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HEE

Health Economic Evaluation

Objective: Combine costs & benefits of a given intervention into a
rational scheme for allocating resources, increasingly often under a
Bayesian framework

Uncertainty @ Assesses the impact of uncertainty

. (eg in parameters or model
analySIS structure) on the economic results

J N Ae = £.(6) ICER = E[A.]/E[Ac]
\
K v Ac = £(8) EIB = kE[Ac] — E[AC]
/ .. CEAC = Pr(kAe — A > 0)

@ Estimates relevant @ Combines the parameters to @ Summarises the economic
population parameters 6 obtain a population average model by computing
measure for costs and suitable measures of

clinical benefits “cost-effectiveness”
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“Standard” approach — individual level data

Demographics HRQL data Resource use data
ID Trt Sex  Age up u uy Q@ a cy
1 1 M 23 e 0.32 0.66 e 0.44 103 241 . 80
2 1 M 21 012 016 ... 038 1204 1808 ... 877
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“Standard” approach — individual level data

Demographics HRQL data Resource use data
ID Trt Sex Age uy u el uy o) a . cy
1 1 M 23 e 0.32 0.66 e 0.44 103 241 . 80
2 1 M 21 ... 012 016 ... 038 1204 1808 ... 877
3 2 F 19 . 0.49 0.55 .. 0.88 16 12 I 22

@ The typical analysis is based on the following steps:

@ Compute individual QALYs and total costs as

J s J
L . B Y L . < Timej — Timej_;
e = E (ujj + ujj—1) 5 and ¢ = E G, {mth. 0= gt
Jj=1

Jj=1



Standard Approach
“Standard” approach — individual level data

Demographics HRQL data Resource use data
ID Trt Sex Age . uy u uy o) a cy
1 1 M 23 . 0.32 0.66 A 0.44 103 241 . 80
2 1 M 21 ... 012 016 ... 038 1204 1808 877
3 2 F 19 ... 049 055 ... 088 16 12 .. 22

@ The typical analysis is based on the following steps:

@ Assume normality and linearity and model independently individual
QALYs and total costs by controlling for baseline values

€; Qeg + Qe lpi + e Trtj + €je [+ .. .], Eie ™~ NormaI(O, Ue)

gic ~ Normal(0,0.)

© Estimate population average cost and effectiveness differentials and use
bootstrap to quantify uncertainty

G = Qo+ i+ acnTrt+eic[+..],
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are associated with higher unit costs

o Negative correlation — more effective treatments may reduce total
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Standard Approach
What's wrong with this?

@ Potential correlation between costs & utilities

e Strong positive correlation — effective treatments are innovative and
are associated with higher unit costs

o Negative correlation — more effective treatments may reduce total
care pathway costs e.g. by reducing hospitalisations, side effects, etc.

o Asymmetric empirical distributions
e Both outcome variables can be highly skewed
o Costs are defined on [0, +00) and utilities are typically bounded in [0; 1]
e Spikes at one for utilities and at zero for costs may occur

@ ... and of course missing data
o Missingness may occur in either or both utilities/costs
e Important to explore the impact on the results of a range of plausible
missingness assumptions in sensitivity analysis
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Bayesian Framework
A general Bayesian framework

@ In general, can account for correlation through a joint distribution

ple,c) = ple)p(c | ) = p(c)p(e | <)

Marginal model for e
Conditional model for ¢ | e argina_mogel 2

ci ~ p(c| e, dic,Pc) [ . ] He 153 .I He [ . ] ‘| e ~ p(e | pie, Pe)
. 1 1

g(dic) = pe + Blei — pe) [+ -] " i,{/ v ! &(die) = pe [+ -]
"pc ¢ic : ¢ie :

je = locat I | ie = locati
B =i N | geoee
Ci | e We 1
@ For example: ~—T____ -7

€j ~ Normal((biea ¢e), ¢ie = He [+ .. ]

ci | e ~ Normal(oic, ¥c), bic = pe + Blei — pe) [+ ]
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A general Bayesian framework

@ Flexible enough to use alternative distributions to capture skewness
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Bayesian Framework
A general Bayesian framework

@ Flexible enough to use alternative distributions to capture skewness

ple,c) = ple)p(c | ) = p(c)p(e | <)

Marginal model for e
Conditional model for ¢ | e argina_mogel 2

i~ ple | & dic, o) L He B me N o] ) e~ el b
8(6i) = e + Bler — o) [+ ] R »{/ v s =pelr ]
Ye o Pie : Pie |
i ! ! .
i N
@ For example: ' S
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Bayesian Framework
A general Bayesian framework

@ Can incorporate external information as priors for missing data

ple,c) = ple)p(c | ) = p(c)p(e | <)

Marginal model for e

Conditional model forc | e = === ===« N

ci ~ p(c| e, dic,Pe) [--] e 153 L Me [--] ‘| e ~ p(e | die, Pe)

£(6ic) = e + Bler — pe) [+ ] R ,{/ ¢ G = pelt ]
"pc ¢ic : ¢ie :

4= iy N TS g
G | & Pe !
@ For example: ~—T____ -7
€ ~ Beta(¢ie1/}ea (1 - ¢ie)1/}e), Iogit(d)ie) = Ue [+ .- ]
ci | e ~ Gamma(¢coic, ¥e), log(¢ic) = pe + Blei — pe) [+ -]

@ Combining “modules” and fully characterising uncertainty about
deterministic functions of random quantities with MCMC methods



MenSS

The MenSS Trial Bailey et al., Health Tech Ass 2016; 20(91)

@ Pilot RCT that evaluates the cost-effectiveness of a new digital
intervention to reduce the incidence of STI in young men with respect
to the SOC

o QALYs calculated from utilities (EQ-5D)
o Total costs calculated from different components (no baseline)

Time Type of outcome observed (%) observed (%)

control (n=75) intervention (n,=84)

Baseline utilities 72

3 months utilities and costs 34 (45%

12 months utilities and costs 43 (57%

(96%) (86%)
(45%) (27%)
6 months utilities and costs 35 (47%) 23 (27%)
(57%) (43%)
(44%) (23%)

Complete cases utilities and costs 27




MenSS

The MenSS Trial: Complete Cases
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MenSS

Modelling Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

© Bivariate Normal
o Account for correlation between QALYs and costs

Mt B et "’i*Ot ot
Conditional model for c | e Marginal model for e
cit | ejr ~ Normal(jct, Yer) L “// \ i / et ~ Normal(jer, Vet)
Dict = pet + Be(eir — tet) biet = Het + Crtujpy
wct ¢ict ¢iet



MenSS

Modelling Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

© Bivariate Normal
o Account for correlation between QALYs and costs
@ Beta-Gamma

o Model the relevant ranges: QALYs € (0,1) and costs € (0, )
o But: needs to rescale observed data e; = (e — €) to avoid spikes at 1

Conditional model for ¢ | e

lOt
cit | eir ~ Gamma(thct djct, Pet) L M | model f
log(®jct) = et + Bi(ejr — pet) e e e
ejr ~ Beta (pjertet, (1 — Piet)Vet)
Pt Dict ¢:et Piet = Het + arujy,

\l\/

it +— et
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Modelling Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

© Bivariate Normal
o Account for correlation between QALYs and costs
@ Beta-Gamma

o Model the relevant ranges: QALYs € (0,1) and costs € (0, )
o But: needs to rescale observed data e; = (e — €) to avoid spikes at 1

© Hurdle model

o Model e;; as a mixture to account for correlation between outcomes,
model the relevant ranges and account for structural values

it

Model for the structural ones / L \
dip :=I(ejy =1) ~ B li(7;
it (eit ) ernoulli(rie ) X di Mt

logit(7) = Xjeme



MenSS

Modelling

@ Bivariate Normal

Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

o Account for correlation between QALYs and costs

@ Beta-Gamma

o Model the relevant ranges: QALYs € (0,1) and costs € (0, )
o But: needs to rescale observed data e; = (e — €) to avoid spikes at 1

© Hurdle model

o Model e;; as a mixture to account for correlation between outcomes,
model the relevant ranges and account for structural values

Het / Diet
<1 1
it it

Model for the structural ones
dip :=1(ejp =1) ~ B i
it (e:r. ) ernoulli(7t ) X di Mt
logit(mjr) = Xjtme

Qat

Yet Mixture model for e
e,-lt =1
eit<1 ~ Beta (@jettet, (1 — Piet)Vet)
logit(bre) = iy’ + cveufy,

— . al - <1
et = ey + (1 — “/r)e,-t

pet = (1 — m)uSt + 7
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Modelling Gabrio et al. (2018). https://arxiv.org/abs/1801.09541

© Bivariate Normal
o Account for correlation between QALYs and costs
@ Beta-Gamma

o Model the relevant ranges: QALYs € (0,1) and costs € (0, )
o But: needs to rescale observed data e; = (e — €) to avoid spikes at 1

© Hurdle model

o Model e;; as a mixture to account for correlation between outcomes,
model the relevant ranges and account for structural values

Conditional model for ¢ | e Bt Met Uio
Git | eie ~ Gamma(YetPice, Yet) L / / \ /
log(@ict) = et + Be(eir — pet)
Yet Pict Het Piet et Mixture model for e

,‘// =1

eit<1 ~ Beta (djer¥et, (1 — Diet)Vet)

<1 1 . 1
€t / €it logit(djer) = H4e<t + oty
C Tt —» € 1 1
it it it et = mirei + (1 — i) :r<

Model for the structural ones / L
diy :=1(ejy = 1) ~ Bernoulli(7;;) :

logit(mjr) = Xjtme

pet = (1 — m)uSt + 7



Results: QALYs

control

mean (90% HPD)

0.90 (0.88; 0.93)

Hurdle Model 0.88 (0.85; 0.91)

0.88 (0.86; 0.91)

Beta-Gamma 0.88 (0.85; 0.90)

.90 (0.88; 0.93)
.87 (0.85; 0.90)

oo

Bivariate Normal

0.75 0.80 085 0.80 0.95 1.00

Complete Cases
All cases (Missing At Random)

intervention

mean (90% HPD)

0.90 (0.87; 0.94)

Hurdle Model 0.90 (0.86; 0.94)

.88 (0.85; 0.92)
.91 (0.88; 0.94)

oo

Beta-Gamma

.90 (0.87; 0.94)

Bivariate Normal .92 (0.88; 0.95)

0.75 0.80 0.85 0.50 0.5 1.00




MenSS

Results: Costs

control

mean (90% HPD)

220 (118; 329)
198 (111; 282)

Hurdle Model

231 (105; 347)
200 (111; 286)

Beta-Gamma

207 (128; 288)

Bivariate Normal 234 (154; 321)

00
costs (£)

Complete Cases
All cases (Missing At Random)

intervention

mean (90% HPD)

234 (93; 377)
193 (84; 307)

Hurdle Model

228 (91; 363)
189 (83; 303)

Beta-Gamma

190 (123; 254)

Bivariate Normal 187 (122; 256)

o

200 400 600
costs (£)
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Imputations (under MAR)
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Imputations (under MAR)
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MenSS
“extreme” MNAR scenarios

@ We observe ny; = 13 and nj, = 22 individuals with ug;; = 1 and
ujir = NA, forj=1,2,3
@ For those individuals, we cannot compute directly the structural one
indicator dj; and so need to make assumptions/model this
e Sensitivity analysis to alternative departures from MAR

Scenario Control (n} = 13) ‘ Intervention (n; = 22)
MNAR1 dip=1 dp =1
MNAR2 dip =0 dip =0
MNAR3 dip=1 dip =0

MNAR4 dip =0 dp=1




MenSS

Cost-effectiveness analysis

Cost-Effectiveness Plane Cost-Effectiveness Acceptability Curve
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MenSS
Discussion

ILD are subject to some complexities that are typically ignored by the
“standard” approach, which could lead to biased results

A Bayesian approach allows to increase model complexity to jointly
account for these with relatively little expansion to the basic model

@ MAR can be used as reference assumption but plausible MNAR
departures should be explored in sensitivity analysis

@ Possible to expand the framework to a longitudinal setting to handle
missingness more efficiently
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Missingness model
A longitudinal missingness model

@ Advantages
o Account for time dependence between outcomes y; = (uj, ¢jj)

o Use all available utility/cost data in each pattern rj = (r/, rf)

e Fit model to the joint p(y, r)

o Factor p(y,r) into p(y'ops: r) and p(Y"mis | ¥ ops: )

o Integrate out y*, ;. from p(y, r) and estimate the means of y" .
o ldentify the means of y*,,;. using:

@ The mean estimates of y' .

o Sensitivity parameters A = (AY, A€)

o Assess the robustness of the results to plausible MNAR scenarios using
different informative priors on A



PBS
Hassiotis et al., Br J Psychiatry 2018; 212(3)

The PBS study

@ Multi-centre RCT that evaluates the cost-effectiveness of a new
multicomponent intervention (PBS) relative to TAU for individuals
suffering from intellectual disability and challenging behaviour

e Both utilities (EQ-5D) and costs (clinic records) are partially-observed

‘ ‘ PBS (n,=108) ‘

Time TAU (n;=136)
observed (%) observed (%)
utilities costs utilities costs
Baseline 127 (93%) 136 (100%) 103 (95%) 108 (100%)
6 months 119 (86%) 128 (94%) 102 (94%) 103 (95%)
12 months 125 (92%) 130 (96%) 103 (95%) 104 (96%)

complete cases

108 (79%)

96 (89%)




Missingness patterns

TAU (t=1) PBS (t =2)
o ) uy a up @ nr1 [ < uy a up @ nr2
r=1 1 1 1 1 1 1 1 1 1 1 1 1
108 96
mean 0.678 1546  0.684 1527 0.680 1520 0726 2818 0.771 2833  0.759 2878
r 0 1 1 1 1 1 7 0 1 1 1 1 1 5
mean - 1310  0.704 1440  0.644 1858 - 2573 0.780 2939  0.849 2113
r 1 1 0 1 1 1 " 1 1 0 1 1 1 1
mean 0.709 1620 - 1087  0.737 851 0.467 9649 - 4828  0.259 4930
r 1 1 1 1 0 1 2 1 1 1 1 0 1 1
mean 0.564 640 0.648 512 - 286 0.817 3788  0.884 0 - 0
r 1 1 0 0 1 1 4 1 1 0 0 1 1 1
mean 0.716 2834 - - 0.634 679 0.501 3608 - - 0.872 4781
r 1 1 0 0 0 0 1 1 0 0 0 0
4 4
mean 0.434 1528 - - - - 0.760 3086 - - - -
r 0 1 0 1 1 1 0 1 0 1 1 1
2 0
mean - 595 - 397 0.483 69 - - - - = -
r 1 1 1 1 0 0 1 1 1 1 0 0
2 0
mean 0.743 1434 0.705 1606 - - - - - - - -
r 1 1 0 1 0 1 1 1 0 1 0 1
3 0
mean 0.726 1510 - 432 - 976 - - - - - -
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PBS

Modelling

o Fit model to completers r = 1 and joint set of all other patterns
r # 1 separately for t = 1,2

@ Capture outcome and time dependence through a series of conditional
distributions p(C,'J' | Cij—1, U,'j_l) and p(u,-j | Cij, U,'j_l)

@ Account for skewness using Beta distributions for v and LogNormal
ujj—min(u;)

diStributiOhS fOI’ CU, W|th UZ- — W
J J

@ Allow for structural ones in uj; and zeros in ¢;; using a hurdle form,
i.e. dff :=I(u; =1) and df := I(c; = 0)



PBS

Modelling Gabrio et al. (2018). https://arxiv.org/abs/1805.07147

@ For example, consider the pair yjo: = (ujot, Ciot)

Model for the structural zeros
diye == I(cjor = 0) ~ Bernoulli(ng,) ﬂ'gt

!

c
diOt
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Modelling Gabrio et al. (2018). https://arxiv.org/abs/1805.07147

@ For example, consider the pair yjo: = (ujot, Ciot)

c c
Yo e
Mixture model for ¢
0 .
Cior =0
c>0 ~ LogNormal(¢§,, ¥§,)
iot (] 0t» Yot 0 >0
iot it
cior = Thecipe + (1 — 76 )iy \ l
cjot
Model for the structural zeros I
diye == I(cjor = 0) ~ Bernoulli(ng,) ﬂ'gt
dS

iot
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Modelling Gabrio et al. (2018). https://arxiv.org/abs/1805.

@ For example, consider the pair yjo: = (ujot, Ciot)

Yo e

Mixture model for ¢
0 ._
Cioe =0

Ciﬁto ~ LogNormal(¢g,, ¥,) 0 >0
Cior  Cor

_ c0 .0 \ l
Ciot = 70:Sjoe + (1 — 76:) iy

Ciot

Model for the structural zeros I Model for the structural ones | ¢y
diye == I(cjor = 0) ~ Bernoulli(ng,) ﬂ'(‘):t ﬂ-;z)t e dig, = I(ujo¢ = 1) ~ Bernoulli(rfg,)
L l logit(7jge) = 700 + M10¢10g Cioe

dS

u
iot d;

iot



PBS

Gabrio et al. (2018). https://arxiv.org/abs/1805.07147

Modelling

@ For example, consider the pair yjo: = (ujot, Ciot)
[e73
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Sensitivity analysis

Use Monte Carlo integration to derive the mean estimates E[y" ]

Identify the mean estimates E[y" ] = E[y"ops + A]]
o Compute weighted average across r to derive pj; = (uj’“’t,pj‘?t)
@ Set A; = 0 as benchmark assumption

@ Specify three alternative priors on A; = (AJL-’, AJC) calibrated based
on the variability in the observed data at each time j
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Priors on sensitivity parameters
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Assumption: Upmis < Uops and Cmis > Cops
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Priors on sensitivity parameters

@ Assumption: Upis < Ugps and Cmis > Cops

o A%keW0: Skewed towards values closer to 0 on the same range as Aflat
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Priors on sensitivity parameters

Frequency

PBS

Assumption: Upmjs < Uops and Cpmis > Cops

AkeWl: Skewed towards values far from 0 on the same range as Afl2t
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Results: means utilities and costs
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costs differential

Results: economic evaluation (1)
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Results: economic evaluation (2)
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Conclusions
Conclusions

@ A full Bayesian approach has some advantages for handling missing
data in economic evaluation

© Flexibility of the modelling framework

o Naturally allows the propagation of uncertainty to the economic model
e Uses modular structure to account for complexities that may bias
inferences and mislead the assessment

@ Extension of standard “imputation methods”

e Performs the estimation and imputation tasks simultaneously
o Uses probabilistic models that can be implemented in standard software
(e.g. OpenBUGS or JAGS)

© Principled incorporation of external evidence through priors

o Crucial for conducting sensitivity analysis to MNAR
o Useful in small/pilot trials where there is limited evidence
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