A Bayesian Parametric Approach to Handle Nonignorable Missingness in Economic Evaluations

Andrea Gabrio

Research Team: Gianluca Baio (UCL) and Alexina Mason (LSHTM)

University College London Department of Statistical Science

Collaborations: Michael Daniels (UF) Rachael Hunter (UCL – PCPH)

ucakgab@.ucl.ac.uk

http://www.ucl.ac.uk/statistics/research/statistics-health-economics/

PRIMENT Statistics, Health Economics and Methodology Seminar

26 June 2018

Outline

- 1. Health Economic Evaluation
- 2. "Standard" Approach
- 3. A General Bayesian Framework
- 4. Case Study: the MenSS trial
- 5. A Parametric Approach to Handle Missingness

- 6. Case Study: the PBS trial
- 7. Conclusions

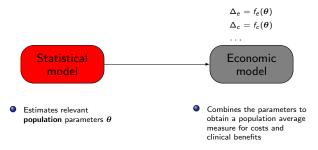
Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework

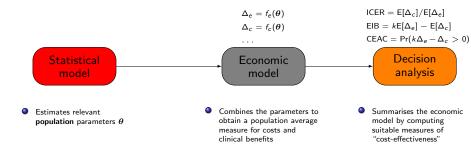
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Estimates relevant population parameters θ

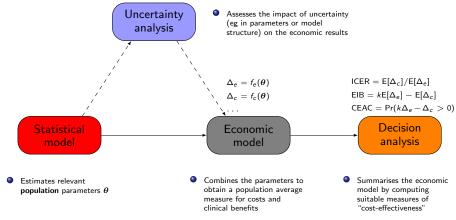
Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework



Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework



Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources, increasingly often under a Bayesian framework



"Standard" approach — individual level data

		Der	nograpl	hics		HRQL	data		Re	source u	ıse dat	а
ID	Trt	Sex	Age		и0	<i>u</i> ₁		U _J	<i>c</i> ₀	<i>c</i> ₁		cJ
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Standard" approach — individual level data

		Der	nograpl	hics		HRQL	data		Re	source ı	ıse dat	а
ID	Trt	Sex	Age		и0	<i>u</i> ₁		u _J	<i>c</i> ₀	<i>c</i> ₁		cj
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

- The typical analysis is based on the following steps:
 - Compute individual QALYs and total costs as

$$e_i = \sum_{j=1}^J (u_{ij} + u_{ij-1}) \frac{\delta_j}{2}$$
 and $c_i = \sum_{j=1}^J c_{ij}$, [with: $\delta_j = \frac{\operatorname{Time}_j - \operatorname{Time}_{j-1}}{\operatorname{Unit of time}}$]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

"Standard" approach — individual level data

		Der	nograpl	hics		HRQL	data		Re	esource ı	ıse dat	а
ID	Trt	Sex	Age		и0	u_1		uj	c_0	c_1		cj
1	1	М	23		0.32	0.66		0.44	103	241		80
2	1	М	21		0.12	0.16		0.38	1 204	1 808		877
3	2	F	19		0.49	0.55		0.88	16	12		22

- The typical analysis is based on the following steps:
 - Assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$e_i = \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\operatorname{Trt}_i + \varepsilon_{ie} [+\ldots], \qquad \varepsilon_{ie} \sim \operatorname{Normal}(0, \sigma_e)$$

$$c_i = \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\operatorname{Trt}_i + \varepsilon_{ic} [+\ldots], \qquad \varepsilon_{ic} \sim \operatorname{Normal}(0, \sigma_c)$$

Stimate population average cost and effectiveness differentials and use bootstrap to quantify uncertainty

What's wrong with this?

- Potential correlation between costs & utilities
 - Strong positive correlation effective treatments are innovative and are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.

What's wrong with this?

- Potential correlation between costs & utilities
 - Strong positive correlation effective treatments are innovative and are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.

• Asymmetric empirical distributions

- Both outcome variables can be highly skewed
- Costs are defined on $[0, +\infty)$ and utilities are typically bounded in [0; 1]

• Spikes at one for utilities and at zero for costs may occur

What's wrong with this?

- Potential correlation between costs & utilities
 - Strong positive correlation effective treatments are innovative and are associated with higher unit costs
 - Negative correlation more effective treatments may reduce total care pathway costs e.g. by reducing hospitalisations, side effects, etc.

• Asymmetric empirical distributions

- Both outcome variables can be highly skewed
- Costs are defined on $[0, +\infty)$ and utilities are typically bounded in [0; 1]
- Spikes at one for utilities and at zero for costs may occur
- ... and of course missing data
 - Missingness may occur in either or both utilities/costs
 - Important to explore the impact on the results of a range of plausible missingness assumptions in sensitivity analysis

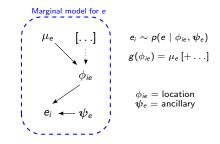
A general Bayesian framework

• In general, can account for **correlation** through a joint distribution $p(e, c) = p(e)p(c \mid e) = p(c)p(e \mid c)$

A general Bayesian framework

 $\bullet\,$ In general, can account for ${\bf correlation}$ through a joint distribution

$$p(e,c) = p(e)p(c \mid e) = p(c)p(e \mid c)$$

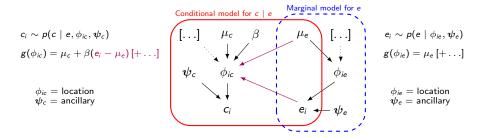


イロト 不得 トイヨト イヨト

3

A general Bayesian framework

• In general, can account for **correlation** through a joint distribution $p(e, c) = p(e)p(c \mid e) = p(c)p(e \mid c)$

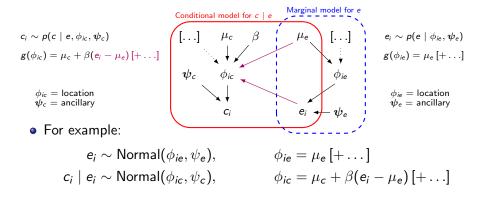


ヘロト 人間ト 人間ト 人間ト

э.

A general Bayesian framework

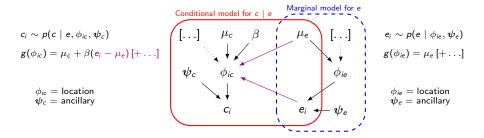
• In general, can account for **correlation** through a joint distribution $p(e, c) = p(e)p(c \mid e) = p(c)p(e \mid c)$



A general Bayesian framework

• Flexible enough to use alternative distributions to capture **skewness**

$$p(e,c) = p(e)p(c \mid e) = p(c)p(e \mid c)$$



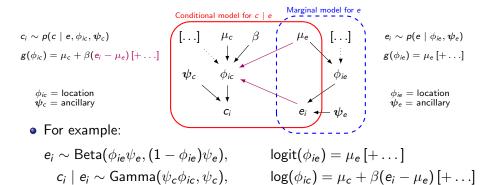
(日)、

э

A general Bayesian framework

• Flexible enough to use alternative distributions to capture **skewness**

$$p(e,c) = p(e)p(c \mid e) = p(c)p(e \mid c)$$

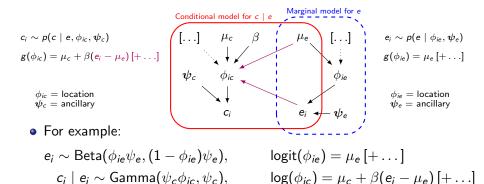


イロト 不得 トイヨト イヨト

-

A general Bayesian framework

• Can incorporate external information as priors for **missing data** $p(e, c) = p(e)p(c \mid e) = p(c)p(e \mid c)$



• Combining "modules" and fully characterising uncertainty about deterministic functions of random quantities with MCMC methods

イロト 不得 トイヨト イヨト 三日

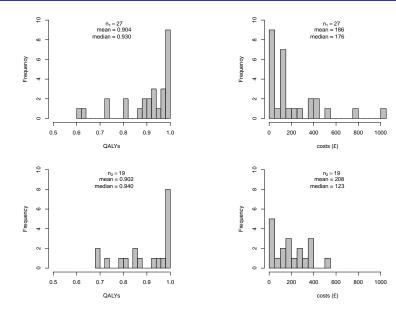
The MenSS Trial

Bailey et al., Health Tech Ass 2016; 20(91)

- Pilot RCT that evaluates the cost-effectiveness of a new digital intervention to reduce the incidence of STI in young men with respect to the SOC
 - QALYs calculated from utilities (EQ-5D)
 - Total costs calculated from different components (no baseline)

Time	Type of outcome	observed (%)	observed (%)
		control $(n_1=75)$	intervention $(n_2=84)$
Baseline	utilities	72 (96%)	72 (86%)
3 months	utilities and costs	34 (45%)	23 (27%)
6 months	utilities and costs	35 (47%)	23 (27%)
12 months	utilities and costs	43 (57%)	36 (43%)
Complete cases	utilities and costs	27 (44%)	19 (23%)

The MenSS Trial: Complete Cases



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

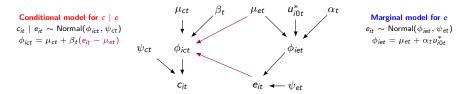
イロト イポト イヨト イヨト

э

Bivariate Normal

Modelling

Account for correlation between QALYs and costs



Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

イロト イポト イヨト イヨト

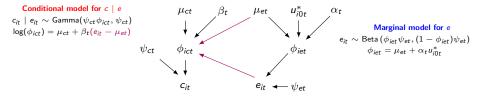
Bivariate Normal

Account for correlation between QALYs and costs

2 Beta-Gamma

Modelling

- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- **But**: needs to rescale observed data $e_{it} = (e_{it} \epsilon)$ to avoid spikes at 1



Bivariate Normal

• Account for correlation between QALYs and costs

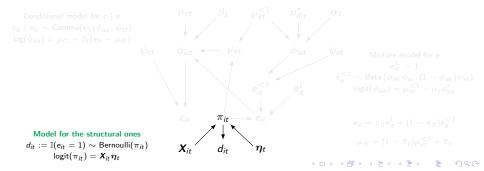
2 Beta-Gamma

Modelling

- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- **But**: needs to rescale observed data $e_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

• Model *e_{it}* as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values



Bivariate Normal

• Account for correlation between QALYs and costs

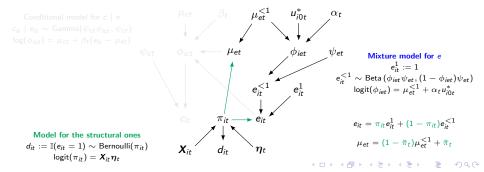
Ø Beta-Gamma

Modelling

- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- **But**: needs to rescale observed data $e_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

• Model *e_{it}* as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values



Bivariate Normal

• Account for correlation between QALYs and costs

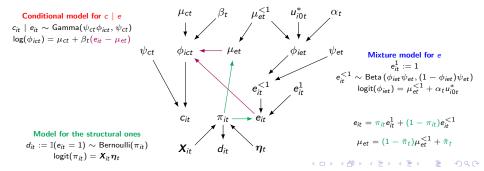
Ø Beta-Gamma

Modelling

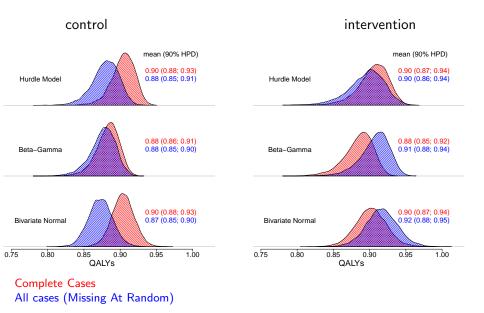
- Model the relevant ranges: $\mathsf{QALYs} \in (0,1)$ and $\mathsf{costs} \in (0,\infty)$
- **But**: needs to rescale observed data $e_{it} = (e_{it} \epsilon)$ to avoid spikes at 1

Hurdle model

• Model *e_{it}* as a **mixture** to account for correlation between outcomes, model the relevant ranges and account for structural values

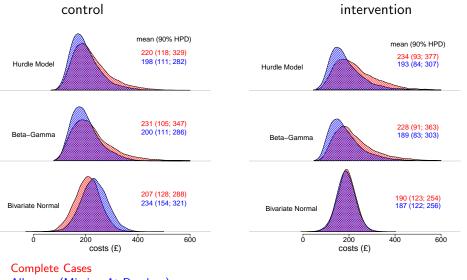


Results: QALYs



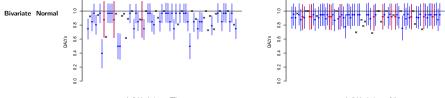
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results: Costs



All cases (Missing At Random)

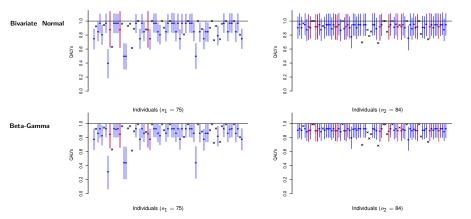
Imputations (under MAR)



Individuals ($n_1 = 75$)

Individuals $(n_2 = 84)$

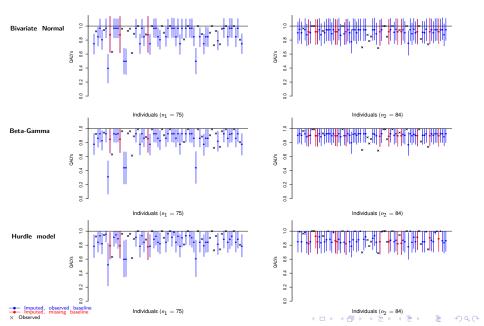
Imputations (under MAR)



(日)、

э

Imputations (under MAR)

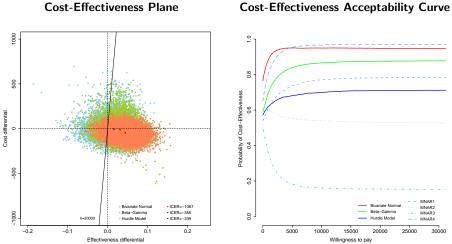


"extreme" MNAR scenarios

- We observe $n_{01}^* = 13$ and $n_{02}^* = 22$ individuals with $u_{0it} = 1$ and $u_{jit} = NA$, for j = 1, 2, 3
- For those individuals, we cannot compute directly the structural one indicator *d_{it}* and so need to make assumptions/model this
 - Sensitivity analysis to alternative departures from MAR

Scenario	Control $(n_1^* = 13)$	Intervention $(n_2^* = 22)$
MNAR1	$d_{i1} = 1$	$d_{i2} = 1$
MNAR2	$d_{i1}=0$	$d_{i2} = 0$
MNAR3	$d_{i1}=1$	$d_{i2} = 0$
MNAR4	$d_{i1}=0$	$d_{i2} = 1$

Cost-effectiveness analysis



(日) (同) (日) (日) ъ

Discussion

• ILD are subject to some complexities that are typically ignored by the "standard" approach, which could lead to biased results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Discussion

- ILD are subject to some complexities that are typically ignored by the "standard" approach, which could lead to biased results
- A Bayesian approach allows to increase model complexity to jointly account for these with relatively little expansion to the basic model

Discussion

- ILD are subject to some complexities that are typically ignored by the "standard" approach, which could lead to biased results
- A Bayesian approach allows to increase model complexity to jointly account for these with relatively little expansion to the basic model

• MAR can be used as reference assumption but plausible MNAR departures should be explored in sensitivity analysis

Discussion

- ILD are subject to some complexities that are typically ignored by the "standard" approach, which could lead to biased results
- A Bayesian approach allows to increase model complexity to jointly account for these with relatively little expansion to the basic model
- MAR can be used as reference assumption but plausible MNAR departures should be explored in sensitivity analysis
- Possible to expand the framework to a longitudinal setting to handle missingness more efficiently

Advantages

• Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Advantages

- Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
- Use all available utility/cost data in each pattern $\mathbf{r}_{ij} = (r_{ii}^u, r_{ij}^c)$

- Advantages
 - Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
 - Use all available utility/cost data in each pattern $\mathbf{r}_{ij} = (r_{ij}^u, r_{ij}^c)$

- Fit model to the joint p(y, r)
 - Factor $p(\mathbf{y}, \mathbf{r})$ into $p(\mathbf{y}^{r}_{obs}, \mathbf{r})$ and $p(\mathbf{y}^{r}_{mis} \mid \mathbf{y}^{r}_{obs}, \mathbf{r})$

Advantages

- Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
- Use all available utility/cost data in each pattern $\mathbf{r}_{ij} = (r_{ij}^u, r_{ij}^c)$
- Fit model to the joint p(y, r)
 - Factor p(y, r) into $p(y_{obs}^{r}, r)$ and $p(y_{mis}^{r} | y_{obs}^{r}, r)$
 - Integrate out $\mathbf{y}^{\mathbf{r}}_{mis}$ from $p(\mathbf{y}, \mathbf{r})$ and estimate the means of $\mathbf{y}^{\mathbf{r}}_{obs}$

Advantages

- Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
- Use all available utility/cost data in each pattern $\mathbf{r}_{ij} = (r_{ij}^u, r_{ij}^c)$
- Fit model to the joint p(y, r)
 - Factor p(y, r) into $p(y^{r}_{obs}, r)$ and $p(y^{r}_{mis} \mid y^{r}_{obs}, r)$
 - Integrate out $\mathbf{y}^{\mathbf{r}}_{mis}$ from $p(\mathbf{y}, \mathbf{r})$ and estimate the means of $\mathbf{y}^{\mathbf{r}}_{obs}$

• Identify the means of **y**^r_{mis} using:

Advantages

- Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
- Use all available utility/cost data in each pattern $\mathbf{r}_{ij} = (r_{ij}^u, r_{ij}^c)$
- Fit model to the joint p(y, r)
 - Factor p(y, r) into $p(y_{obs}^{r}, r)$ and $p(y_{mis}^{r} | y_{obs}^{r}, r)$
 - Integrate out $\mathbf{y}^{\mathbf{r}}_{mis}$ from $p(\mathbf{y}, \mathbf{r})$ and estimate the means of $\mathbf{y}^{\mathbf{r}}_{obs}$

- Identify the means of **y**^r_{mis} using:
 - The mean estimates of \mathbf{y}^{r}_{obs}
 - Sensitivity parameters ${f \Delta}=({\Delta}^u,{\Delta}^c)$

Advantages

- Account for time dependence between outcomes $y_{ij} = (u_{ij}, c_{ij})$
- Use all available utility/cost data in each pattern $\mathbf{r}_{ij} = (r_{ij}^u, r_{ij}^c)$
- Fit model to the joint p(y, r)
 - Factor p(y, r) into $p(y_{obs}^{r}, r)$ and $p(y_{mis}^{r} | y_{obs}^{r}, r)$
 - Integrate out $\mathbf{y}^{\mathbf{r}}_{mis}$ from $p(\mathbf{y}, \mathbf{r})$ and estimate the means of $\mathbf{y}^{\mathbf{r}}_{obs}$
 - Identify the means of **y**^r_{mis} using:
 - The mean estimates of \mathbf{y}^{r}_{obs}
 - Sensitivity parameters ${f \Delta}=({\Delta}^u,{\Delta}^c)$
 - Assess the robustness of the results to plausible MNAR scenarios using different informative priors on Δ

The PBS study

Hassiotis et al., Br J Psychiatry 2018; 212(3)

- Multi-centre RCT that evaluates the cost-effectiveness of a new multicomponent intervention (PBS) relative to TAU for individuals suffering from intellectual disability and challenging behaviour
- Both utilities (EQ-5D) and costs (clinic records) are partially-observed

Time	TAU (n ₁ =136)	PBS (<i>n</i> ₂ =108)				
	observ	ved (%)	observed (%)				
	utilities	costs	utilities	costs			
Baseline	127 (93%)	136 (100%)	103 (95%)	108 (100%)			
6 months	119 (86%)	128 (94%)	102 (94%)	103 (95%)			
12 months	125 (92%)	130 (96%)	103 (95%)	104 (96%)			
complete cases	108	(79%)	96 (89%)				

Missingness patterns

	TAU $(t=1)$							PBS (<i>t</i> = 2)						
	и0	c_0	u_1	c_1	<i>u</i> ₂	<i>c</i> ₂	n _{r1}	u ₀	c_0	u_1	c_1	<i>u</i> ₂	<i>c</i> ₂	n _{r2}
<i>r</i> = 1	1	1	1	1	1	1	108	1	1	1	1	1	1	96
mean	0.678	1546	0.684	1527	0.680	1520		0.726	2818	0.771	2833	0.759	2878	
r	0	1	1	1	1	1	7	0	1	1	1	1	1	5
mean	-	1310	0.704	1440	0.644	1858		-	2573	0.780	2939	0.849	2113	
r	1	1	0	1	1	1	4	1	1	0	1	1	1	1
mean	0.709	1620	-	1087	0.737	851		0.467	9649	-	4828	0.259	4930	
r	1	1	1	1	0	1	2	1	1	1	1	0	1	1
mean	0.564	640	0.648	512	-	286		0.817	3788	0.884	0	-	0	
r	1	1	0	0	1	1	4	1	1	0	0	1	1	1
mean	0.716	2834	-	-	0.634	679		0.501	3608	-	-	0.872	4781	
r	1	1	0	0	0	0	4	1	1	0	0	0	0	4
mean	0.434	1528	-	-	-	-		0.760	3086	-	-	-	-	
r	0	1	0	1	1	1	2	0	1	0	1	1	1	0
mean	-	595	-	397	0.483	69		-	-	-	-	-	-	
r	1	1	1	1	0	0	2	1	1	1	1	0	0	0
mean	0.743	1434	0.705	1606	-	-		-	-	-	-	-	-	
r	1	1	0	1	0	1	3	1	1	0	1	0	1	0
mean	0.726	1510	-	432	-	976		-	-	-	-	-	-	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

• Fit model to completers r = 1 and joint set of all other patterns $r \neq 1$ separately for t = 1, 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

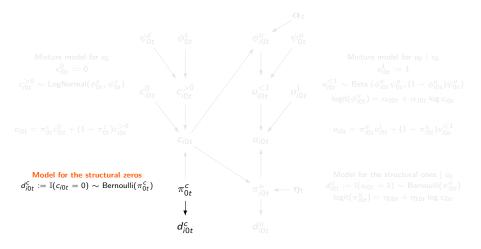
- Fit model to completers r = 1 and joint set of all other patterns $r \neq 1$ separately for t = 1, 2
- Capture outcome and time dependence through a series of conditional distributions p(c_{ij} | c_{ij-1}, u_{ij-1}) and p(u_{ij} | c_{ij}, u_{ij-1})

- Fit model to completers r = 1 and joint set of all other patterns $r \neq 1$ separately for t = 1, 2
- Capture outcome and time dependence through a series of conditional distributions p(c_{ij} | c_{ij-1}, u_{ij-1}) and p(u_{ij} | c_{ij}, u_{ij-1})
- Account for skewness using Beta distributions for u_{ij}^{\star} and LogNormal distributions for c_{ij} , with $u_{ij}^{\star} = \frac{u_{ij} \min(u_j)}{\max(u_j) \min(u_j)}$

- Fit model to completers r = 1 and joint set of all other patterns $r \neq 1$ separately for t = 1, 2
- Capture outcome and time dependence through a series of conditional distributions p(c_{ij} | c_{ij-1}, u_{ij-1}) and p(u_{ij} | c_{ij}, u_{ij-1})
- Account for skewness using Beta distributions for u_{ij}^{\star} and LogNormal distributions for c_{ij} , with $u_{ij}^{\star} = \frac{u_{ij} \min(u_j)}{\max(u_i) \min(u_i)}$
- Allow for structural ones in u_{ij} and zeros in c_{ij} using a hurdle form, i.e. $d_{ij}^u := \mathbb{I}(u_{ij} = 1)$ and $d_{ij}^c := \mathbb{I}(c_{ij} = 0)$

Gabrio et al. (2018). https://arxiv.org/abs/1805.07147

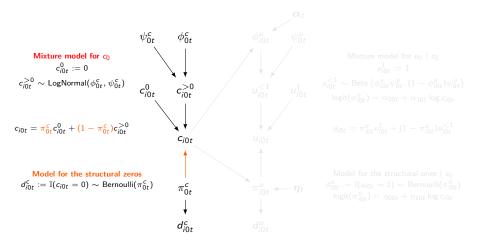
(日)、



Gabrio et al. (2018). https://arxiv.org/abs/1805.07147

イロト 不得 トイヨト イヨト

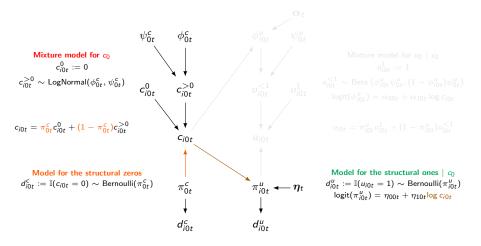
э



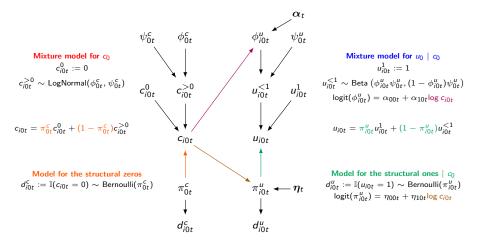
Gabrio et al. (2018). https://arxiv.org/abs/1805.07147

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3



Gabrio et al. (2018). https://arxiv.org/abs/1805.07147



• Use Monte Carlo integration to derive the mean estimates $E[\mathbf{y}^{r}_{obs}]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Use Monte Carlo integration to derive the mean estimates E[y^r_{obs}]

• Identify the mean estimates $\mathsf{E}[\mathbf{y^r}_{\textit{mis}}] = \mathsf{E}[\mathbf{y^r}_{obs} + \mathbf{\Delta}_j]$

• Use Monte Carlo integration to derive the mean estimates E[y^r_{obs}]

- Identify the mean estimates $\mathsf{E}[\mathbf{y^r}_{\textit{mis}}] = \mathsf{E}[\mathbf{y^r}_{obs} + \mathbf{\Delta}_j]$
- Compute weighted average across r to derive $\mu_{jt} = (\mu_{jt}^u, \mu_{jt}^c)$

• Use Monte Carlo integration to derive the mean estimates $E[\mathbf{y}^{\mathbf{r}}_{obs}]$

- Identify the mean estimates $\mathsf{E}[\mathbf{y^r}_{\textit{mis}}] = \mathsf{E}[\mathbf{y^r}_{obs} + \mathbf{\Delta}_j]$
- Compute weighted average across r to derive $\mu_{jt} = (\mu_{jt}^u, \mu_{jt}^c)$
- Set $\mathbf{\Delta}_j = \mathbf{0}$ as benchmark assumption

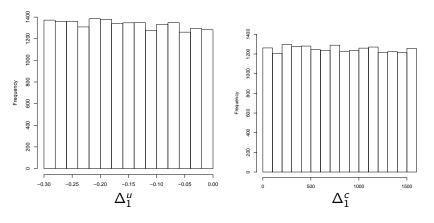
- Use Monte Carlo integration to derive the mean estimates E[y^r_{obs}]
- Identify the mean estimates $\mathsf{E}[\mathbf{y^r}_{\textit{mis}}] = \mathsf{E}[\mathbf{y^r}_{obs} + \mathbf{\Delta}_j]$
- Compute weighted average across r to derive $\mu_{jt} = (\mu_{jt}^u, \mu_{jt}^c)$
- Set $\mathbf{\Delta}_j = \mathbf{0}$ as benchmark assumption
- Specify three alternative priors on Δ_j = (Δ^u_j, Δ^c_j), calibrated based on the variability in the observed data at each time j

Priors on sensitivity parameters

• Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$

Priors on sensitivity parameters

- Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
- Δ^{flat} : Flat between 0 and twice the observed standard deviation

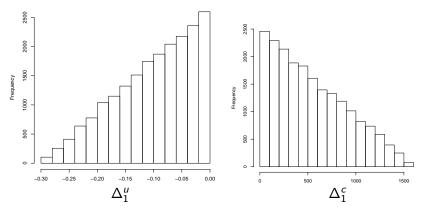


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

HEE Standard Approach Bayesian Framework MenSS Missingness model PBS Conclusions

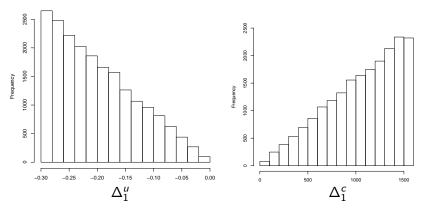
Priors on sensitivity parameters

- Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
- Δ^{skew0} : Skewed towards values closer to 0 on the same range as Δ^{flat}



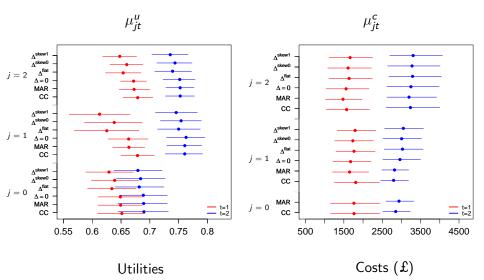
Priors on sensitivity parameters

- Assumption: $u_{mis} < u_{obs}$ and $c_{mis} > c_{obs}$
- Δ^{skew1} : Skewed towards values far from 0 on the same range as Δ^{flat}



ロト (日) (日) (日) (日) (日) (日) (日)

Results: means utilities and costs

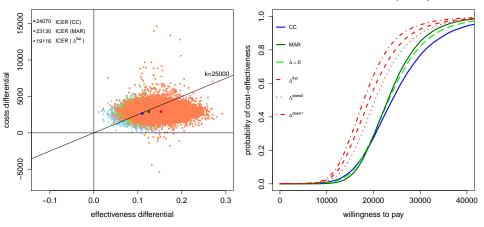


▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 国 ● のへ(で)

HEE Standard Approach Bayesian Framework MenSS Missingness model PBS Conclusions

Results: economic evaluation (1)

Cost-Effectiveness Acceptability Curve



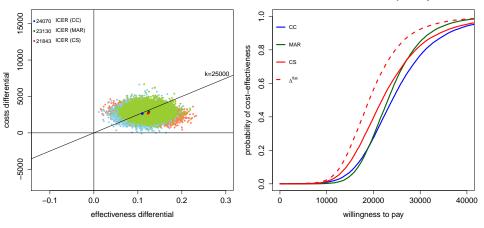
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

HEE Standard Approach Bayesian Framework MenSS Missingness model PBS Conclusions

Results: economic evaluation (2)

Cost-Effectiveness Plane

Cost-Effectiveness Acceptability Curve



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

• A full Bayesian approach has some advantages for handling missing data in economic evaluation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A full Bayesian approach has some advantages for handling missing data in economic evaluation
- I Flexibility of the modelling framework
 - Naturally allows the propagation of uncertainty to the economic model

• Uses modular structure to account for complexities that may bias inferences and mislead the assessment

- A full Bayesian approach has some advantages for handling missing data in economic evaluation
- I Flexibility of the modelling framework
 - Naturally allows the propagation of uncertainty to the economic model
 - Uses modular structure to account for complexities that may bias inferences and mislead the assessment
- Extension of standard "imputation methods"
 - Performs the estimation and imputation tasks simultaneously
 - Uses probabilistic models that can be implemented in standard software (e.g. OpenBUGS or JAGS)

- A full Bayesian approach has some advantages for handling missing data in economic evaluation
- I Flexibility of the modelling framework
 - Naturally allows the propagation of uncertainty to the economic model
 - Uses modular structure to account for complexities that may bias inferences and mislead the assessment
- Extension of standard "imputation methods"
 - Performs the estimation and imputation tasks simultaneously
 - Uses probabilistic models that can be implemented in standard software (e.g. OpenBUGS or JAGS)
- S Principled incorporation of external evidence through priors
 - Crucial for conducting sensitivity analysis to MNAR
 - Useful in small/pilot trials where there is limited evidence