section can be
skipped by readers who are more interested in the results). Section 5 reports the applica-
tion of the methodology to UK-averaged temperature and precipitation, both annually and
for each of the four seasons; while Section 6 concludes. Further temperature and precipita-
tion analyses, for the main administrative regions of the UK, can be found online at https:

//github-pages.ucl.ac.uk/eurocordex-uk-plots/. An R package (Chandler, 2023) has also
been developed, that can be used to apply the methodology to other series.

2 Data sources and processing
The analyses in this report focus on projections of annual and seasonal mean temperatures and
precipitation totals to the year 2080, derived from the UKCP18 and EuroCORDEX regional
ensembles under the RCP8.5 emissions scenario and averaged over the UK land surface. The
ensembles are supplemented by historical estimates of the corresponding quantities from 1950 to
2021, and by estimates of global net effective radiative forcing for the corresponding time periods.
Each of these datasets is now discussed in detail.

2.1 The UKCP18 regional ensemble

This is a twelve-member perturbed physics ensemble, produced using the HadREM3-GA7-05 re-
gional model driven by the HadGEM3-GC3.05 global model under the RCP8.5 emissions scenario.
Ensemble member 01 was run with the standard parameters for each model, and the remaining
ensemble members were each run with slightly different perturbations to the model physics (Mur-
phy et al., 2019). For each ensemble member, the same perturbations were used for the regional
as for the global model.

The regional ensemble outputs used here are on a daily time scale and are available for the
meteorological years 1980 through 2080 (i.e. from 1st December 1979 through 30th November
2080), at a spatial resolution of 12×12km2. UK-averaged annual and seasonal mean temperatures
and precipitation totals have been derived from each ensemble member by averaging over all UK
land surface grid cells and then aggregating the daily data over the relevant years or seasons.
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2.2 The EuroCORDEX ensemble

The subset of the EuroCORDEX ensemble used here contains 64 members, each produced using
one of ten different RCMs driven by one of ten different GCMs from Phase 5 of the Coupled
Model Intercomparison Project (CMIP5) experiment (Taylor et al., 2012). All runs use the RCP8.5
emissions scenario. The regional models include the unperturbed version of HadREM3-GA7-05
that was used to produce UKCP18 regional ensemble member 01 as noted above (Tucker et al.,
2021).

The EuroCORDEX simulations are run at a resolution of 0.11◦, with the exact spatial extent
varying according to the RCM used: all cover an area from approximately 27-72◦ N, and from
22◦ W-45◦ E (Jacob et al., 2014). The majority of GCM:RCM combinations contribute a single
run to the ensemble; a few contribute three runs, and some are missing. Most of the ‘missing’
combinations have not been run, but four were excluded deliberately from the analysis: three
because they are superseded in the ensemble by runs from later versions of the same RCMs driven
by the same GCMs, and one because it contains inconsistent metadata regarding the driving GCM.
More details are in Table 3 of Barnes et al. (2022a).

Like the UKCP18 ensemble, the EuroCORDEX outputs used here are on a daily time scale for
meteorological years 1980 through 2080. Each RCM produces outputs on its own grid: annual
and seasonal time series of UK-averaged temperature and precipitation have been obtained for
each ensemble member by averaging over its own set of UK land surface grid cells.

2.3 Estimates of observed climate

Estimates of historical UK-averaged temperature and precipitation are obtained from the HadUK-
Grid dataset, a collection of gridded climate variables over the UK land surface derived from
the observation network (Perry et al., 2009). Precipitation and daily maximum and minimum
temperatures are available at daily resolution from the end of the 19th century: daily mean
temperature is calculated as the mean of the daily maximum and minimum.

In the work reported below, annual and seasonal UK-averaged mean temperature and precipitation
have been calculated from this dataset for the meteorological years 1950 to 2021 inclusive.
Data prior to 1950 have not been used, in part because they are less reliable due to a sparser
station network. Other reasons for excluding these earlier data are (i) that they are relatively
uninformative about responses to changes in radiative forcing (because forcings were relatively
stable until the second half of the twentieth century — see Figure 2 below); and (ii) that their
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inclusion increases the computational cost of the subsequent analyses.

2.4 Estimates of radiative forcing

To force the driving GCM runs in both the UKCP18 and EuroCORDEX ensembles, estimates of
historical concentrations of greenhouse gases and other atmospheric forcing agents were used for
the period 1980–2005 while, from 2006 onwards, concentrations were taken from the RCP8.5
emissions scenario (Taylor et al., 2012; Myhre et al., 2013). The combined effect of the various
forcing agents can be summarised via an ‘effective radiative forcing’ (ERF) at a global scale
(Smith et al., 2020): the annual ERF series used in the RCP8.5 emissions scenario is available
from https://github.com/IPCC-WG1/Chapter-7/tree/main/data_output/RCPs, and is used in
the analyses below to constrain the statistical representation of trends in the various projections.

2.5 Preliminary data visualisation

Figure 1 shows the annual time series of UK-averaged temperature and precipitation from both
the UKCP18 and EuroCORDEX ensembles, together with the HadUK-Grid estimates (labelled as
‘observations’ in the figure). As far as temperature is concerned, both ensembles appear slightly
too cool during the period for which HadUK-Grid estimates are available: the ensemble means
generally lie below the observations. Subsequently however, the UKCP18 ensemble warms more
rapidly than does EuroCORDEX and, by 2080, the mean temperatures across the members of
the two ensembles differ by more than 1◦C.

Next considering total annual precipitation, both ensembles tend to overestimate on average
prior to 2020. Moreover, neither shows any obvious trend — in contrast with the HadUK-Grid
estimates which suggest that average precipitation has slightly increased between 1950 and 2020.
The ensembles’ absence of trend continues beyond 2020: neither projects any obvious change
over time, at least compared with the magnitude of interannual variation.

These points reflect features of the ensembles that are discussed in more depth in Barnes et al.
(2022a,b). For present purposes, the key points are that the ensembles differ on average in the
magnitude of projected future change, and that each ensemble’s members tend to share discrep-
ancies compared with the observations (e.g. the cool bias in temperatures, and the absence of
trend in precipitation). A further feature, that will be exploited in the subsequent methodological
development, is that the magnitude of interannual variability appears stable over time in both en-
sembles and for both variables. The same is true for each individual ensemble member, although
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Figure 1: Annual (meteorological year) time series of UK-averaged mean temperature and to-
tal precipitation, 1950–2080: HadUK observations, and simulations from UKCP18 and Euro-
CORDEX ensembles.

this is less easy to see for the EuroCORDEX ensemble due to the large number of members.

For completeness, Figure 2 shows the annual time series of effective radiative forcings (hence-
forth ERFs) corresponding to the ensemble projections. Downward spikes correspond to volcanic
eruptions. The forcings are plotted starting in 1900, to justify the earlier claim that they were
relatively stable in the first half of the twentieth century.

3 Combining climate projections: a brief review
As noted in Section 1, many approaches are available for postprocessing ensembles of climate
projections. The categorisation here is closely based on the review by Brunner et al. (2020).
Climate models are referred to as ‘simulators’ throughout, to avoid confusion with other types of
models.
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Figure 2: Annual time series of global effective radiative forcings underpinning the simulations
from both the UKCP18 and EuroCORDEX ensembles. Values to 2000 are historical estimates;
those from 2001 onwards correspond to the RCP8.5 scenario.

3.1 Overview of existing approaches

Perhaps the simplest and most widespread approach is to pool or average the ensemble members,
optionally attaching weights to individual simulators or ensemble members based on criteria such
as historical performance. This approach has long been criticised on both theoretical and empirical
grounds; see, for example, Knutti (2010), Kjellström and Giorgi (2010) and Chandler (2013). The
main problems are the potentially arbitrary choice of criteria for assigning weights; the absence of
any rigorous treatment of uncertainty; and the fact that no single simulator is uniformly ‘better’
than other so that any kind of simple averaging is guaranteed to be sub-optimal.

A second type of approach is based on methodology developed by the “detection and attribution”
community, which attempts to use an ensemble to identify space-time patterns in some climate
variable of interest that are associated with changes in external forcings; and to use historical ob-
servations to determine how these patterns should be scaled using what is essentially a regression
model (e.g. Allen et al. 2000; Stott and Kettleborough 2002; Kettleborough et al. 2007). The
approach is commonly known as the “ASK” (“Allen, Stott and Kettleborough”) methodology.
The underlying assumption is that the ensemble provides information on patterns of change, but
historical observations are needed to constrain the magnitudes of these patterns. The character-
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isation of these methods by Brunner et al. (2020) suggests that they are fundamentally heuristic
in nature, and notes that they rely on the ability to identify a forcing-related component of
(observed) historical change.

Generalisations of the ASK approach are often described as being based on “observational con-
straints” or “emergent constraints”. Hegerl et al. (2021) describe the idea as being to “rely on
statistical relationships between present day, observable, climate properties and the magnitude
of future change”, while Shiogama et al. (2016) assert the underlying premise that “if a GCM
overestimates the observed magnitude of historical climate change (not only the global mean
change, but also spatiotemporal patterns), such a GCM will overestimate future climate changes
by a proportional amount, and vice versa”. The preliminary analysis in Section 2.5 suggests that
this premise does not hold in the current context, for example because the historical biases in
simulated temperatures are offset by biases in warming rates. Williamson and Sansom (2019) also
note that the approach does not fully capture the uncertainty in climate projections, apart from
anything else because the underpinning assumptions (which are rarely investigated in detail) are
unrealistic: the weakest such assumption is that “there are no processes systematically missing
from the models, but present in reality, that might cause us to view the behavior of the real world
to be distinguishable from that of the models”. Again, the analysis in Section 2.5 shows that
this assumption does not hold: there are systematic differences between the properties of the
observed and modelled series. Williamson and Sansom (2019) propose to modify the approach
using an extended statistical model that allows for a shared discrepancy between each of the
simulators and the real climate system: indeed, this is a key requirement of any method that
seeks to provide credible uncertainty assessments, as discussed in more detail below.

A further difficulty with the emergent constraints methodology is that the observable properties
used to develop the required statistical relationships will, in general, differ depending on the
quantity of interest. For example, Williamson and Sansom (2019) examine the application of the
methodology to estimate the earth’s equilibrium climate sensitivity (the quantity of interest) based
on statistical relationships with a metric of global temperature variability (the observable property)
proposed by Cox et al. (2018): this metric will not necessarily be relevant when considering other
quantities of interest. This dependence on the quantity of interest suggests that the approach
may not be practical when bulk processing projections for many different quantities, as is required
to produce region-specific information to supplement the UKCP18 projections.

The third category of approach considered by Brunner et al. (2020) is based on Bayesian methods
— although their coverage of such methods is rather selective and omits many references that
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are relevant in the current context, such as as Tebaldi et al. (2005); Greene et al. (2006); Furrer
et al. (2007); Smith et al. (2009); Buser et al. (2009); Tebaldi and Sansó (2009); Buser et al.
(2010); Kang et al. (2012) and Rougier et al. (2013). In its most general formulation, a Bayesian
approach requires an explicit statistical characterisation of the structure of the ensemble outputs
and their relation to the real climate system, from which posterior probability distributions of
quantities of interest can be derived. The precise nature of the characterisation can vary widely,
however: for example, the UKCP18 probabilistic projections are based on a statistical emulator
that is designed to approximate the behaviour of a single simulator and is calibrated using a
perturbed physics ensemble (Sexton et al., 2012), while Qasmi and Ribes (2022) use a direct
statistical representation of the ensemble outputs themselves.2

It is also worth noting that there is nothing intrinsically Bayesian about developing an explicit
statistical characterisation of ensemble structure: however, the resulting characterisations are
typically too complex to be handled using conventional statistical methods and it is therefore
convenient to take advantage of modern Bayesian computational machinery such as Markov Chain
Monte Carlo (MCMC) methods (e.g. Robert and Casella 2011). A further advantage of Bayesian
approaches is that they allow external information — for example, regarding physical constraints
on quantities of interest — to be incorporated formally into an analysis and propagated into the
resulting uncertainty assessments. Williamson and Sansom (2019) provide a clear example of this
process.

The final category of methods considered by Brunner et al. (2020) is designed for single-model
ensembles, often designed to explore the effects of uncertainty in initial conditions. This is not
particularly relevant in the context of the EuroCORDEX and UKCP18 regional projections, and
hence is not considered further here.

3.2 Decision-relevant uncertainty assessments

The approach adopted in the present work is motivated primarily by the need to produce defensi-
ble uncertainty assessments that can be incorporated into formal frameworks for decision-making

2It is perhaps worth clarifying that recent usage of the term ‘emulator’ in the climate science literature differs
from its precise statistical meaning given, for example, by Goldstein and Rougier (2005). In statistical terms, an
emulator is a fast and (relatively) simple statistical model that aims to approximate the workings of a complex
computer simulator (as in Rougier and Sexton 2007 for example), whereas in the recent climate literature (e.g.
Jackson et al. 2022; Nicholls et al. 2022) the term is often used to denote any fast simplified statistical or physical
model. For the remainder of this report, the term will be used according to its precise statistical meaning: following
Chandler (2013), we use the term ‘mimic’ to refer to a statistical model that merely describes the structure of an
ensemble’s outputs instead of trying to emulate the workings of the simulators themselves.
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under uncertainty. Such frameworks require the specification of probability distributions for quan-
tities of interest, which are used in essence to make bets on the eventual outcome — the decision-
maker’s goal then being to minimise their expected loss (or maximise their expected gain), defined
as appropriate to the application. Economou et al. (2016) illustrate the main concepts, in the
context of a simplified example relating to uncertainties in hazard warning systems.

Seen from this perspective, the aim of an uncertainty analysis must be to provide probability
distributions for uncertain quantities of interest that are suitable for making bets. For example,
in the context of weather forecasting one could assemble a large number of instances when the
forecast probability of rain was 0.7: a necessary (but not sufficient) condition for the distributions
to be considered decision-relevant is that rain subsequently occurred in roughly 70% of these
instances. If this is not the case, the forecast probabilities clearly will not provide reliable estimates
of expected losses, and hence will not be suitable for use in formal decision-making frameworks.

When evaluating the performance of probabilistic weather forecasting systems, as in the exam-
ple above the forecasts can be evaluated by comparing with the outcomes that subsequently
materialised. When considering ensembles of climate projections however, this is not possible:
projections are typically made over decadal time periods, so it will be decades before such eval-
uations projections can be made. In this setting therefore, there are limited opportunities to
demonstrate that uncertainty assessments are fit for purpose. A necessary condition for this is
that they are based on defensible and transparent judgements; Section 6 discusses some other
possibilities. From this perspective, it is critical to account for ensemble structure — in particular,
for relationships among the ensemble members, and between the ensemble and the real climate
system. This is not the case for many of the non-Bayesian approaches reviewed above, which
perhaps focus more on the underlying physical processes. By contrast, the approach developed
below has the ensemble structure at its core, with the physical processes informing the detailed
implementation.

The importance of ensemble structure for uncertainty assessments may not be immediately ob-
vious. Perhaps the simplest demonstration arises in introductory statistics courses: when testing
for differences between the means of two groups of observations, if the data are paired then
the analysis must acknowledge that each pair of observations shares a common component of
variation — for example, by using a paired t-test instead of the usual two-group t-test — in order
to obtain correct standard errors that are fundamental to the subsequent inference. In the same
way, there are shared components of variation in any ensemble of climate simulator outputs, and
these must be considered in any attempt to provide decision-relevant uncertainty assessments.
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3.3 Shared discrepancies and ensemble structure

As hinted above, Bayesian approaches are natural candidates for use in situations requiring prob-
abilistic uncertainty assessments accounting for the structure of the available data. To set the
scene for the detailed development in Section 4, it is helpful to introduce the key challenges when
analysing ensembles of projections from multiple climate simulators, and to outline a generic
conceptual framework for addressing these challenges. The description here is based on Chandler
(2013): several of the other Bayesian references above are similar in spirit.

The starting point is the observation that climate projections do not attempt to predict the
detailed day-to-day sequence of weather: rather, they are intended to provide information on the
statistical properties of the climate system at time scales of decades and upwards (e.g. von Storch
and Zwiers 1999, Section 7.1). Leith and Chandler (2010) noted that ‘statistical properties’ of
any system can be regarded as parameters in a statistical model, subsequently referred to as a
mimic in the vocabulary of Chandler (2013); and, moreover, that ensembles of projections are
produced by climate simulators that, in broad terms, represent the same dynamical processes so
that the ensemble members should have a similar statistical structure. This in turn implies that
when focusing on a specific quantity such as annual mean temperature for a particular region,
the form of the mimics used to summarise the structure of each ensemble member should be
similar; but that differences between members will be reflected predominantly in the values of
their statistical model parameters — referred to as descriptors.

When analysing the outputs from any ensemble of M (say) projections, as in Section 2 the
ensemble outputs typically span a time period that allows comparison with historical observations
of the real climate system. The ensemble outputs can be represented as vectors Y1, . . . ,YM , each
corresponding to one member; and the corresponding observations by Y0. The ensemble members
will include information relating to both historical and future periods but, by definition, Y0 can
only include historical information. The corresponding descriptors for the various information
sources are denoted by vectors θ0,θ1, . . . ,θM . Framed in this way, the goal of analysing the
available information is to use the available data Y0,Y1, . . . ,YM to learn about the real-climate
descriptor θ0 — in particular, about any components of θ0 relating to future climate for which
no observations are (yet) available.

As noted above while discussing approaches based on emergent constraints, a key feature of al-
most all ensembles is the potential presence of shared discrepancies between the properties of the
simulators and those of the real climate. These arise for several reasons, including the omission of
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processes from the simulators and the sharing of information between climate modelling groups;
and their existence has long been acknowledged (Knutti et al., 2010) as well as being visible in
some of the plots from Section 2.5. Chandler (2013) considers the situation where the descriptors
θ1, . . . ,θM share a single common discrepancy ω compared with the real climate system, repre-
sented in the statistical framework by specifying the conditional expectation E (θi|θ0) = θ0 + ω

for i = 1, . . . , M . In this case an explicit expression can be derived for the posterior distribution
of θ0 in a Bayesian framework, using other judgements about the deviations of each individual
simulator descriptor from its consensus, and about the behaviour of the shared discrepancy itself.

In the present setting, there are two fundamental differences compared with the framework out-
lined in Chandler (2013). The first is that it is hard to capture the structure of the nonlinear trends
in projections such as those shown in Section 2.5 over long time periods, using a low-dimensional
descriptor vector θ (both Leith and Chandler 2010 and Chandler 2013 considered fixed 30-year
time slices instead of continuous series), while the second is the application to structured regional
ensembles in which some members share the same GCM while others share the same RCM, ne-
cessitating an extension to the notion of a ‘single common discrepancy’ ω. Our approach to the
first issue is to use a flexible state-space time series model formulation for the mimic in which —
as in Sansom et al. (2021) — the underlying trend is considered as a realisation of a stochastic
process and estimated using the Kalman Smoother (Chandler and Scott, 2011, Section 5.5). For
the second, we rewrite the basic framework in a form that is better suited to the analysis of
structured ensembles. The next section provides the technical details.

4 Mimics for annual time series
This section develops mimics that are appropriate for the analysis of ensembles of climate pro-
jections where the outputs of interest are time series at an annual resolution. These could be
annual precipitation totals or temperature means as in Section 2.5; or, alternatively, time series of
seasonal totals or means (e.g. the time series of winter precipitation totals). In the first instance,
a mimic structure is developed for the real climate system; frameworks for the analysis of both
simple and structured ensembles are described subsequently.

4.1 A mimic for the real climate system

Let Y0(t) denote the value of some quantity of interest — such as UK-averaged temperature —
in the real climate system for year t. A simple representation of the structure of the series (Y0(t))
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is

Y0(t) = µ0(t) + ε0(t) , (1)

where µ0(·) represents a smooth trend and (ε0(t)) is a series of ‘irregular’ variations about that
trend. In the first instance, it is convenient to specify that the (ε0(t)) are mutually independent
random variables, each with expectation and common variance σ2

0. Inspection of Figure 1 suggests
that the magnitude of year-on-year variation in observed temperature and precipitation does
indeed seem fairly constant over the period for which observations are available, so that the
constant variance assumption initially seems reasonable. The assumption of independence is
harder to judge from the plots: this will be checked later.

To complete the mimic specification it is necessary to specify a form for the trend µ0(·) which
is, at least in part, a response to greenhouse gas emissions and other forcings. It is therefore of
interest to relate the trend to the ERF time series shown in Figure 2. It is, of course, unlikely
that there will be a direct relationship between regional UK trends and this ERF series which, in
addition to representing emissions at a global rather than regional scale, aggregates over multiple
chemical species arising from both natural and anthropogenic sources. The aim of incorporating
the ERF information is therefore not to provide a detailed representation of regional response to
complex combinations of forcings: rather, it is to provide plausible constraints on the structure
of trends in the regional climate response. To achieve this, we use simple energy balance models
(EBMs) as a guide — in a similar spirit to that of Qasmi and Ribes (2022) who used EBMs to
represent both local and global temperature responses to natural forcings in a related context
(but using a fundamentally different methodology from that considered here).

The simplest EBM is a zero-dimensional representation of an aquaplanet experiencing small
perturbations about an equilibrium level: this model is described (e.g. Bates 2007) via the linear
first-order differential equation

c0
dT

dt
= −bT (t) + f(t) , (2)

where f(t) represents the forcing perturbation at time t and T (t) is the corresponding perturbation
about the equilibrium global temperature; c0 and b are parameters representing the physical
characteristics of the system. The solution of (2), for t ≥ 0, is

T (t) = T (0)e−κt + c−1
0

∫ t

0
f(t − u)e−κudu , (3)

where the “characteristic decay rate” κ is equal to b/c0. Bates (2007) also describes a more
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sophisticated version of the model in which energy is transported between ‘tropical’ and ‘polar’
latitudinal zones: in this more complex model, the solution involves two exponential terms with
different decay rates. Similarly, Geoffroy et al. (2013) study a model with two layers (‘atmosphere’
and ‘ocean’) and find that the time series of global surface temperature has a similar form involving
two exponential terms (see their equations B8 and B9): the underlying differential equations for
their layers are similar to (2). Analytical solutions to other EBM variants (e.g. Hansen et al. 1981,
who consider a single-layer one-dimensional model in which the earth is divided into latitudinal
bands) have not been published, but the models are all essentially systems of equations similar to
(2) and have solutions that can be expressed as combinations of exponentially-weighted integrals
of past and present forcings: these integrals represent the effects of thermal inertia within each
compartment of the system.

In view of the similarities between EBM solutions for both global and ‘regional’ (e.g. zonal
bands) temperature responses, expressions such as (2) and (3) may provide a useful guide to
the relationship between ERF and regional temperature trends — and, possibly, also to trends
in other variables such as precipitation, although the justification in this case is less clear. It
would, of course, be naïve to suggest that these expressions could be used directly to model the
temperatures or precipitation directly: apart from anything else, if the forcing series is smooth
then the solution to a differential equation such as (2) will also be a smooth curve with no
irregular year-on-year variation. The trend µ0(·) will be smooth in this situation, however: hence
this particular issue is resolved by considering the EBM solution merely as providing guidance on
the form of the trend rather than the detailed structure of the climate variable(s) of interest.

A further complication is that EBMs treat time as a continuous quantity whereas the present
analysis focuses on discrete annual series. To address this, we replace derivatives and integrals
with differences and sums respectively. The resulting analogue of (2) is

c0 (µ0(t) − µ0(t − 1)) = bµ0(t − 1) + f(t)

where now f(t) represents the forcing at time t. Rearranging and reparameterising, this can be
written as

µ0(t) = ϕ0µ0(t − 1) + γ0f(t) ,

where ϕ0 = 1 − b/c0 is related to the inertia of the system and γ0 = 1/c0 can be interpreted as
an instantaneous response to the forcing.

Finally, noting that the connection with EBMs is perhaps best regarded as a metaphor to find an
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approximate representation of the trend, one might allow for systematic deviation, or ‘drift’ away
from this relationship over time, by including an additional time-varying term:

µ0(t) = ϕ0µ0(t − 1) + γ0f(t) + β0(t − 1) . (4)

Several options are available to represent the drift process (β0(·)): the approach taken here is to
represent it as a random walk

β0(t) = β0(t − 1) + Z0(t) , (5)

where (Z0(t)) is a sequence of independent zero-mean random variables with mean zero and
variance τ 2

0 . The rationale for this is that a random walk has the flexibility to move arbitrarily
far from its starting point over long enough time intervals (Chandler and Scott, 2011, Section
5.2), so that its inclusion in (5) allows the mimic to adapt to whatever trend is indicated by the
data if this is not consistent with the trajectory suggested by the EBM. On the other hand, if the
random walk variance τ 2

0 is very small then the drift process β0(·) will itself change very slowly
over time: this will be appropriate if the EBM-inspired trend structure provides a good fit to the
observations.

It can be shown (see Appendix A1) that under (4) and (5), the trend µ0(t) can be written as

µ0(t) = ϕt
0µ0(0) + γ0

t−1∑
u=0

ϕu
0f(t − u) + J0(t) , (6)

where (J0(t)) has a complex structure induced by the drift process β0(·). The analogue with the
continuous-time result (3) is clear if ϕ0 is restricted to be strictly positive, in which case we can
write ϕ0 = exp (−κ) so that (6) becomes e−κtµ0(0) + γ0

∑t−1
u=0 e−κuf(t − u) + J0(t).

4.1.1 Parameter estimation

The mimic defined by equations (1), (4) and (5) contains three unknown parameters: σ2
0, τ 2

0 and
ϕ0, which collectively form the descriptor vector θ0 for the real climate series (note that γ does not
appear in the descriptor vector, for reasons explained below). Given data {Y (1), Y (2), . . . , Y (T )}
(which may include missing values — if, for example, T represents a time in the future for which
projections are required), this descriptor vector can be estimated using a likelihood function con-
structed under the assumption that the (εt) and (Zt) in (1) and (5) are normally distributed. The
likelihood is constructed by writing the mimic as a dynamic linear model (DLM) in state space form
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and using the Kalman Filter: the general procedure is described in Durbin and Koopman (2012,
Chapter 7). The state space formulation involves the state vector S0(t) = (µ0(t) β0(t) γ0)′ so
that Y0(t) = (1 0 0)S0(t) + ε0(t) and

S0(t) =


ϕ0 1 f(t)
0 1 0
0 0 1

S0(t − 1) +


0

Z0(t)
0

 . (7)

Note that γ appears here as part of the state vector: this may seem unnatural, but is needed to
exploit the flexibility offered by the state space formulation. The transition matrix contains the
forcing series f(t) and hence is time-varying. This is handled straightforwardly by most software
implementations of the Kalman Filter and Smoother, including the dlm library in R (Petris, 2010)
which is used to produce the results reported below.3

To estimate the parameters using the likelihood function, the most natural approach is to find
the maximum likelihood estimators (MLEs). The maximisation must be done numerically. We
maximise over the transformed descriptor vector (log σ2

0 log τ 2
0 log [ϕ0/ (1 − ϕ0)])′ to ensure that

the variance estimates are non-negative and that the estimate of ϕ0 lies within its meaningful
range of (0, 1); this transformation also improves the accuracy of quadratic approximations to
the log-likelihood that are used in the subsequent assessment of uncertainty (Section 4.4). The
transformation does, however, cause potential convergence problems in situations where the data
suggest that one or more variances are very small: such situations are not unusual. This issue
is also reported by Petris (2010), and is caused by the log-likelihood being very flat for large
negative values of the log variances where the variances themselves are all very close to zero.

To address this ‘flat likelihood’ problem, instead of maximising the log-likelihood itself we max-
imise a penalised version, where the penalty is a sum of quadratic functions of log σ2

0, log τ 2
0 and

log [ϕ0/ (1 − ϕ0)]. The penalty is chosen to be small enough to have minimal effect except in
regions of the parameter space where the log-likelihood is flat: in these regions, it induces a small
amount of curvature. This procedure can be formalised by noting that any such quadratic penalty
can be regarded (up to additive constants that do not depend on the parameters of interest) as a
sum of logarithms of Gaussian probability density functions (pdfs). The penalised log-likelihood
function can therefore be regarded as the logarithm of a Bayesian posterior density, where the
individual Gaussian pdfs are taken as independent prior distributions for the transformed descrip-

3At the time of writing, there is an unresolved memory leak in the underlying C code for one of the key routines
in the latest version (1.1-6) of the dlm library. This has been brought to the attention of the package author;
until it is resolved, a corrected version can be obtained from Richard Chandler at r.chandler@ucl.ac.uk.
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tor elements (this follows from the usual ‘posterior ∝ prior × likelihood’ formula, which becomes
‘log posterior = log prior + log-likelihood + constant’ on taking logs). Maximisation of the
log posterior is therefore equivalent to finding the posterior mode, and yields the maximum a
posteriori (MAP) estimator of the descriptor vector — which also forms the basis of the Laplace
approximation to a full Bayesian analysis (e.g. Kass and Raftery 1995). For the maximisation, we
use the nlm() routine in R (R Core Team, 2022); the choice of prior parameters is summarised
in Appendix A2, while the setting of initial values for the optimisation algorithm is discussed in
Appendix A3.

After estimating the descriptor vector, a time series of standardised residuals can be calculated
(see Chandler and Scott 2011, Section 5.5.4) and used to check the mimic structure. Figure
3 shows the time series and autocorrelation functions for standardised residuals from the mimic
fitted to the observations shown in Figure 1. These provide checks: first, that the mimic structure
captures the trend in the original series (no long-term trend is discernible in the residual time
series); second, that the assumption of constant variance is reasonable; and finally that the
irregular series (ε0 (t)) does indeed appear to be uncorrelated, as evidenced by the fact that at
lags of a year and above the residual autocorrelations lie mostly within the 95% limits indicated
by the dashed lines.

4.1.2 Trend estimation and future projections

Having estimated the descriptor vector for the mimic, the Kalman Smoother can be used to
estimate the underlying trend {µ0(1), µ0(2), . . . , µ0(T )} and associated uncertainties. Prediction
intervals can also be formed for the quantities of interest themselves (i.e. the (Y0 (t))), using
equation (1) to infer that if µ̂0(t) denotes the Kalman smoothed estimate of µ0(t) then

Y0(t) = µ0(t) + ε0(t) = µ̂0(t) − (µ̂0(t) − µ0(t)) + ε0(t) .

It follows that the variance of Y0(t) − µ̂0(t) is equal to Var [µ̂0(t) − µ0(t)] + Var [ε0 (t)]. The first
of these two variances is provided directly from the output of the Kalman Smoother, while the
second is σ2

0.

If the (ε0 (t)) can be considered as normally distributed, then a 95% prediction interval for Y0(t)
is µ̂0(t) ± 1.96

√
Var [Y0(t) − µ̂0 (t)] — this is often the case for annual mean temperatures, and

may also hold approximately for annual and seasonal total precipitation, although the lower limit
of the interval is not guaranteed to be positive. For this reason, to construct a prediction interval
for a precipitation total Y0(t) we use the 2.5th and 97.5th percentiles of a gamma distribution
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Figure 3: Analysis of standardised residuals from EBM-inspired mimic fitted to observations of
UK-averaged annual mean temperature and total precipitation, from 1950 to 2020. Top: residual
time series, bottom: residual autocorrelation functions. Dashed lines in the top plots are at
zero; those in the bottom plots define approximate 95% limits under the assumption that the
underlying autocorrelations are zero.

with expectation µ̂0(t) and variance Var [Y0(t) − µ̂0 (t)].4

Figure 4 shows the projections and prediction intervals for UK-averaged annual temperature and
precipitation, obtained from this mimic fitted to the observations. It is premature to comment
on these projections in detail, because they involve a substantial amount of extrapolation based
on data to 2020. Nonetheless, it is notable that the future projections are reasonably tightly
constrained: this presumably reflects the fact that past changes are closely related to the forcing
series shown in Figure 2. It is noteworthy that the estimated temperature trend dips briefly in
the early 1960s and again in the early 1990s: these dips coincide with relatively cool observed
temperatures, and are associated with volcanically-induced reductions in ERF.

Of course, this close relationship between forcings and trends may change in the future: no purely
statistical analysis based on the observations alone could detect this. However, the ensembles

4An alternative strategy for non-negative variables such as precipitation would be to work on a log scale;
however, the physical justification for this is unclear.
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Figure 4: Projections of UK-averaged annual mean temperature and total precipitation, based
on EBM-inspired mimic fitted to observations from 1950 to 2020.

do provide information about potential future trends: the next step is therefore to specify cor-
responding mimics for the ensemble members and to link their descriptors to that of the real
climate system.

4.2 Mimics for exchangeable ensembles

The simplest ensemble structure arises when all members are exchangeable: formally this means
that the statistical representation of the ensemble structure would not change if the labels of the
individual members were permuted (e.g. Williamson and Sansom 2019). Exchangeability is a
reasonable assumption for the UKCP18 regional ensemble since, as described in Section 2.1, all
members are produced using variants of the same GCM-RCM pair.

For an exchangeable ensemble with M members, let (Yi(t)) denote the output time series from
the ith member. The EBM-inspired mimic defined by (1), (4) and (5) can be applied to each
of the ensemble members, which have their own descriptor vectors, as well as their own drift
processes and values of γ. Thus we have

Yi(t) = µi(t) + εi(t) ; E (εi(t)) = 0, Var [εi(t)] = σ2
i ; (8)

µi(t) = ϕiµi(t − 1) + γif(t) + βi(t − 1) ; (9)
and βi(t) = βi(t − 1) + Zi(t) ; E (Zi(t)) = 0, Var [Zi(t)] = τ 2

i , (10)

where (εi(·)) and (Zi(·)) are uncorrelated sequences.

The processes (µi) and (βi(·)) are not independent of each other, due to the potential for shared
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discrepancies between the ensemble members and reality. The structure of these processes is
entirely determined by the forcings, the process (Zi (t)), the descriptor vector and the value of
γi: shared discrepancies thus imply dependence among the {Zi(t) : i = 1, . . . , M}.

To account for the discrepancies, start by writing µi(t) = µω(t)+ µ̃i(t) and βi(t) = βω(t)+ β̃i(t),
say. The shared components µω(·) and βω(·) are referred to below as the ‘consensus trend’
and ‘consensus drift’ respectively. Here and throughout, the tilde notation ·̃ denotes quantities
that relate to discrepancies, either between individual ensemble members and the consensus or
between the consensus and reality: these discrepancies are mutually independent of each other,
and of (µ0 (·)) and (β0 (·)).

The next step is to use the mimic structure (8)–(10) to determine the dynamics of the components
(µω(·)), (µ̃i(·)), (βω(·)) and

(
β̃i(·)

)
; and to relate the consensus components to their real-world

counterparts (µ0(·)) and (β0(·)). It is easiest to start with the drift terms (βω(·)) and
(
β̃i(·)

)
,

which contribute to the trend components but are otherwise not affected by them.

4.2.1 The drift terms (βω(·)) and
(
β̃i(·)

)
Consider the drift increment ∇βi(t) := βi(t)−βi(t−1) which, from (10), is equal to Zi(t). With
βi(t) = βω(t) + β̃i(t), we also have ∇βi(t) = ∇βω(t) + ∇β̃i(t); hence ∇βω(t) + ∇β̃i(t) = Zi(t).
To ensure that (Zi(·)) is an uncorrelated sequence as in (10), (∇βω(·)) and

(
∇β̃i(·)

)
are also

specified as uncorrelated sequences so that (βω(·)) and
(
β̃i(·)

)
are themselves random walks:

βω(t) = βω(t − 1) + Zω(t) and β̃i(t) = β̃i(t − 1) + Z̃i(t) say, with E (Zω (t)) = E
(
Z̃i (t)

)
= 0,

Var [Zω (t)] = τ 2
ω and Var

[
Z̃i (t)

]
= τ̃ 2

i .

Next, consider the relationship between the consensus drift process (βω(·)) and its real-world
counterpart (β0(·)). It is tempting to write βω(t) = β0(t) + β̃ω(t), so that βi(t) = β0(t) +
β̃ω(t)+ β̃i(t) and Zi(t) = ∇βi(t) = ∇β0(t)+∇β̃ω(t)+∇β̃i(t) = Z0(t)+ Z̃ω(t)+ Z̃i(t);

(
Z̃ω (·)

)
here is an uncorrelated process with E

(
Z̃ω(t)

)
= 0 and Var

[
Z̃ω(t)

]
= τ̃ 2

ω. Considering the
variances of both sides of this expression, it follows that Var (Zi (t)) := τ 2

i = τ 2
0 + τ̃ 2

ω + τ̃ 2
i , which

cannot be less than τ 2
0 = Var [Z0 (t)]. Under this specification therefore, no ensemble member

can drift away from its EBM approximation more slowly than does the real climate. It is hard to
justify such a constraint: to remove it, the drift consensus is redefined as

βω(t) = αβ0(t) + β̃ω(t) (11)

for some α ∈ R. In this case, the increment variance for the ith ensemble member is τ 2
i = α2τ 2

0 +
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τ̃ 2
ω + τ̃ 2

i , which can be less than τ 2
0 if |α| < 1. Moreover, Zi(t) is partitioned as αZ0(t) + Z̃ω(t) +

Z̃i(t): the common component Z̃ω(t) induces the required dependence among the ensemble
members.

The implications for the mimic specification (8)–(10) are: first, that βi(t − 1) must be replaced
with β0(t − 1) + αβ̃ω(t − 1) + β̃i(t − 1) in (9); and second, that (10) must be replaced with

β̃ω(t) = β̃ω(t − 1) + Z̃ω(t) ; E
(
Z̃ω(t)

)
= 0, Var

[
Z̃ω(t)

]
= τ̃ 2

ω , (12)

and β̃i(t) = β̃i(t − 1) + Z̃i(t) ; E
(
Z̃i(t)

)
= 0, Var

[
Z̃i(t)

]
= τ̃ 2

i . (13)

With this structure, information from the ensemble feeds back into the post-processed projections
primarily via the drift terms

{
β̃i (·) : i = 1, . . . , M

}
, although the interdependence between all

elements of the state vector ensures that this information also influences other elements to some
degree. Informally, if the ensemble projections provide evidence that the trends {µi (·)} may start
to move away from the EBM approximation in the future, then this will be attributed to the drift
processes {βi(·) = αβ0(·) + β̃ω(·) + β̃i(·)}. If for the sake of argument, τ̃ 2

ω and τ̃ 2
i were both

zero then β̃ω(·) and β̃i(·) would both be time-invariant: any future change in the drift would be
attributed to the process β0(·) therefore, thus influencing the future projections of the real-world
trend µ0(·). Conversely, if τ 2

0 is very small — suggesting that the real-world trend follows the
EBM approximation very closely — then the ensemble will contribute little additional information.

4.2.2 The trend terms (µω(·)) and (µ̃i(·))

We now examine the implications of the above results for the trend dynamics in (9). As noted
already, the evolution of (µi (·)) is completely determined by other quantities: without loss of
generality therefore, and for consistency with the development above, we define µ̃ω(t) := µω(t)−
αµ0(t) so that µω(t) = αµ0(t) + µ̃ω(t) and µi(t) = αµ0(t) + µ̃ω(t) + µ̃i(t). We also write
γi = αγ0 + γ̃ω + γ̃i and ϕi = ϕω + ϕ̃i (note that there is no need to relate ϕi directly to ϕ0

because, as an element of the descriptor vector, it is not stochastic in nature).

With this notation, (9) becomes

αµ0(t) + µ̃ω(t) + µ̃i(t) =
(
ϕω + ϕ̃i

)
[αµ0(t − 1) + µ̃ω(t − 1) + µ̃i(t − 1)]

+ (αγ0 + γ̃ω + γ̃i) f(t) + αβ0(t − 1) + β̃ω(t − 1) + β̃i(t − 1) .

Clearly, any term on the right-hand side of this expression that varies between ensemble members
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(i.e. with an ‘i’ subscript) is associated with the dynamics of µ̃i(t); the remaining terms are most
naturally associated with the consensus trend µω(t) = αµ0(t) + µ̃ω(t). We can therefore write

µ̃i(t) = ϕ̃i [αµ0(t − 1) + µ̃ω(t − 1)] +
(
ϕω + ϕ̃i

)
µ̃i(t − 1) + γ̃if(t) + β̃i(t − 1) (14)

for 1 ≤ i ≤ M ; while the consensus can be written as

αµ0(t) + µ̃ω(t) = ϕω [αµ0(t − 1) + µ̃ω(t − 1)]

+ (αγ0 + γ̃ω) f(t) + αβ0(t − 1) + β̃ω(t − 1)

= α [ϕωµ0(t − 1) + γ0f(t) + β0(t − 1)]

+ϕωµ̃ω(t − 1) + γ̃ωf(t) + β̃ω(t − 1)

= α [ϕ0µ0(t − 1) + γ0f(t) + β0(t − 1)] + α (ϕω − ϕ0) µ0(t − 1)

+ϕωµ̃ω(t − 1) + γ̃ωf(t) + β̃ω(t − 1)

= αµ0(t) + α (ϕω − ϕ0) µ0(t − 1) + ϕωµ̃ω(t − 1) + γ̃ωf(t) + β̃ω(t − 1) ,

the last step using the definition of µ0(t) at (4). It follows immediately that

µ̃ω(t) = α (ϕω − ϕ0) µ0(t − 1) + ϕωµ̃ω(t − 1) + γ̃ωf(t) + β̃ω(t − 1) . (15)

4.2.3 Simplifying the structure

The representation above involves a large number of descriptors: σ2
0, τ 2

0 , ϕ0, α, τ̃ 2
ω, ϕω and{(

σ2
i , τ̃ 2

i , ϕ̃i

)
: i = 1, . . . , M

}
. Numerical maximisation of a log-likelihood or log-posterior with

respect to such a large descriptor set is likely to be difficult. The analysis can be simplified
considerably if the ensemble members are considered to have common expected interannual
variability σ2

1, common drift increment discrepancy variance τ̃ 2
1 and common inertia coefficient

ϕ1. This reduces the total number of parameters to eight, and corresponds to a judgement that
the ensemble members are strictly exchangeable.

A side-effect of setting common inertia coefficients {ϕi = ϕ1} is that there are no member-specific
discrepancies: ϕi = ϕ1 = ϕω, and ϕ̃i = 0 for i = 1, . . . , M . In this case, on the right-hand side
of (14) the first term vanishes to yield

µ̃i(t) = ϕ1µ̃i(t − 1) + γ̃if(t) + β̃i(t − 1) . (16)
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Note that there is little gain in terms of computational stability from restricting the {γi} in this
way, because they can be estimated straightforwardly using the Kalman Smoother. However,
if ϕ1 ̸= ϕ0 then the ensemble forcing coefficients {γi : i = 1, . . . , M} no longer have the same
interpretation as the observation-derived coefficient γ0 because they represent the effects of
different weighted averages of current and previous forcings (see equation (6)). These forcing
coefficients should therefore be interpreted with care, if at all.

4.2.4 Identifiability

A difficulty with the representation above is that the combined data structure is represented via
(M + 2) underlying trends µ0(·), µ̃ω(·) and µ̃1(·) to µ̃M(·), whereas the available data contain
just M + 1 series. The trends are not uniquely defined, therefore. For example, the trend for
the ith ensemble member is µ0(·) + µ̃ω(·) + µ̃i(·): this trend is unaffected by replacing µ̃ω(·) and
µ̃i(·) with µ̃ω(·) + K and µ̃i(·) − K respectively, for any constant K.

This non-identifiability can be resolved by imposing an appropriate constraint on the trends: we
choose the constraint ∑M

i=1 µ̃i(t) = 0 so that µ̃M(t) = − ∑M−1
i=1 µ̃i(t) for all t. This ‘sum-to-

zero’ constraint ensures that the consensus trend µω(·) = µ0(·) + µ̃ω(·) has an interpretation
as an ‘ensemble average’: similar approaches are adopted routinely in analyses of variance e.g.
Davison (2003, Section 9.2.2), and in the construction of generalised additive models (Wood,
2006, Chapter 5).

From equation (16), a sum-to-zero constraint on the {µ̃i(·) : i = 1, . . . , M} implies correspond-
ing constraints on the {γ̃i} and on the drift discrepancy processes

{
β̃i(·) : i = 1, . . . , M

}
: if∑M

i=1 µ̃i(t) = 0 and ∑M
i=1 µ̃i(t−1) = 0 then we must also have ∑M

i=1 γ̃i = 0 and ∑M
i=1 β̃i(t−1) = 0.

The first of these conditions is easily handled by setting γ̃M = − ∑M−1
i=1 γ̃i. The second needs

more care.

From (13), the constraint ∑M
i=1 β̃i(t − 1) = 0 implies in turn that ∑M

i=1 Z̃i(t) = 0. A naïve
way to achieve this is to set Z̃M(t) = − ∑M−1

i=1 Z̃i(t): under this specification however, we have
Var

(
Z̃M(t)

)
= ∑M−1

i=1 τ̃ 2
i , which is equal to (M − 1)τ 2

1 under the assumption of exchangeability
between the first M − 1 ensemble members. But this implies that the Mth ensemble member is
not exchangeable with the others — which, since the labelling is arbitrary, is unsatisfactory.

A preferable alternative is to condition probabilistically on the constraint. Specifically, let Z̃·(t) =∑M
i=1 Z̃i(t) and consider the vector

Z̃∗(t) =
(
Z̃1(t) Z̃2(t) . . . Z̃M(t) Z̃·(t)

)′
, (17)

26



which, under the assumption of a common drift discrepancy variance τ̃ 2
1 for all ensemble members,

has mean vector 0 and covariance matrix

Var
(
Z̃∗(t)

)
=



τ̃ 2
1 0 · · · 0 τ̃ 2

1

0 τ̃ 2
1 · · · 0 τ̃ 2

1
... ... . . . ... ...
0 0 · · · τ̃ 2

1 τ̃ 2
1

τ̃ 2
1 τ̃ 2

1 · · · τ̃ 2
1 Mτ̃ 2

1


. (18)

If we now define Z̃(t) =
(
Z̃1(t) Z̃2(t) . . . Z̃M(t)

)′
and condition on Z̃·(t) = 0, then a little

algebra (see Appendix A4) shows that E
(
Z̃(t)|Z̃·(t) = 0

)
= 0 and that

Var
(
Z̃(t)|Z̃·(t) = 0

)
= τ̃ 2

1 M−1


M − 1 −1 · · · −1

−1 M − 1 · · · −1
... ... . . . ...

−1 −1 · · · M − 1

 , (19)

so that exchangeability is maintained between all ensemble members.

4.2.5 State space formulation as a dynamic linear model (DLM)

As with the observation-only mimic of Section 4.1, the combined mimics for all of the ensemble
members and historical observations can be written as a DLM in state space form, so that the
Kalman Filter can be used to construct a log-likelihood for the descriptors. This in turn enables
the descriptors to be estimated, whence the Kalman Smoother can be used to estimate the trends
and produce prediction intervals for future observations.

There are several ways to represent the combined mimics in state space form. In all cases, the
observation vector at time t is Y (t) = (Y0(t) Y1(t) . . . YM(t))′; and, in the implementation
considered here, the state vector is defined as

S(t) =
(
µ0(t) β0(t) γ0 µ̃ω(t) β̃ω(t) γ̃ω µ̃1(t) β̃1(t) γ̃1 . . . µ̃M−1(t) β̃M−1(t) γ̃M−1

)′
.
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From (1) and (8) with µi(t) = αµ0(t) + µ̃ωt + µ̃i(t) and µ̃M(t) = − ∑M−1
i=1 µ̃i(t), we have

Y (t) =



1 0 0 0 0 0 0 0 0 0 0 0 · · · 0 0 0
α 0 0 1 0 0 1 0 0 0 0 0 · · · 0 0 0
α 0 0 1 0 0 0 0 0 1 0 0 · · · 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... . . . ... ... ...
α 0 0 1 0 0 −1 0 0 −1 0 0 · · · −1 0 0


S(t) +



ε0(t)
ε1(t)
ε2(t)

...
εM(t)


.

Under the simplified representation of Section 4.2.3, the state vectors evolve as

S(t) =



ϕ0 1 f(t) 0 0 0 0 0 0 · · · 0 0 0
0 1 0 0 0 0 0 0 0 · · · 0 0 0
0 0 1 0 0 0 0 0 0 · · · 0 0 0

α(ϕ1 − ϕ0) 0 0 ϕ1 1 f(t) 0 0 0 · · · 0 0 0
0 0 0 0 1 0 0 0 0 · · · 0 0 0
0 0 0 0 0 1 0 0 0 · · · 0 0 0
0 0 0 0 0 0 ϕ1 1 f(t) · · · 0 0 0
0 0 0 0 0 0 0 1 0 · · · 0 0 0
0 0 0 0 0 0 0 0 1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 0 0 · · · ϕ1 1 f(t)
0 0 0 0 0 0 0 0 0 · · · 0 1 0
0 0 0 0 0 0 0 0 0 · · · 0 0 1



S(t−1)+



0
Z0(t)

0
0

Z̃ω(t)
0
0

Z̃1(t)
0
...
0

Z̃M−1(t)
0



,

(20)

where the covariance matrix of the final term is constructed from the elements of (19).

4.2.6 Connection with Sansom et al. (2021)

As noted in the Introduction, the framework introduced above is similar in many respects to that
proposed by Sansom et al. (2021), who analysed projections of global mean surface temperature
from the CMIP5 ensemble (Taylor et al., 2012) under the RCP4.5 emissions scenario. The closest
points of similarity are the use of a state space formulation to represent the time evolution of both
historical observations and ensemble outputs, the use of energy balance models with a random-
walk drift term to represent the time evolution of the system, and the specification of shared
discrepancies between the ensemble members and the real climate system.

There are some key differences between the approaches, however. The main one is that the
EBM used by Sansom et al. (2021) is substantially more complex than equation (2): it has three
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compartments instead of one, and includes a representation of net top-of-atmosphere radiation
flux that is coupled with the global temperature series, instead of working directly with the
underlying trend as in the present work. Moreover, the random-walk ‘drift’ is also applied to the
radiation flux term rather than to the overall trend as in the development above: this can perhaps
be interpreted as adjusting for the approximate nature of the EBM equations within the dynamics
itself, whereas the drift terms in (4) and (9) are applied instead to the EBM outputs. The more
complex EBM formulation is likely to provide a better representation of system dynamics at a
global scale, but the increased complexity is perhaps less easily justified in the current context
when considering local and regional quantities for which any EBM can provide at best a rough
approximation of anticipated behaviour.

An EBM of increased complexity will also increase the computational cost of the analysis. Another
feature adding — probably more substantially — to the computational cost of of Sansom et al.
(2021) is the use of a full MCMC approach to estimation and inference, in place of the MAP
estimation used here. This has the advantage of providing a full assessment of uncertainty in a
single step, but can be very time-consuming and hence unsuitable for bulk processing of many
sets of projections. In the current approach, the full treatment of uncertainty is achieved using
importance sampling after the mimics have been fitted; this is discussed in Section 4.4.

There are other differences between the present approach and that of Sansom et al. (2021) —
for example, they do not impose an explicit sum-to-zero constraint on their drift terms, instead
relying on the zero-mean increments to ensure identifiability, analogously to the use of random-
effects structures in analysis of variance — but these are relatively minor compared with the
points above. Nonetheless, the approaches are sufficiently different that it would be interesting
in future work to apply them both to the same sets of projections and compare their results and
performance.

4.3 Mimics for structured regional ensembles

The development so far has focused on exchangeable ensembles, but is not applicable to regional
ensembles where some members are run using the same GCM and others using the same RCM.
For such ensembles, the structure of the observations is unchanged and continues to be described
using equations (1), (4) and (5). The mimics and descriptors for the ensemble members must
be modified however, to account for the ensemble structure.

Consider an ensemble involving R RCMs and G GCMs, potentially with multiple replicates of
each RCM:GCM combination (e.g. with different initial conditions); and denote by Yirg(t) the
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simulated quantity of interest at time t from the ith replicate of the (r, g) RCM:GCM combination.
By direct analogy with (8)–(10), the ensemble structure is represented as

Yirg(t) = µrg(t) + εirg(t) ; E [εirg(t)] = 0, Var [εirg (t)] = σ2
rg ; (21)

µrg(t) = ϕrgµrg(t − 1) + γrgf(t) + βrg(t − 1) (22)
and βrg(t) = βrg(t − 1) + Zrg(t) ; E [Zrg (t)] , Var [Zrg (t)] = τ 2

rg . (23)

To account for the ensemble structure, shared discrepancies and components of variation are now
separated into RCM and GCM effects, as

µrg(t) = µω(t) + µ̃r·(t) + µ̃·g(t) + µ̃rg(t) ; (24)
βrg(t) = βω(t) + β̃r·(t) + β̃·g(t) + β̃rg(t) ; (25)

γrg = γω + γ̃r· + γ̃·g + γ̃rg ; (26)
βω(t) = αβ0(t) + β̃ω(t) ; and γω = αγ0 + γ̃ω . (27)

This structure represents the variation among the ensemble members in terms of an overall con-
sensus trend µω(·), contributions from the individual RCMs and GCMs, and finally ‘interactions’
representing any additional effect of specific RCM:GCM combinations. The consensus trend can
further be decomposed as µω(t) = αµ0(t) + µ̃ω(t) as before: this is needed for the state-space
formulation of the structure, but not for the following mathematical development.

Following the same steps as previously, (24)–(27) can be substituted into (22). The left-hand
side becomes µω(t) + µ̃r·(t) + µ̃·g(t) + µ̃rg(t), and the right-hand side is

(
ϕω + ϕ̃r· + ϕ̃·g + ϕ̃rg

)
[µω(t) + µ̃r·(t) + µ̃·g(t) + µ̃rg(t)]

+ (γ0 + γ̃ω + γ̃r· + γ̃·g + γ̃rg) f(t) + αβ0(t) + β̃ω(t) + β̃r·(t) + β̃·g(t) + β̃rg(t) ,

where ϕrg has also been partitioned as ϕrg = ϕω + ϕ̃r· + ϕ̃·g + ϕ̃rg. Equating terms with regard
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to their dependence on r and g, we now find that

µω(t) = ϕωµω(t − 1) + (αγ0 + γ̃ω) f(t) + αβ0(t − 1) + β̃ω(t − 1) ; (28)
µ̃r·(t) =

(
ϕω + ϕ̃r·

)
µ̃r·(t − 1) + ϕ̃r·µω(t − 1) + γ̃r·f(t) + β̃r·(t − 1) ; (29)

µ̃·g(t) =
(
ϕω + ϕ̃·g

)
µ̃·g(t − 1) + ϕ̃·gµω(t − 1) + γ̃·gf(t) + β̃·g(t − 1) ; and (30)

µ̃rg(t) =
(
ϕω + ϕ̃r· + ϕ̃·g + ϕ̃rg

)
µ̃rg(t − 1) + ϕ̃rg [µω(t − 1) + µ̃r·(t − 1) + µ·g(t − 1)]

+ ϕ̃r·µ̃·g(t − 1) + ϕ̃·gµ̃r·(t − 1) + γ̃rgf(t) + β̃rg(t − 1) . (31)

As before, the ERF coefficients γ0, γ̃ω, . . . , γ̃rg are time-constant while the approximation drift
processes β0 (·), β̃ω (·) , . . . , β̃rg (·) are random walks.

Once again, it is convenient to reduce the number of descriptors so as to simplify the problem.
Noting that the most of the key discrepancy structure is captured by the trends, forcing coefficients
and drift terms; that the precise trend structure for the individual ensemble members is not of
direct interest; and that numerical optimisation over large numbers of descriptors is likely to be
slow and potentially unstable, we proceed as though the

{
σ2

rg

}
,

{
τ 2

rg

}
and {ϕrg} are common to

all ensemble members. In this case, the descriptors are σ2
0, ϕ0, τ 2

0 , σ2
1, ϕ1 = ϕω, α, τ̃ 2

ω and τ̃ 2
1 as

in the exchangeable case; and (28)–(31) simplify to

µω(t) = ϕ1µω(t − 1) + (γ0 + γ̃ω) f(t) + αβ0(t − 1) + β̃ω(t − 1) ;

µ̃r·(t) = ϕ1µ̃r·(t − 1) + γ̃r·f(t) + β̃r·(t − 1) ;

µ̃·g(t) = ϕ1µ̃·g(t − 1) + γ̃·gf(t) + β̃·g(t − 1) ; and
µ̃rg(t) = ϕ1µ̃rg(t − 1) + γ̃rgf(t) + β̃rg(t − 1) .

The last three equations here are very similar to the corresponding equation (16) for the ex-
changeable case; and, writing µω(t) = αµ0(t) + µ̃ω(t), the corresponding representation (15) of
the shared trend discrepancy µ̃ω(·) carries over exactly. This similarity arises from the partitioning
of each underlying trend into components of discrepancy that can be considered independently
under the simplified structure — although they are combined in a structured way via equation
(24) to induce dependencies among the ensemble time series.

With this simplified structure, one can also contemplate omitting the final ‘interaction’ terms
from (24) to (26): this will considerably reduce the size of the state vector and hence potentially
speed up computations.

The specification above uses 1 + R + G + RG trends in total, to describe the structure of
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at most RG combinations of RCMs and GCMs. R + G + 1 constraints must be imposed,
therefore, to ensure that the mimic is identifiable: again, these are chosen to ensure that
the various quantities in the mimic have a natural interpretation. Specifically, we use sum-
to zero constraints ∑R

r=1 µ̃r·(t) = 0, ∑G
g=1 µ̃·g(t) = 0,

{∑G
g=1 µ̃rg(t) = 0 : r = 1, . . . , R

}
and{∑R

r=1 µ̃rg(t) = 0 : g = 1, . . . , G − 1
}

(these constraints also imply that ∑R
r=1 µ̃rG(t) = 0, since∑R

r=1 µ̃rG(t) = ∑R
r=1

(∑G
g=1 µ̃rg(t) − ∑G−1

g=1 µ̃rg(t)
)

= ∑R
r=1

∑G
g=1 µ̃rg(t) − ∑G−1

g=1
∑R

r=1 µ̃rg(t) =
0 − 0). The ensemble structure can then be written as a DLM in state space form via the state
vector

S(t) =
(
S′

0(t) S̃′
ω(t) S̃′

1·(t) . . . S̃′
(R−1)·(t) S̃′

·1(t) . . . S̃′
·(G−1)(t) S̃′

11(t) . . . S̃′
(R−1)(G−1)(t)

)′
,

where S0(t) = (µ0(t) β0(t) γ0)′, Sω(t) =
(
µ̃ω(t) β̃ω(t) γ̃ω

)′
and Srg(t) =

(
µ̃rg(t) β̃rg(t) γ̃rg

)′

for 1 ≤ r ≤ R − 1, 1 ≤ g ≤ G − 1. The detailed representation is mostly straightforward and
is omitted for reasons of space, with the exception of the covariance matrix of the constrained
innovations

{
Z̃rg(t) : r = 1, . . . , R − 1; g = 1, . . . , G − 1

}
which is derived in Appendix A5.

4.4 Full uncertainty quantification

For all of the mimics developed above, the state-space formulation enables estimation of the
descriptors using MAP estimation; and the resulting fits can be used in conjunction with the
Kalman Smoother to produce trend estimates and prediction intervals for the real-world quantities
of interest as in Figure 4. This procedure does not account for uncertainty in the descriptor
estimates, however: the prediction intervals in Figure 4 are therefore likely to be too narrow.
The easiest way to characterise the full uncertainty distribution, including the effect of descriptor
uncertainty, is to draw samples from it. We now discuss how to achieve this.

For a given mimic, denote the descriptor vector by θ; the complete collection of state vectors
over the time period of interest by S; the collection of observations and ensemble outputs
used for descriptor estimation by Y ; and any ‘observable but not yet observed’ quantities by
Y (new). In the current context, Y (new) will often consist of the vector of real-world quantities of
interest (Y0(T + 1), Y0(T + 2), . . . , Y0(T + ℓ)) where T is the final year for which observations
are available (2020 for the HadUK data considered in Section 2.3) and T + ℓ is the final year
of ensemble outputs. Other possibilities are considered in Section 6. The following algorithm
produces a realisation from the joint distribution of Y (new) under an assumed mimic structure,
conditional on the data Y :
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1. Sample a value of θ from the posterior distribution π(θ|Y ). Here and throughout, the
notation π(·|·) denotes a generic joint conditional pdf.

2. Using the value of θ sampled in step 1, sample a value of S from the distribution π(S|Y ,θ).

3. Using the values of S from step 2 and θ from step 1, sample a value of Y (new) from
the distribution π

(
Y (new)|S,θ

)
. Note that under the mimic structures considered here,

Y (new) is conditionally independent of the observations Y given S and θ.

Repeating these steps a large number of times will produce the equivalent number of sampled
values of Y (new), conditioned on Y . Any feature of the joint pdf π

(
Y (new)|Y

)
can then be

estimated, to a degree of precision limited only by the number of samples.

Each of these steps is now discussed in more detail.

4.4.1 Sampling from π(θ|Y )

Much of the literature on DLMs focuses on the development of MCMC schemes for sampling
from the posterior distribution of parameters and state vectors conditional on the data: see, for
example, Carter and Kohn (1994); Frühwirth-Schnatter (1994); Durbin and Koopman (2002);
Reis et al. (2006). As discussed in Section 4.2.6 however, the computational expense of these
schemes is undesirable in applications where it is required to carry out routine analyses of many
time series of ensemble outputs. As an alternative therefore, we proceed on the basis (established
by experimentation with many different sets of projections) that the log-posterior distributions
are invariably unimodal in the region of ‘reasonable’ descriptor values. Moreover, standard theory
suggests that in large samples the log-posterior should be approximately quadratic in the region
of parameter space supported by the data (Cox, 2006, Section 6.2). In the current work, the use
of transformed parameters such as the logarithms of variances, together with the use of Gaussian
priors (see Section 4.1.1), is designed in part with this quadratic approximation in mind: for
example, the parameter transformations avoid the pronounced asymmetric log-likelihood profiles
that can otherwise occur if the maximum is close to a boundary of the parameter space.

If the log posterior is approximately quadratic in the neighbourhood of the MAP estimator θ̂,
it follows that the posterior itself is approximately multivariate normal, with mean equal to the
maximum a posterior estimate and covariance matrix (Ω, say) equal to the negative Hessian
matrix of the log posterior at its maximum. This is the Laplace approximation to the posterior,
mentioned in Section 4.1.1. The Hessian is computed during the estimation procedure, as a
by-product of the numerical maximisation: approximate sampling from π(θ|Y ) can therefore be
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achieved by sampling from the corresponding multivariate normal distribution. The accuracy of
this multivariate normal approximation is considered further in Section 4.4.4.

4.4.2 Sampling from π(S|θ, Y )

Given a parameter vector θ and observations Y , the problem of simulating from the conditional
distribution of the state vectors has received considerable attention in the literature. Algorithms
include that of Durbin and Koopman (2002), as well as the “forward-filtering-backward-sampling”
(FFBS) approach of Frühwirth-Schnatter (1994); Carter and Kohn (1994) that forms the basis
for the dlmBSample() routine in the dlm library (Petris, 2010), used here.

One potential difficulty with the FFBS approach used here is that it is based on Gaussian specifi-
cations for all of the stochastic components of the DLM. As noted in Section 4.1.1, this Gaussian
specification could be problematic when applied to non-negative quantities such as precipitation:
in the context of sampling from π(S|θ, Y ) based on the mimics discussed above, the sampled
values of the trend µ0(t) are not guaranteed to be positive. Experience suggests that nega-
tive values are encountered rather rarely when postprocessing precipitation projections from the
UKCP18 and EuroCORDEX ensembles. As a pragmatic solution when working with precipitation
projections therefore, samples with any negative value of µ0 are discarded and the sampling is
repeated until all values of µ0(t) are non-negative. Again as noted in Section 4.1.1, an alternative
would be to carry out the analysis on a log scale for precipitation and similar quantities.

Another difficulty, encountered occasionally, is that the FFBS algorithm occasionally fails, either
during the Kalman filtering or during the subsequent backward sampling. This is associated with
failure of the underlying LAPACK routines used in the matrix calculations, and cannot easily be
fixed without rewriting either the LAPACK routines or the dlm library that calls them. We have
examined the situations leading to such failures, which do not appear to be systematic (e.g. they
are not associated with unusual sampled parameter values). In view of this, and given that it
happens rather infrequently (typically up to a handful of times in a thousand samples), they have
been dealt with simply by drawing replacement samples.

4.4.3 Sampling from π
(
Y (new)|θ, S

)
The final sampling step is straightforward: for all mimics under consideration, we have E [Y∗(t)|S] =
µ∗(t) and Var [Y∗(t)|S] = σ2

∗ independently for all series and time points, where the asterisk “∗”
denotes an arbitrary subscript as appropriate to the mimic and quantity being considered. Since
Y (new) includes no elements that have already been observed, its elements can be sampled merely
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by drawing the corresponding values independently from the appropriate distributions — which
will usually be normal distributions with the specified mean and variance, but could also be gamma
distributions for non-negative quantities as discussed in Section 4.1.2.

4.4.4 Assessing and improving the posterior sampling accuracy

In Section 4.4.1 it was suggested that a multivariate normal distribution can be used to draw
approximate samples from the posterior π (θ|Y ). The accuracy of this procedure depends on that
of the quadratic approximation to the log posterior in the relevant neighbourhood of its mode.
Of course, for any value of θ the log posterior itself can be evaluated up to an additive constant
since log π (θ|Y ) = log h(θ;Y )+log K say, where log h(θ;Y ) is the function that is maximised
to obtain the MAP estimate (thus π (θ|Y ) = Kh(θ;Y ), so that K is the normalising constant
required to ensure that ∫

π (θ|Y ) dθ = 1). For any value θ, the accuracy of the approximation
can therefore be assessed by comparing log h

(
θ̂|Y

)
− log h (θ|Y ) with log g

(
θ̂

)
− log g(θ) in an

appropriate neighbourhood of θ̂, where g(·) is the joint density of the approximating multivariate
normal distribution.

To determine an appropriate neighbourhood of θ̂ for this purpose, note that if p denotes the
dimension of θ and if Ω denotes the covariance matrix of the approximating multivariate normal
density g(·) as above, then

g(θ) = 1
(2π)p/2 |Ω|1/2 exp

[
−1

2
(
θ − θ̂

)′
Ω−1

(
θ − θ̂

)]
(θ ∈ Rp)

so that log g
(
θ̂

)
− log g(θ) = 1

2

(
θ − θ̂

)′
Ω−1

(
θ − θ̂

)
. Defining Z := Ω−1/2

(
θ − θ̂

)
where

Ω−1/2 is a matrix square root of Ω−1 (typically computed via its eigendecomposition), we there-
fore have 2

[
log g

(
θ̂

)
− log g(θ)

]
= Z ′Z = ∑p

i=1 Z2
i where Zi is the ith element of Z. But

with this definition of Z, the {Zi} are independent standard normal random variables so that∑p
i=1 Z2

i ∼ χ2
p. Under the multivariate normal density g(·) therefore, values of θ such that

2
[
log g

(
θ̂

)
− log g(θ)

]
falls in the extreme upper tail of this χ2

p distribution can be deemed
inconsistent with the data: there is no strong requirement for the Gaussian approximation to
hold for such values of θ. A ‘relevant’ region of θ values can thus be identified using a high but
non-extreme quantile of this χ2

p distribution. This leads to the following procedure, to check the
accuracy of the Gaussian approximation for operational purposes:

1. Choose a high but non-extreme quantile of the χ2
p distribution, for example its 99th per-

centile. Call this quantile Q.
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2. Define a set of 2p vectors z1, . . . ,z2p , in which each element is set to either
√

Q/p or
−

√
Q/p in such a way that every combination of values appears in the set.

3. For each i ∈ {1, . . . , 2p}, calculate θi = θ̂ + Ω1/2zi, and the corresponding log-posterior
ratio log h

(
θ̂|Y

)
− log h (θi|Y ).

As calculated in step 3 above, the {θi : i = 1, . . . , 2p} lie on the principal axes of the ellipsoid
defined by the equation 2

[
log g

(
θ̂

)
− log g(θ)

]
= Q — which can be considered as an approx-

imate boundary for the region of θ values that are ‘reasonably consistent’ with the data. If the
Gaussian approximation to the posterior π (θ|Y ) holds within this region therefore, the log ratios{
log h

(
θ̂|Y

)
− log h (θi|Y )

}
will all be close to Q/2. If this condition does not hold, a relatively

straightforward remedy is to sample randomly from the approximating Gaussian distribution and
then to reweight the samples. This is the idea behind importance sampling, as suggested for use
in this kind of application by Durbin and Koopman (2012, Chapter 13).

For present purposes, importance sampling is most easily described by considering the posterior
probability P (θ ∈ A|Y ) where A is some region of the parameter space. Noting that this
probability can be regarded as the expected value of I (θ ∈ A) where I(·) is the indicator function
taking the value 1 if its argument is true and 0 otherwise, we have

P (θ ∈ A|Y ) = E [I (θ ∈ A) |Y ] =
∫
θ

I (θ ∈ A) π (θ|Y ) dθ

=
∫
θ

I (θ ∈ A) π (θ|Y )
g (θ) g (θ) dθ

= Eθ∼g

[
I (θ ∈ A) π (θ|Y )

g (θ)

]
,

where Eθ∼g [·] denotes expectation with respect to the random vector θ, evaluated over the
distribution with joint pdf g(·). The expectation can be estimated by drawing a large number of
samples θ1,θ2, . . . ,θN from this distribution (note that these are not the same as the values used
in the procedure to check the accuracy of the Gaussian approximation above), and computing
the sample average N−1 ∑N

i=1 I (θi ∈ A) π (θi|Y ) /g (θi). Recalling that π (θ|Y ) = Kh (θ;Y )
as defined at the start of this section, this sample average can be written as

KN−1
N∑

i=1
I (θi ∈ A) h (θi;Y ) /g (θi) = KN−1

N∑
i=1

I (θi ∈ A) wi , say, (32)

where wi = h (θi;Y ) /g (θi).

36



It remains to find the value of K, determined by the requirement ∫
θ π (θ|Y ) dθ = 1. This implies

that

K
∫
θ

h (θ|Y ) dθ = 1 ⇒ K
∫
θ

h (θ;Y )
g (θ) g (θ) dθ = 1 ⇒ KEθ∼g

[
h (θ;Y )

g (θ)

]
= 1

and K = 1/Eθ∼g [h (θ;Y |) /g (θ)]. Thus the samples θ1, . . . ,θN can be used to estimate K

as N/
∑N

i=1 wi and, in turn, P (θ ∈ A|Y ) can be estimated as
[∑N

i=1 wiI (θi ∈ A)
]

/
[∑N

i=1 wi

]
.

Each sampled value of θ is thus reweighted to account for the fact that it was sampled from the
distribution with density g(·) instead of the exact posterior; and the sampled θ values can be
used to estimate any desired summaries or functions of the posterior distribution by propagating
this reweighting through the subsequent calculations.

Although importance sampling provides a quick and easy way to improve the Gaussian approxima-
tion to the posterior distribution, its use requires that the distribution of the importance sampling
weights {wi} has a finite variance. Monahan (2001, Chapter 12) gives a thorough discussion and
some suggested checks — the simplest of which is to examine the distribution of the weights
for extreme outliers. Such situations are most likely to arise when the posterior distribution is
heavy-tailed by comparison with its Gaussian approximation so that the ratio h (θi;Y ) /g (θi)
can become arbitrarily large within the region of interest. In this case, a simple solution is to
sample from a heavier-tailed distribution such as a multivariate t distribution and, when calcu-
lating the importance weights {wi}, to use the pdf of this heavier-tailed distribution in place of
the multivariate normal pdf g(·).

A further consideration when using importance sampling is that the estimates are subject to sam-
pling uncertainty: if the original Gaussian approximation to the log posterior is already accurate
therefore, a very large number N of samples may be needed in order for the improvement to
be distinguishable from sampling variation. This comes with its own computational overhead of
course, since the log posterior must be computed N times. To reduce the cost, it is therefore
worth adopting sampling schemes that are designed to reduce the number of samples required to
characterise specified features of the posterior distribution with a given level of accuracy. Durbin
and Koopman (2012, Chapter 11) recommend the use of antithetic variables for this purpose,
to ensure that the simulated samples have both the correct mean vector and dispersion. The
present work has also explored the possibility of using antithetic sampling to ensure the correct
correlation structure.

Finally, a point of computational efficiency is that having obtained a sample from π(θ|Y ), the
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first step of the FFBS algorithm for sampling from π(S|θ,Y ) is to apply the Kalman Filter
to obtain the distribution of the state vector at the final time point, conditional on all of the
observations: indeed, the input to the dlmBSample() routine (see Section 4.4.2) is the filtered
observations rather than the original values. The Kalman Filter is also used to calculate the log
posteriors {h (θi;Y )} (Section 4.1.1), which are needed to define the importance weights {wi}.
For the mimics considered here, Kalman Filtering is one of the most time-consuming parts of the
process: ideally therefore, the filter results from the FFBS algorithm would be stored for re-use
when calculating the importance sampling weights. At present, unfortunately this is not possible
using the routines provided in the dlm library.

5 Application to UK-averaged temperature and precipita-
tion

This section presents the results of postprocessing both the UKCP18 and EuroCORDEX ensemble
projections of UK-averaged temperature and precipitation, using the methodology described in
Section 4. Implementation decisions, such as the choices of prior distributions for the descriptors
and initial values for numerical maximisation of the posteriors, are documented in Appendices A2
and A3.

The analysis of UKCP18 projections follows the exchangeable ensembles methodology of Sec-
tion 4.2, while the EuroCORDEX analysis uses the structured methodology of Section 4.3 —
but omitting the interaction terms in the mimic specifications (24)–(26) because the ensemble
contains too few runs to estimate them. Moreover, EuroCORDEX ensemble members driven
by different runs from the same GCM are considered to be replicates so that the GCM trend
contributions to these members are all the same — although the interannual variation about the
trends is independent between runs.

Results for annual temperature means and precipitation totals are presented first, with separate
results for each season considered briefly afterwards. Further visualisations of these results,
together with corresponding analyses for each of the main administrative regions of the UK, are
available from https://github-pages.ucl.ac.uk/eurocordex-uk-plots/.

38

https://github-pages.ucl.ac.uk/eurocordex-uk-plots/


UKCP18: temperature

1960 1980 2000 2020 2040 2060 2080

4
6

8
10

12
14

Year

°C

Observations
Ensemble mean
Ensemble members

µ̂0(t)
95% interval for Y0(t)

EuroCORDEX: temperature

1960 1980 2000 2020 2040 2060 2080

4
6

8
10

12
14

Year

°C

Observations
Ensemble mean
Ensemble members

µ̂0(t)
95% interval for Y0(t)

UKCP18: precipitation

1960 1980 2000 2020 2040 2060 2080

80
10

0
12

0
14

0
16

0
18

0

Year

cm

Observations
Ensemble mean
Ensemble members

µ̂0(t)
95% interval for Y0(t)

EuroCORDEX: precipitation

1960 1980 2000 2020 2040 2060 2080

10
0

15
0

20
0

Year

cm

Observations
Ensemble mean
Ensemble members

µ̂0(t)
95% interval for Y0(t)

Figure 5: Postprocessed ensembles of annual UK-averaged temperature means and precipitation
totals, based on ensemble outputs from 1980–2080 and observations from 1950–2020.

5.1 Annual temperature means and precipitation totals

Figure 5 shows the postprocessed UKCP18 and EuroCORDEX projections for both temperature
and precipitation, obtained using the MAP estimates of the relevant descriptors in the same
way as for Figure 4. The data shown in each panel are identical to those in Figure 1, but the
postprocessed results also show the estimated real-world trend µ̂0(·) together with 95% prediction
intervals for the real-world annual values themselves.

Focusing first on the temperature projections in Figure 5, both the trend estimates µ̂0(·) and the
95% postprocessed prediction intervals are very similar for the two ensembles: by 2080, µ̂0(·) has
reached just under 12◦C in both cases, with a 95% prediction interval running from 10◦C to around
13◦C (slightly higher for the EuroCORDEX ensemble). This is despite appreciable differences
between the raw ensembles, as discussed in Section 2.5: in particular, the postprocessed trend
estimates suggest that the UKCP18 ensemble starts too cool and warms too rapidly, whereas the
EuroCORDEX ensemble remains slightly too cool throughout. There are small differences between
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the postprocessed projections and those obtained without using the ensemble data in Figure 4:
the projected temperatures in Figure 5 warm slightly more rapidly and the uncertainty intervals
are slightly wider than those based solely on the observations. The differences (particularly the
increased uncertainty) are presumably attributable to the fact that the ensemble members indicate
that future trends may depart slightly from the EBM approximation upon which Figure 4 is based.

The apparent differences between the postprocessed precipitation projections on the bottom row
of Figure 5 are due solely to different vertical scales on the plots (the result of the bulk processing
software used to produce them). In fact, the postprocessed projections from both ensembles are
once again in close agreement, with the estimated trends µ̂0(·) both reaching around 145cm per
annum by 2080 and with 95% prediction intervals ranging from 120cm to just under 180cm.
Once again, the differences compared with the ‘observation-only’ results in Figure 4 are small —
in this case however, it is notable that neither ensemble captures the increasing trend in observed
precipitation, so the form of the trends in the postprocessed projections is strongly determined by
the assumed connection with the forcing series shown in Figure 2. This assumption is arguably
harder to justify for precipitation than for temperature, for reasons discussed in Section 4.2;
hence the precipitation results should be treated with more caution than those for temperature.
Nonetheless, it is clear that the ensembles themselves completely fail to capture the observed
increase in precipitation over the last 70 years: this suggests either that there are deficiencies in
the representation of precipitation in the GCMs and RCMs, or that there is a problem with the
observational dataset used to represent the real climate in the present analysis.

Figure 6 shows the analogue of Figure 5, but now accounting for uncertainty in the descriptor
estimates using sampling from the approximate Gaussian posterior as described in Section 4.4.1.
The trend estimates {µ̂0(t)} here are computed as means across 1000 antithetic samples from
the approximate posterior, balanced for mean and dispersion; the 95% prediction intervals are
computed from the quantiles of the same 1000 samples. A comparison with Figure 5 reveals very
little difference, suggesting that descriptor parameter uncertainty is relatively unimportant in the
present context.

The posterior distributions shown in Figure 6 are approximate, due to the use of Gaussian dis-
tributions when sampling from the posterior distribution of the descriptors. Importance sampling
can be used to reweight these distributions and hence characterise the exact posterior, as dis-
cussed in Section 4.4.4. The results are shown in Figure 7. The first three plots here are very
similar to the corresponding results in Figures 5 and 6 — once again, suggesting that descriptor
uncertainty is relatively unimportant here.
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Figure 6: As Figure 5, but accounting for parameter uncertainty using Gaussian approximation
to the posterior distribution of descriptors for each mimic.

No prediction interval is visible for the EuroCORDEX precipitation projections in Figure 7, how-
ever. The reason for this can be deduced from Figure 8 in which, for each set of projections,
the importance weights have been sorted in decreasing order and cumulated. If the weights were
all equal then these cumulative traces would appear as diagonal lines: this scenario corresponds
to the case when the posterior distribution is exactly Gaussian so that importance sampling is
not needed (see the definition of importance weights following equation (32)). Conversely, if
the cumulative trace increases immediately to 100% as in the final panel of Figure 8, then the
total weight must be concentrated in just one or two samples: this indicates that the importance
sampling weights may have an infinite variance, which invalidates the procedure (see Section
4.4.4). For the remaining three panels, the traces lie substantially above the diagonal but the
total weight is distributed over a substantial proportion of the samples: this suggests that the
importance sampling has made meaningful adjustments to the initial Gaussian approximation in
the corresponding analyses.

In situations where the importance sampling weights may have infinite variance, as noted in
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Figure 7: As Figure 6, but using importance sampling weights.

Section 4.4.4 a possible resolution is to replace the Gaussian approximation to π (θ|Y ) with
a heavier-tailed distribution when sampling the descriptors. Accordingly, the analysis of Euro-
CORDEX precipitation projections has been repeated using a multivariate Student t distribution
on five degrees of freedom. In Figure 9, the resulting postprocessed projections are now much
more similar to those from Figures 5 and 6; and the plot of cumulative importance weights no
longer gives any cause for concern.

From the analysis of these four sets of annual projections, the implication so far is that any
attempt to incorporate descriptor uncertainty, either with or without importance sampling, makes
no material difference to the postprocessed projections — except when the importance sampling
fails. Moreover, the calculations needed for a full uncertainty assessment are relatively time-
consuming: for the exchangeable UKCP18 ensemble the time taken to estimate the descriptors
and run the Kalman Smoother for each variable is around 90 seconds on a fast laptop, then
an additional 4 minutes to sample from the Gaussian approximation to the full posterior, or 7
minutes for the importance sampling. The corresponding timings for the structured EuroCORDEX
ensemble are around 3 minutes for the initial estimation and Kalman smoothing; 6 minutes for
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Figure 8: Cumulative contributions of sorted importance sampling weights for the analyses shown
in Figure 7.
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Figure 9: EuroCORDEX precipitation projections: full posterior distribution obtained via im-
portance sampling with a t5 initial approximation to the posterior, in place of the Gaussian
approximation used in Figures 7 and 8.
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the Gaussian approximation to the posterior; and 11–12 minutes for the importance sampling.
A substantial portion of the difference between the timings for the Gaussian approximation and
importance sampling is associated with the need to run the Kalman Filter twice to carry out
importance sampling, as noted in Section 4.4.4. These conclusions appear to hold in general,
as evidenced by the online archive of postprocessing results for national, regional, annual and
seasonal analyses. For the reporting of seasonal results below therefore, for brevity we focus
solely on the initial plots neglecting descriptor uncertainty.

5.2 Seasonal results

Figures 10–13 show the postprocessing results for each of the four seasons. In broad terms,
the results are similar to those from the annual analyses above. In particular, the postprocessed
projections from the two ensembles are very similar each other: in almost all cases where they
appear different, this is due to the use of different vertical axis scales to accommodate the raw
ensemble members. This suggests, once again, that the proposed postprocessing methodology
is able to resolve the inter-ensemble differences to a large extent: this is mainly achieved by
correcting for the systematic discrepancies between the members of each ensemble and the real
climate system.

It is perhaps unnecessary to discuss all of the systematic ensemble discrepancies in Figures 10–13
in detail. It is nonetheless worth highlighting some features of the results, in the context of the
generally accepted wisdom that the UK is heading for warmer, wetter winters and hotter, drier
summers (Murphy et al., 2019). Thus:

• The postprocessed trend µ̂0(·) in winter temperatures is in close agreement with the
UKCP18 ensemble mean and, by 2080, almost 2◦C warmer than the EuroCORDEX en-
semble mean. The upper end of the 95% uncertainty interval suggests that it would not
be surprising for some individual winters to be warmer than the warmest of the UKCP18
ensemble members by the second half of the century.

• Both ensembles suggest a small increase in winter total precipitation before postprocessing.
The postprocessed projections indicate a much more substantial increase however, with the
mean winter precipitation in 2080 (around 55cm) being around the maximum observed to
date. As noted previously, the mimics for precipitation are potentially less reliable than
those for temperature because the physical basis for the EBM-approximated trend is less
convincing. Nonetheless, the observed winter precipitation series clearly shows a much
faster increase than either of the ensembles prior to 2020: it would be surprising if this
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Figure 10: Postprocessed ensembles of winter (DJF) UK-averaged temperature means and pre-
cipitation totals, based on ensemble outputs from 1980–2080 and observations from 1950–2020.

trend does not continue at least into the near future as indicated by the postprocessed
projections.

• The effect of postprocessing in spring is mainly to remove biases in the ensembles. The
estimated temperature trends are similar to those in the ensemble means — albeit warming
slightly more slowly than UKCP18 and slightly faster than EuroCORDEX — while there is
little trend in spring precipitation, with the postprocessing merely removing wet biases in
the ensembles during this season.

• Postprocessed trends in summer temperatures are much closer to the EuroCORDEX en-
semble mean than to the UKCP18 ensemble: the postprocessing suggests that the latter
warms much too quickly in this season, with the ensemble mean close to the upper end of
the postprocessed uncertainty intervals.

• Both unprocessed ensembles project a decline in total summer precipitation, which is greater
for UKCP18 than for EuroCORDEX. With the usual caveats regarding the EBM approx-
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Figure 11: Postprocessed ensembles of spring (MAM) UK-averaged temperature means and
precipitation totals, based on ensemble outputs from 1980–2080 and observations from 1950–
2020.

imation to precipitation trends, the postprocessed projections here indicate increases in
summer precipitation — on the basis, presumably, of a small but steady increase between
1980 and 2020 that is not reflected in the ensembles. There are also discernible differences
between the postprocessing results for UKCP18 and EuroCORDEX: the former trend is
smoother and, prior to 1980, does not track the apparent decline in the observations so
closely as the latter. The reason for these differences is unclear: they remain after account-
ing for descriptor uncertainty by sampling from the full posterior either with or without
importance sampling (plots available online). A more coherent picture emerges for regional
summer precipitation, however (again, plots are online): the projected increase in summer
precipitation is strongest in the north of the UK and weakest in the south-east, where the
postprocessed trends are almost flat. It is also worth noting that trends in total precipita-
tion can arise from changes in both frequency and intensity of precipitation events: with
some consensus that summer precipitation in the UK may be getting less frequent but more
intense (Murphy et al., 2019), it is possible that the analyses in Figure 12 may be conflating
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Figure 12: Postprocessed ensembles of summer (JJA) UK-averaged temperature means and
precipitation totals, based on ensemble outputs from 1980–2080 and observations from 1950–
2020.

two different sources of variation and hence that it would be preferable to examine them
separately.

• In autumn, the postprocessed trend corrects for a slight cool bias in the EuroCORDEX
ensemble, and warms more slowly than the UKCP18 ensemble mean; there is also an
indication of a slight increase in total autumn precipitation by 2080, which is not present
in either of the unprocessed ensembles.

6 Summary and discussion

6.1 Overall comments

The methodology developed in this report is designed to account for many of the known features
of ensembles of climate projections, within a flexible framework that imposes relatively few as-
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Figure 13: Postprocessed ensembles of autumn (SON) UK-averaged temperature means and
precipitation totals, based on ensemble outputs from 1980–2080 and observations from 1950–
2020.

sumptions and that attempts to incorporate physical insights into the statistical representation by
appealing to the dynamics of (albeit very simple) energy balance models. In many respects it is
similar to the approach proposed by Sansom et al. (2021), although differing in important details
— notably the choices made here with computational tractability in mind, that allow the routine
processing of large numbers of projections. The treatment of structured regional ensembles in
Section 4.3 is also completely new.

To indicate the scale of analyses that have been undertaken: the full set of results available
from https://github-pages.ucl.ac.uk/eurocordex-uk-plots/ includes analyses of annual and sea-
sonal temperature means and precipitation totals, averaged over the entire UK and for each of
14 administrative regions and for four different ensembles (postprocessed results for the UKCP18
global and CMIP5 ensembles are also available). The time taken to process the entire set of 600
projections on UCL’s general-purpose HPC cluster was around three days in total — including
the generation of samples from the full posterior distribution, both with and without importance
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sampling. In all of the examples considered here, this full posterior sampling was found to make
little difference to the final results: this potentially offers the opportunity to cut computational
costs still further in the future, since the full posterior sampling is the most time-consuming part
of the process.

The flexibility of the proposed framework is illustrated by the range of ‘adjustments’ to the raw
ensembles that are found in Section 5: the postprocessed results are seen to adjust for biases in
the raw ensembles, and also to ‘correct’ for rates of change in the ensembles that appear too fast
or too slow by comparison with the observations. Importantly, these adjustments are not specified
directly: rather, they are implied by the statistical representation of the ensemble structure and its
relation to reality. This approach is intended to ensure that the resulting uncertainty assessments
are as transparent and defensible as possible, and hence suitable for use with formal decision-
making frameworks.

The strongest assumption in the methodology is the link between the underlying trend and the
output of a simple EBM, which is calibrated as part of the postprocessing procedure (via the
estimation of the inertia coefficient ϕ as part of the descriptor vector, and the forcing coefficient
γ as part of the state vector). The random-walk drift processes {β0} are intended to alleviate
this assumption to some extent, because they have the flexibility to allow the estimated trend to
move arbitrarily far from the EBM solution over sufficiently long time periods if this is indicated
by the data and ensemble outputs.

Although these statistical assumptions are fairly weak therefore, there is one situation in which
they may have a substantial influence on the results: this is when the historical observations
contain a trend but the ensembles do not (as encountered throughout the precipitation analyses
in this report). Essentially the difficulty here is that the ensemble value of γ is zero, so that the
ensemble can provide no information on the plausibility of the EBM approximation to the trend
by comparison with the observations. The problem with precipitation totals could potentially be
resolved by studying frequency and intensity separately, since trends in each of these components
may be better defined. At present however, this is just speculation.

6.2 Implications for users of projections

Faced with large ensembles of climate projections, it is natural for users to ask the questions
(1) which members to select for their analyses (2) how to correct for biases. According to the
methodology developed in this report, the answer to the first question is: select none of them,
but use all of them; and the second question is then redundant because the postprocessing
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methodology directly targets the real climate system.

A purist would perhaps argue that, in an ideal world and conditional on the appropriateness of
the assumed mimic structure, the formally correct procedure is to work with samples from the
posterior distribution of the quantity of interest. At present however, it is likely that rather few
users would be prepared to accept this argument — although some may be interested in using
the postprocessed projections as a means of placing the ensembles in the context of what may be
expected in reality. For example, the postprocessed temperature projections in Section 5 showed
good agreement with the UKCP18 ensemble in winter, and with the EuroCORDEX ensemble in
summer: users could exploit this information to choose the most appropriate ensemble for their
application.

A more sophisticated interpretation of the postprocessed projections does require an examination
of samples from the posterior distribution, however. In the plots of postprocessed projections
seen so far, uncertainty has been represented by a coloured band representing a 95% prediction
interval. This is a traditional means of indicating uncertainty in forecasts, projections or curves:
however, it does not provide a clear indication of what the future time series of future temperatures
might actually look like. It is not clear, for example, whether all of the potential futures share
the same trend with an increasing level of interannual variation; or whether different possible
futures have markedly different trends. To address this issue, Bowman (2019) suggests using
animations in which each individual frame shows a sample from the posterior distribution (strictly
speaking, from a joint distribution with the same mean and covariance as the posterior) but in
which the transitions between frames are smooth: the smoothness of the transitions helps the
viewer to process the information as it is presented. The animations are produced by sampling
a small number of ‘primary’ frames from the posterior π

(
Y (new)|Y

)
, and then interpolating

between these primary frames in such a way that each interpolation also has the correct mean
and covariance structure. Examples are provided as animated GIF images in the online archive of
results: these provide a clear indication of the range of potential outcomes that can be expected
— which include periods running counter to the overall trend, as well as individual years or seasons
falling outside the ranges of the uncertainty bands shown in the static displays of this report.

6.3 Unresolved issues and future work

There are a few unresolved issues arising out of the work reported above. The most obvious
one relates to trends in precipitation, which require further investigation as outlined above. In
some way related to this: the mimics developed in Section 4 are designed for use with time
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series containing no seasonal structure (hence the separate treatment of each season in Section
5) and with a constant level of interannual variation over time. Moreover, much of the underlying
software is designed for use with Gaussian time series — although the relevant calculations only
involve means and variances, which can be exploited in some situations (e.g. the use of gamma
distributions in this report to ensure that sampled precipitation totals are non-negative). Such
workarounds are not a universal panacea however; and, particularly when working with series that
are highly non-Gaussian, it is likely that a more principled approach will be needed.

A further aspect that is not considered here is the simultaneous postprocessing of multiple vari-
ables: for example, temperature and precipitation have been considered separately throughout.
In principle, the mimics of Section 4 can be extended straightforwardly to this setting: all that
is required is to specify correlations between the irregular interannual variations (ε∗ (·)) and the
trend drift increments (Z∗ (·)) for each quantity, although care will once again be needed with
the specification of shared discrepancies and sum-to-zero constraints to obtain a self-consistent
system.

In Section 3 it was noted that the performance of probabilistic weather forecasting systems can
be evaluated by comparing with the subsequent outcomes; but that this is not possible in the
context of climate projections. Nonetheless, the existence of multiple ensembles and greenhouse
gas emissions scenarios does provide a synthetic testbed for any postprocessing methodology: for
example, one could envisage an experiment in which the postprocessing technique is applied to
the UKCP18 ensemble but with one of the EuroCORDEX ensemble members substituted for the
real climate — the goal in that case being to use the postprocessed UKCP18 ensemble to infer
the trajectory of the EuroCORDEX member beyond the year 2020. An alternative would be to
calibrate the mimics using projections from one emissions scenario, and then to use them to make
inferences about the corresponding simulator outputs for an alternative scenario. Either approach
would provide an opportunity to evaluate the credibility of the postprocessing methodology under
a fairly realistic setting in which there are systematic differences between the ensemble and the
system for which projections are ultimately required.

As a final comment: the posterior sampling methodology in Section 4.4 generates realisations of
‘potentially observable’ quantities (denoted Y new there). Throughout the report, the focus here
has been on quantities arising in the real climate system. However, this restriction is not neces-
sary: one could also envisage, for example, generating series corresponding to missing ensemble
members e.g. to impute the missing members from an unbalanced regional ensemble. In this
context, the mimics can arguably be regarded as very simple emulators in the sense that they
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provide an approximation to the function mapping ERF (as input) to the climate time series of
interest (as output).
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Technical appendices

A1 Form of the EBM-inspired trend µ0(t)

In the proposed framework, the form of the underlying trend µ0(t) is specified via the difference
equation (4). The solution to this equation can be obtained by writing the equation as

(1 − ϕ0B)µ0(t) = γ0f(t) + Bβ0(t) ,

where B denotes the backshift operator (i.e. Bµ0(t) = µ0(t − 1), Bβ0(t) = β0(t − 1) and so
on — see Chandler and Scott 2011, Section 5.1.8 for an introduction to this operator and its
properties). Thus

µ0(t) = γ0 (1 − ϕ0B)−1 f(t) + I0(t) ,

where the process (I0(t)) represents the cumulative effect of the drift (β0(·)). As a transformation
of the random walk (β0(·)), this processes has a complex stochastic structure. If |ϕ0| < 1 then
the standard properties of the backshift operator allow the first term to be written as a convergent
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infinite sum, so that
µ0(t) = γ0

∞∑
u=0

ϕu
0f(t − u) + I0(t) . (A.1)

Putting t = 0 in this expression, we have

µ0(0) = γ0

∞∑
v=0

ϕv
0f(−v) + I0(0) = γ0

∞∑
u=t

ϕu−t
0 f(t − u) + I0(0) ,

the final step obtained by putting t − u = v in the sum so that v = u − t. It follows that
ϕt

0µ0(t) = γ0
∑∞

u=t ϕu
0f(t−u)+ϕt

0I0(0) which, from (A.1), is equal to µ0(t)−γ0
∑∞

u=t−1 ϕu
0f(t−

u) − I0(t) + ϕt
0I0(0). Hence µ0(t) = ϕt

0µ0(t) + γ0
∑∞

u=t−1 ϕu
0f(t − u) + I0(t) − ϕt

0I0(0) =
ϕt

0µ0(t) + γ0
∑∞

u=t−1 ϕu
0f(t − u) + J0(t) say, in agreement with result (6).

A2 Choices of prior
The mimics in Sections 4.2 and 4.3 both use the same collection of descriptors: σ2

0, ϕ0, τ 2
0 , σ2

1,
ϕ1, α, τ̃ 2

ω and τ̃ 2
1 . Their interpretation is summarised in Table A.1. As noted in Section 4.1,

transformations of the descriptors are targeted in the MAP estimation procedure (log transfor-
mations for variances, and logit transformations for inertia coefficients). This section documents
the choices of prior distribution that have been used for each of these transformed descriptors.

Prior choices will in general depend on the anticipated behaviour of the quantities of inter-
est; therefore separate settings must be considered for temperature and precipitation, and for
annual and seasonal series. Potential prior settings are also suggested here for an analysis of log-
transformed precipitation, although the results of this analysis do not appear in the main report.
Throughout, choices are deliberately conservative in the sense that they are designed to have a
minimal impact on the results except where the log-likelihood is flat. This has been checked for
several cases: in all instances where unpenalised maximum likelihood estimation was numerically
stable, the estimates and projections were visually indistinguishable from those based on MAP
estimation.

A2.1 Temperature in ◦C

The following prior choices are adopted for the analysis of annual mean temperatures:

• log σ2
0: we can confidently assert that σ0 is between 0.005 and 5. This is because: if

σ0 < 0.005, then 95% of annual temperatures will be within 0.01◦C of the overall trend;
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Descriptor Interpretation Equation
σ2

0 Variance of interannual variations about trend for real climate (1)
ϕ0 Trend inertia coefficient for real climate (4)
τ 2

0 Variance of EBM approximation drift increments for real climate (5)

σ2
1

Common variance of interannual variations about trend for ensemble
members (8)†

ϕ1 Common trend inertia coefficient for ensemble members (9)†

α
Scaling of real-climate trends and approximation drifts in specifica-
tion of ensemble consensus processes (11)

τ̃ 2
ω Variance of shared discrepancy drift increments in ensemble (12)†

τ̃ 2
1

Common variance of increments, for individual member / simulator
drift discrepancies relative to ensemble consensus (13)†

Table A.1: Descriptors used in the mimics of Sections 4.2 and 4.3. Equation numbers indicate
where descriptor is introduced; ‘†’ superscripts indicate where the original specification has been
simplified by setting common values for all ensemble members.

and if σ0 > 5 then fewer than 95% of annual temperatures will be within 10◦C of the
trend. It follows that log σ0 is between log 0.005 = −5.3 and log 5 = 1.6; and log σ2

0 is
between −10.6 and 3.2. Interpreting this interval as covering the central 95% portion of
the required normal distribution (i.e. ‘mean ± 2 standard deviations’), the prior mean and
standard deviation are −3.7 and 3.45 respectively.

• log [ϕ0/ (1 − ϕ0)]: a N(0, 52) prior is adopted. This ensures that ϕ0 lies between 0 and 1,
and is likely to be in the range (0.0001, 0.9999) — on the basis that values less than 0.0001
(resp. greater than 0.9999) are unlikely to be distinguishable from 0.0001 (resp. 0.9999)
in practice so that these values can be considered as an effective range.

• log τ 2
0 : over a period of T years, the EBM approximation drift will change by an amount

that is normally distributed with mean 0 and variance Tτ 2
0 . Over a century, this cumulative

change is unlikely to be less than ±0.01◦C or more than ±10◦. This implies that the
standard deviation of the 100-year change is between 0.005 and 5, whence the variance
is between 0.0052 and 52 and τ 2

0 is between 0.0052/100 and 52/100. log τ 2
0 is therefore

between −15.2 and −1.4, so that the prior mean and standard deviation are −8.3 and 3.45
respectively.

• α: this is expected to be around 1 (so that the ensemble consensus trend is roughly equal
to the real-world trend on average), and it is unlikely to be negative. We set a prior of
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N(1, 1), therefore.

• log τ̃ 2
ω: although this is likely to be substantially smaller in magnitude than τ 2

0 , we use the
same prior specification — on the basis that the choice is guaranteed to be conservative
and is unlikely to influence any aspects of the estimation except its numerical stability.

• log σ2
1: the same prior is used for log σ2

1 as for log σ2
0 because the two parameters have

similar interpretations relating to the magnitude of interannual variation.

• log τ̃ 2
1 : as with τ̃ 2

1 , we use the same prior as for τ 2
0 .

• log [ϕ1/ (1 − ϕ0)]: The same prior is used as for log [ϕ0/ (1 − ϕ0)].

The same arguments — and hence the same prior choices — apply to seasonal mean temperatures.

A2.2 Precipitation totals in cm

Priors for the parameters in precipitation models are the same as for temperature except in cases
that are dependent on measurement units. A further consideration is that although one might still
reasonably expect some correspondence between precipitation trends and forcings, the specific
EBM-inspired mimic formulation is less defensible for regional precipitation than for regional
temperature: as a result, the approximation drift processes {β·(·)} are likely to be relatively more
important for precipitation than for temperature.

For annual precipitation totals, the judgements made herein are as follows:

• log σ2
0 and log σ2

1: it is unlikely that more than 5% of annual precipitation totals will be
within 10cm of, or more than 1m from, their expected values. This suggests that σ0 is
between 5cm and 50cm, so that log σ2

0 is between 3.2 and 7.8. Interpreting this interval as
covering the central 95% portion of the required normal distribution, the prior mean and
standard deviation for log σ2

0 are 5.5 and 1.15 respectively. The same prior is adopted for
log σ2

1.

• log τ 2
0 , log τ̃ 2

ω and log τ̃ 2
1 : over a century, the cumulative change β0(t + 100) − β0(t) in the

EBM approximation drift is unlikely to be less than 0.1cm or more than 10cm. This implies
that the standard deviation of the 100-year cumulative drift is between 0.05cm and 5cm,
whence the variance is between 0.052 and 52 so that τ 2

0 is between 0.052/100 and 52/100.
log τ 2

0 is therefore between −10.6 and −1.4, and its prior mean and standard deviation are
−6 and 2.3 respectively. As for temperature, the same priors are used for log τ̃ 2

ω and log τ̃ 2
1

as for log τ 2
0 .
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The same arguments can be applied to seasonal totals, but dividing the respective benchmarks
by 4 to account for the fact that seasonal accumulations are over three months rather than 12.
The respective variances are decreased by a factor of 16 therefore, whence the prior means for
log σ2

0 and log σ2
1 are reduced from 5.5 to 5.5− log 16 = 2.7. Similarly, the prior means for log τ 2

0 ,
log τ̃ 2

ω and log τ̃ 2
1 are reduced from -6 to −6 − log 16 = −8.8. The prior standard deviations are

unaffected.

A2.3 Logged precipitation totals

If the precipitation analysis is done on the log scale, the prior considerations for variance parame-
ters become slightly different because judgements apply to relative rather than absolute changes.
The judgements are as follows for annual precipitation totals:

• log σ2
0 and log σ2

1: it is unlikely that more than 5% of annual precipitation totals will be
within 1% of, or more than five times, their median values. The corresponding bounds for
log precipitation totals are log 1.01 = 0.01 and log 5 = 1.6 respectively. σ0 is between
0.005 and 0.8 therefore, so that log σ2

0 is between -10.6 and -0.4 Interpreting this as a 95%
interval in the usual way, the prior mean and standard deviation for log σ2

0 are −5.5 and
2.6 respectively. The same prior is adopted for log σ2

1.

• log τ 2
0 , log τ̃ 2

ω and log τ̃ 2
1 : the EBM approximation drift process β0(·) now refers to errors

in the EBM approximation to the dynamics of log total precipitation. Over a century, the
cumulative change β0(t + 100) − β0(t) = ∑100

i=1 Z0(t + i) corresponds to a multiplicative
change of exp

[∑100
i=1 Z0(t + i)

]
in approximation error on the original precipitation scale.

One might be surprised if the error were to change by more than a factor of 100 or by less
than a factor of 1.01 in each direction on this time scale; this corresponds to ∑100

i=1 Z0(t+ i)
lying in the range (log 1.01, log 100) = (0.01, 4.6). This implies that the standard deviation
of the cumulative 100-year change in drift is between 0.005 and 2.3, whence the variance
is between 0.0052 and 2.32 and τ 2

0 is between 0.0052/100 and 2.32/100. log τ 2
0 is therefore

between −15.2 and −2.9, so that the prior mean and standard deviation are −9.1 and 3
respectively. As usual, the same priors are used for log τ̃ 2

ω and log τ̃ 2
1 as for log τ 2

0 .

As these arguments apply to relative rather than actual changes, the same values can be used
without modification when working with logged seasonal, rather than annual, precipitation totals.
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A2.4 Initial values for the state vector

In the state-space formulation of a DLM, the system dynamics are expressed via linear relationships
between S(t) and S(t − 1) where S(t) denotes the state vector at time t: see equations (7)
and (20), for example. To formulate the likelihood — and hence the posterior distribution — for
the descriptor vector based on data for times t = 1, . . . , T , it is therefore necessary to specify
estimates of S(0), together with the covariance matrix of the associated estimation error. In the
time series literature, these are typically specified via the ‘equilibrium’ stochastic properties of the
state process (Chandler and Scott, 2011, Section 5.5). Since some aspects of the state dynamics
are adopted primarily for convenience, however (for example, the random-walk specification of the
drift process (β0 (t)) in (5), and its ensemble discrepancy counterparts), it is arguably undesirable
to rely on these notional equilibria. An alternative, adopted here, is to take a Bayesian perspective
and treat S(0) as an uncertain quantity requiring an informed prior distribution.

For both the exchangeable and structured ensembles, the state vector S(0) involves µ0(0) (the
expected value of the real-world quantity of interest); the drift approximation term β0(0); the
forcing dependence coefficient γ0; and the shared and member-specific discrepancies associated
with each of these components. With the exception of µ0, the prior means for all of these quan-
tities are set to zero (for example, there is no a priori reason to believe that discrepancies or drift
approximation terms should be either positive or negative); while the prior means for µ0(0) are
based on roughly typical values for the UK climate. For the prior covariance matrix, initially a
diagonal matrix is created, with diagonal elements set to common values deduced from conser-
vative assessments of likely ranges for the value of µ0(0) (for other terms such as discrepancies,
the likely ranges are invariably smaller than those for µ0(0) so that the use of common prior
variances throughout maintains conservatism): for example, for all of the temperature analyses
it is considered very unlikely that the actual value of µ0(0) will be more than 10◦C away from
its prior expectation, so the prior standard deviation is set to 5◦C and the prior variance is 25.
Having created this diagonal matrix, the corresponding conditional covariance matrix is computed
to respect the sum-to-zero constraints on the various components of S(0) — in the same way
as is done for the innovation vectors themselves (see Appendices A4 and A5).

Table A.2 summarises the prior means specified for µ0(0) for each different quantity of interest,
together with the prior variances used for the initial diagonal covariance matrix in the procedure
described above.

57



Quantity of interest Prior mean for µ0(0) Initial prior variance
Annual mean temperature (◦C) 10 25

DJF mean temperature (◦C) 5 25
MAM mean temperature (◦C) 10 25

JJA mean temperature (◦C) 15 25
SON mean temperature (◦C) 10 25

Annual total precipitation (cm) 120 104

DJF total precipitation (cm) 120 104

MAM total precipitation (cm) 30 625
JJA total precipitation (cm) 30 625

SON total precipitation (cm) 30 625

Table A.2: Prior means and initial variances used for the initial state vector S(0) for each quantity
of interest. For precipitation analysis on a log scale, a log transformation is applied to the prior
means but the variances are unchanged.

A3 Initial values for numerical MAP estimation
The MAP estimates of descriptors in the mimics of Sections 4.1, 4.2 and 4.3 are obtained via
numerical optimisation of the log-likelihood or log posterior. For any such numerical scheme it is
necessary to specify initial values for the optimisation algorithm.

For the observation-only mimic of Section 4.1, initial values for the variances σ2
0 and τ 2

0 are
obtained by fitting a smooth local linear trend model (Chandler and Scott, 2011, Section 5.5.5)
to the series: this is a special case of (4) with γ0 = 0 and ϕ0 = 1, and is stochastically equivalent
to an ARIMA(0,2,2) process so that it can be fitted by transforming parameter estimates obtained
using the arima() command in R. For the EBM-inspired mimic however, the meaningful range
of values for ϕ0 is 0 < ϕ0 < 1 (the restriction |ϕ0| < 1 is required for the derivation of equation
(6) in Appendix A1, and the restriction ϕ > 0 is required to demonstrate equivalence with the
continuous-time EBM solution as discussed following equation (6)). The initial value of ϕ0 is
thus set to 0.99, so that overall the initial values for the observation-only mimic are close to the
optimum for a special case of the model.

For the ensemble mimics of Sections 4.2 and 4.3, initial values for σ2
0, τ 2

0 and ϕ0 are taken from a
fit of the observation-only mimic to the historical climate observations. τ 2

ω and ϕ1 are initialised
by fitting this observation-only mimic to the ensemble mean time series; τ̃ 2

ω is then computed
as max (10−12, τ 2

ω − τ 2
0 ). For the member-specific discrepancies about the ensemble consensus,
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initial values for σ2
1 and τ̃ 2

1 are obtained by fitting a smooth local linear trend to the centred
ensemble members (i.e. after subtracting the ensemble mean from each member) and averaging
the resulting estimates; and α is initialised to 1.

A3.1 The requirement for a negative definite Hessian matrix

Although the use of MAP estimation — together with the choice of initial values outlined above —
is intended to provide a reasonable assurance of successful optimisation, it does not completely
guarantee that the computed Hessian of the log-posterior will be negative definite. Negative
definitiness is a necessary requirement for a maximum; and also a requirement for the uncertainty
calculations outlined in Section 4.4.1, since the inverse of the Hessian is the large-sample posterior
covariance matrix of the descriptor estimates. The reason for this could be either failure of the
optimisation algorithm, or (more frequently) numerical inaccuracies in situations where the log
posterior remains fairly flat despite the quadratic penalty introduced in the MAP estimation (see
Section 4.1.1).

Several solutions to this issue have been explored, including the replacement of a calculated
Hessian with the nearest positive definite matrix using the nearPD() function in the Matrix

library in R (Bates et al., 2023), but this yields very unreliable standard errors. The eventual
solution adopted is to shrink the eigenvalues of the computed Hessian towards their mean, via
the formula given in equation 1 of Ollila et al. (2021).

A4 Covariance matrix for constrained innovations in an ex-
changeable ensemble

Here we derive expression (19) for the covariance matrix of the innovations Z̃1(t), . . . Z̃M(t) in
an exchangeable M -member ensemble subject to the constraint Z̃·(t) = ∑M

i=1 Z̃i(t) = 0. The
derivation uses the standard result (Krzanowski, 1988, Section 7.2) that if X has a multivariate
distribution with mean vector µ and covariance matrix Σ, and if X is partitioned as X =
(X ′

1 X ′
2)

′ with a corresponding partitioning of µ and Σ as

µ =
 µ1

µ2

 and Σ =
 Σ11 Σ12

Σ21 Σ22

 ,
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then the conditional distribution of X1 given X2 = x2 is itself multivariate normal with mean
vector µ1 + Σ12Σ

−1
22 Σ21 (x2 − µ2) and covariance matrix Σ11 − Σ12Σ

−1
22 Σ21.

Applying this result to the vector Z̃∗(t) defined in (17) and its covariance matrix given at (18),
it is easily seen that conditioning on Z̃·(t) = 0 yields E

(
Z̃(t)|Z̃·(t) = 0

)
= 0 and

Var
(
Z̃(t)|Z̃·(t) = 0

)
=


τ̃ 2

1 0 · · · 0
0 τ̃ 2

1 · · · 0
... ... . . . ...
0 0 · · · τ̃ 2

1

 −


τ̃ 2

1

τ̃ 2
1
...

τ̃ 2
1


(

τ̃ 2
1 τ̃ 2

1 · · · τ̃ 2
1

)
/Mτ̃ 2

1 ,

which simplifies to (19) as required. ■

A5 Covariance matrix for constrained innovations in a struc-
tured regional ensemble

In the mimic for structured regional ensembles considered in Section 4.3, constraints were imposed
on the trends {µ̃r·(t)}, {µ̃·g(t)} and {µ̃rg(t)} for purposes of identifiability and interpretability.
As with the exchangeable case of Section 4.2, these constraints imply corresponding sum-to-zero
constraints on the innovations

{
Z̃r·(t)

}
,

{
Z̃·g(t)

}
and

{
Z̃rg(t)

}
in the respective approximation

error discrepancy processes
{
β̃r·(t)

}
,

{
β̃·g(t)

}
and

{
β̃rg(t)

}
.

The constraints ∑R
r=1 Z̃r·(t) = 0 and ∑G

g=1 Z̃·g(t) = 0 have the same form as those considered
in Appendix A4, so the corresponding blocks of the innovation covariance matrix have the same
form as (19) but with M replaced by R and G respectively. The constraints on the ‘interaction’
terms

{
Z̃rg(t)

}
lead to a more complex structure however, which we now derive.

For compactness of notation, we write Z̃rg in place of Z̃rg(t) throughout; and define Sr· =∑G
g=1 Z̃rg (r = 1, . . . , R) and S·g = ∑R

r=1 Zrg (g = 1, . . . , G − 1). Then, since the
{
Z̃rg

}
are

distributed independently as N(0, τ 2
1 ) in the absence of constraints, we have E (Sr·) = E (Sr·) =
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0; Var (Sr·) = Gτ 2
1 ; Var (S·g) = Rτ 2

1 ;

Cov
(
Z̃rg, Sr∗·

)
= Cov

Z̃rg,
G∑

g=1
Z̃r∗g

 =

 τ 2
1 r∗ = r

0 otherwise;

Cov
(
Z̃rg, S·g∗

)
=

 τ 2
1 g∗ = g

0 otherwise;

and Cov (Sr∗·, S·g∗) = Cov
 G∑

g=1
Z̃rg,

R∑
r=1

Z̃rg∗

 = τ 2
1 .

The augmented vector
(
Z̃11 . . . Z̃1G Z̃21 . . . Z̃2G . . . Z̃R1 . . . Z̃RGS1· . . . SR· S·1 . . . S·(G−1)

)
thus has mean 0 and covariance matrix



Z̃11 Z̃12 . . . Z̃1(G−1) Z̃1G · · · Z̃R1 Z̃R2 . . . Z̃R(G−1) Z̃RG S1· S2· . . . SR· S·1 S·2 . . . S·(G−1)

Z̃11 τ2
1 0 · · · 0 0 0 0 · · · 0 0 τ2

1 0 · · · 0 τ2
1 0 · · · 0

Z̃12 0 τ2
1 · · · 0 0 0 0 · · · 0 0 τ2

1 0 · · · 0 0 τ2
1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
Z̃1(G−1) 0 0 · · · τ2

1 0 0 0 · · · 0 0 τ2
1 0 · · · 0 0 0 · · · τ2

1

Z̃1G 0 0 · · · 0 τ2
1 0 0 · · · 0 0 τ2

1 0 · · · 0 0 0 · · · 0
...

. . .

Z̃R1 0 0 · · · 0 0 τ2
1 0 · · · 0 0 0 0 · · · τ2

1 τ2
1 0 · · · 0

Z̃R2 0 0 · · · 0 0 0 τ2
1 · · · 0 0 0 0 · · · τ2

1 0 τ2
1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
Z̃R(G−1) 0 0 · · · 0 0 0 0 · · · τ2

1 0 0 0 · · · τ2
1 0 0 · · · τ2

1

Z̃RG 0 0 · · · 0 0 0 0 · · · 0 τ2
1 0 0 · · · τ2

1 0 0 · · · 0
S1· τ2

1 τ2
1 · · · τ2

1 τ2
1 0 0 · · · 0 0 Gτ2

1 0 · · · 0 τ2
1 τ2

1 · · · τ2
1

S2· 0 0 · · · 0 0 0 0 · · · 0 0 0 Gτ2
1 · · · 0 τ2

1 τ2
1 · · · τ2

1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . .
...

SR· 0 0 · · · 0 0 τ2
1 τ2

1 · · · τ2
1 τ2

1 0 0 · · · Gτ2
1 τ2

1 τ2
1 · · · τ2

1

S·1 τ2
1 0 · · · 0 0 τ2

1 0 · · · 0 0 τ2
1 τ2

1 · · · τ2
1 Rτ2

1 0 · · · 0
S·2 0 τ2

1 · · · 0 0 0 τ2
1 · · · 0 0 τ2

1 τ2
1 · · · τ2

1 0 Rτ2
1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
S·(G−1) 0 0 · · · τ2

1 0 0 0 · · · τ2
1 0 τ2

1 τ2
1 · · · τ2

1 0 0 · · · Rτ2
1

· · ·

...
...

...
...

· · ·

· · ·

· · ·


Conditioning on S1· = S2· = . . . = SR· = S·1 = S·2 = . . . = S·(G−1) = 0 and using the standard
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result given in Appendix A4 again, the conditional mean of Z̃11, . . . , Z̃RG is 0 and the conditional
covariance matrix is τ 2

1 (IRG×RG − CD−1C ′) where IRG×RG is the RG × RG identity matrix
and where

C =



S1· S2· . . . SR· S·1 S·2 . . . S·(G−1)

Z̃11 1 0 · · · 0 1 0 · · · 0
Z̃12 1 0 · · · 0 0 1 · · · 0

...
...

...
. . .

...
...

...
. . .

...
Z̃1(G−1) 1 0 · · · 0 0 0 · · · 1

Z̃1G 1 0 · · · 0 0 0 · · · 0
...

Z̃R1 0 0 · · · 1 1 0 · · · 0
Z̃R2 0 0 · · · 1 0 1 · · · 0

...
...

...
. . .

...
...

...
. . .

...
Z̃R(G−1) 0 0 · · · 1 0 0 · · · 1

Z̃RG 0 0 · · · 1 0 0 · · · 0

...
...



and D =



S1· S2· . . . SR· S·1 S·2 . . . S·(G−1)

S1· G 0 · · · 0 1 1 · · · 1
S2· 0 G · · · 0 1 1 · · · 1

...
...

...
. . .

...
...

...
. . .

...
SR· 0 0 · · · G 1 1 · · · 1
S·1 1 1 · · · 1 R 0 · · · 0
S·2 1 1 · · · 1 0 R · · · 0

...
...

...
. . .

...
...

...
. . .

...
S·(G−1) 1 1 · · · 1 0 0 · · · R


.

It is straightforward to show, using the standard formula for the inverse of a partitioned matrix
(Gentle, 2007, Section 3.4), that

D−1 =



S1· S2· . . . SR· S·1 S·2 . . . S·(G−1)

S1· d
(0)
11 d

(1)
11 · · · d

(1)
11 d12 d12 · · · d12

S2· d
(1)
11 d

(0)
11 · · · d

(1)
11 d12 d12 · · · d12

... ... ... . . . ... ... ... . . . ...
SR· d

(1)
11 d

(1)
11 · · · d

(0)
11 d12 d12 · · · d12

S·1 d12 d12 · · · d12 d
(0)
22 d

(1)
22 · · · d

(1)
22

S·2 d12 d12 · · · d12 d
(1)
22 d

(0)
22 · · · d

(1)
22

... ... ... . . . ... ... ... . . . ...
S·(G−1) d12 d12 · · · d12 d

(1)
22 d

(1)
22 · · · d

(0)
22



,

where d
(0)
11 = (R + G − 1)/RG, d

(1)
11 = (G − 1)/RG, d12 = −1/R, d

(0)
22 = 2/R and d

(1)
22 = 1/R.

Writing 1 for the RG × 1 vector of ones, the matrix CD−1C ′ is now given by
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2d1211
′ +



Z̃11 Z̃12 . . . Z̃1G · · · Z̃R1 Z̃R2 . . . Z̃RG

Z̃11 d
(0)
11 + d

(0)
22 d

(0)
11 + d

(1)
22 · · · d

(0)
11 + d

(1)
22 d

(1)
11 + d

(0)
22 d

(1)
11 + d

(1)
22 · · · d

(1)
11 + d

(1)
22

Z̃12 d
(0)
11 + d

(1)
22 d

(0)
11 + d

(0)
22 · · · d

(0)
11 + d

(1)
22 d

(1)
11 + d

(1)
22 d

(1)
11 + d

(0)
22 · · · d

(1)
11 + d

(1)
22

...
...

...
. . .

...
...

...
. . .

...

Z̃1G d
(0)
11 + d

(1)
22 d

(0)
11 + d

(1)
22 · · · d

(0)
11 + d

(0)
22 d

(1)
11 + d

(1)
22 d

(1)
11 + d

(1)
22 · · · d

(1)
11 + d

(0)
22

...
. . .

Z̃R1 d
(1)
11 + d

(0)
22 d

(1)
11 + d

(1)
22 · · · d

(1)
11 + d

(1)
22 d

(0)
11 + d

(0)
22 d

(0)
11 + d

(1)
22 · · · d

(0)
11 + d

(1)
22

Z̃R2 d
(1)
11 + d

(1)
22 d

(1)
11 + d

(0)
22 · · · d

(1)
11 + d

(1)
22 d

(0)
11 + d

(1)
22 d

(0)
11 + d

(0)
22 · · · d

(0)
11 + d

(1)
22

...
...

...
. . .

...
...

...
. . .

...

Z̃RG d
(1)
11 + d

(1)
22 d

(1)
11 + d

(1)
22 · · · d

(1)
11 + d

(0)
22 d

(0)
11 + d

(1)
22 d

(0)
11 + d

(1)
22 · · · d

(0)
11 + d

(0)
22

· · ·

...
...

· · ·



,

the elements of which are either 2d12 + d
(0)
11 + d

(0)
22 = (R + G − 1)/RG, 2d12 + d

(0)
11 + d

(1)
22 =

(R−1)/RG, 2d12 +d
(1)
11 +d

(0)
22 = (G−1)/RG or 2d12 +d

(1)
11 +d

(1)
22 = −1/RG. The corresponding

elements of the required conditional covariance matrix are then τ 2
1 (R −1)(G−1)/RG, −τ 2

1 (R −
1)/RG, −τ 2

1 (G − 1)/RG and τ 2
1 /RG. ■
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