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Abstract

The genetic architecture of human reproductive behavior — age at first birth (AFB) and number of
children ever born (NEB) — has a strong relationship with fitness, human development, infertility
and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the
underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-
wide association study to date of both sexes including 251,151 individuals for AFB and 343,072
for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB
in a SNP-based genome-wide association study, and four additional loci in a gene-based effort.
These loci harbor genes that are likely to play a role — either directly or by affecting non-local
gene expression — in human reproduction and infertility, thereby increasing our understanding of
these complex traits.

Introduction

Human reproductive behavior — age at first birth (AFB) and number of children ever born
(NEB) — has been associated with human development,12 infertility3# and neuropsychiatric
disorders®. Reproductive tempo (AFB) and quantum (NEB) are cross-cutting topics in the
medical, biological, evolutionary and social sciences and central in national and international
policies.® Advanced societies experienced a rapid postponement of AFB, with the mean
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AFB of women now being 28-29 years in many countries.” This increase in AFB has been
linked to lower fertility rates, unprecedented childlessness (~20%) and infertility, which
affects 10 to 15 % of couples.® An estimated 48.5 million couples worldwide are infertile,
with a large part of subfertility, particularly in men, remaining unexplained.® Although
infertility has been related to advanced AFB, ovulation defects, spermatogenic failure, and
single- or polygenic defects, their causal effects remain unsubstantiated.10

Until now, genetic and clinical research has focussed on proximal infertility
phenotypes.3410.11 AFB and NEB represent accurate measures of complex reproductive
outcomes, are frequently recorded and consistently measured, and are key parameters for
demographic population forecasting.12 There is evidence of a genetic component underlying
reproduction, with heritability estimates of up to 50% for AFB and NEB (Supplementary
Figure 1).5 A recent study attributed 15% of the variance of AFB and 10% of NEB to
common genetic variants.13 There are also sex-specific differences in human reproduction,
related to the timing of fertility, fecundability and sex-genotype interactions (Supplementary
Note). Researchers have given less attention to traits such as NEB due to an erroneous and
frequently repeated misinterpretation of Fisher’s14 Fundamental Theorem of Natural
Selection that the additive genetic variance in fitness should be close to zero. The misreading
had a naively intuitive appeal: genes that reduce fitness should have been less frequently
passed on. Fisher, however, actually argues that fitness is moderately heritable in human
populations (for a discussion see the Supplementary Note). Since no established genes are
currently available for clinical testing of infertility,10 isolating genetic loci and their
causative effects has the potential to provide new insights into the etiology of reproductive
diseases and novel diagnostic and clinical technologies for infertility treatment.

We report the largest meta-analysis of genome-wide association studies (GWAS) to date of
251,151 individuals for AFB and 343,072 for NEB from a total of 62 cohorts of European
ancestry. We identify 12 independent loci (10 of which are novel and 2 previously identified
in a study on age at first sexual intercoursel) that are significantly associated with AFB
and/or NEB in men, women and/or both sexes combined (Table 1). Follow-up analyses
identified a number of genetic variants and genes that likely drive GWAS associations. We
also quantified the genetic overlap with biologically adjacent reproductive, developmental,
neuropsychiatric and behavioral phenotypes. A detailed description of all materials and
methods is available in the Supplementary Note.

Meta-analysis of GWAS

Associations of AFB (mean + SD 26.8+4.78 years) and/or NEB (mean + SD 2.3+1.43
children) with NCBI build 37 HapMap Phase 2 imputed SNPs were examined in 62 cohorts
using multiple linear regression under an additive model, in men and women separately
(Supplementary Note). Associations were adjusted for principal components — to reduce
confounding by population stratification® — as well as for the birth year of the respondent
and its square and cubic to control for non-linear birth cohort effects (Supplementary Note
and Supplementary Tables 1-,2 ). NEB was assessed only for those who had completed their
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reproductive period (age = 45 women; age = 55 men), while AFB was only assessed for
those who were parous. Quality control (QC) was conducted in two independent centers
using QCGWAS16 and EasyQC1’ (Supplementary Note). Results were subsequently meta-
analyzed for the 2.4M SNPs that passed QC filters (Supplementary Note) and reported for
men and women combined and separately.

We applied a single genomic control at the cohort level and meta-analyzed results using a
sample-size weighted fixed effect method in METAL (Supplementary Note). The PLINK
clumping function isolated ‘lead SNPs’ — i.e. those with the lowest ~-value for association
that are independently associated — using an r2 threshold of 0.1 and distance threshold of 500
kb. For AFB, we identified ten genome-wide significantly associated loci (i.e., P<5x1078 for
combined and A<1.67x1078 for sex-specific results adjusted for multiple testing) of which
nine were significantly associated in both sexes combined and one in women only
(N=154,839) (Figure 1a, Table 1). Three loci were significantly associated with NEB: two in
both sexes combined and one in men only (N=103,736) (Figure 1b, Table 1, Supplementary
Note). One locus on Chr 1 reached significance for association with both AFB and NEB
with an r2 of 0.57 between the two lead SNPs, suggesting a shared genetic basis for the two
traits (Table 2). A statistical test of sex-specific effects confirms that differences are mainly
due to variation in sample size and not variation in effect sizes (Supplementary Note).

As for other complex traits!8, the Q-Q plots of the meta-analyses exhibit strong inflation of
low P-values (Figure 2), suggesting that although cohorts controlled for the top principal
components and cohort-level genomic control was applied (Supplementary Note), residual
population stratification may remain. However, the LD Score intercept method!® as well as a
series of individual and within-family regression analyses using polygenic scores as
predictors?0-21 (Supplementary Note) indicated that the observed inflation is almost entirely
attributable to a true polygenic signal, rather than population stratification.

Gene-based GWAS

To increase the power to find statistically significant associations and causal genes, we
additionally performed a gene-based GWAS using VEGAS.22:23 The results confirmed top
hits from the single-SNP analyses. For AFB, seven loci from the SNP-based GWAS were
also represented in the gene-based analysis (Supplementary Table 3), and three additional
loci emerged, represented by SLF2 (Chr 10), ENO4 (Chr 10) and 7TRAF3-AMN (Chr 14).
For NEB, one locus from the SNP-based GWAS was represented in the gene-based analysis
—i.e. GATADZB (Chr 1) — and one novel locus on Chr 17 was identified (Supplementary
Table 4).

Causal variants

To identify functional and potentially causal variants — coding or regulatory — within loci
identified in the SNP-based GWAS (Table 1), we first performed an /n silico sequencing
annotation analysis using the post-GWAS pipeline reported by Vaez er a/2* This showed
that rs10908557 on Chr 1 is in high LD with non-synonymous SNPs in CRTC2
(rs11264680; r2=0.98) and CREB3L4 (rs11264743; r2=0.94) (see Causal genes,
Supplementary Table 5). Interestingly, rs11264743 is considered “deleterious’ and “probably
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damaging’ by SIFT and PolyPhen, respectively (Ensembl release 83). In addition, rs2777888
on Chr 3 is in high LD with two non-synonymous SNPs in MST1R (rs2230590; r?=0.95 and
rs1062633; r2=0.95) (Table 1, Supplementary Table 5).

We subsequently performed a comprehensive analysis using results from the ENCODE?2®
and RoadMap Epigenomics?® projects as integrated in RegulomeDB, 27 to identify variants
that likely influence downstream gene expression via regulatory pathways. Amongst all
SNPs that reached P<5x1078 in the meta-analyses (N=322), 50 SNPs in five loci show the
most evidence of having functional consequences (Table 1, Supplementary Table 6). Two
sets of SNPs on Chr 1 (18 SNPs) and Chr 3 (25 SNPs) particularly stand out. The most
promising SNP in the Chr 1 locus (rs6680140) is located in an H3K27ac mark, often found
near active regulatory elements, and lies in a DNasel hypersensitivity cluster where eight
proteins are anticipated to bind. One of these proteins is CAMP responsive element binding
(CREB) binding protein, encoded by CREBBP (see Causal genes). In the Chr 3 locus,
rs2526397 is located in a transcription factor-binding site and is an eQTL for HYAL3in
monocytes, while rs2247510 and rs1800688 are located in H3K27ac sites and DNasel
hypersensitivity clusters where a large number of transcription factors are expected to bind
(see Causal genes, Supplementary Table 6). An analysis using Haplotter showed that
rs2247510 and rs7628058 in the Chr 3 locus are amongst the 5% of signals that show most
evidence of positive selection in the population. The same applies to the lead SNP of the Chr
14 locus for NEB (rs2415984).

Causal genes

Information on the function and anticipated relevance of genes in the 12 loci identified in the
SNP-based GWAS that are most likely to be causal based on all evidence discussed below is
provided in Table 2.

Cis and trans eQTL and meQTL analyses

Identifying alterations in gene methylation status and/or expression levels in relation to
GWAS-identified variants may help prioritize causal genes. We examined associations with
gene expression and methylation status for the 12 independent lead SNPs in whole-blood
BIOS expression (€)QTL (N=2,116) and methylation (me)QTL databases in c/sand trans
(N=3,841). 2829 Seven SNPs were associated with gene expression in cis of 54 unique genes
(Table 1, Supplementary Table 7). Five of the seven SNPs were in high LD (/2>0.8) with the
strongest eQTL of at least one of the genes within the corresponding loci, indicating that the
SNP associated with AFB or NEB and the SNP most significantly associated with
expression tag the same functional site, i.e., rs10908557 (associated with the expression of
CRTC2and SLC39A1), rs1160544 (AFF3), rs2777888 (RBM6, RNF123and RBMS),
rs2721195 (CYHR1, GPT, RECQL4and PPP1R16A) and rs293566 (NOL4L). Three SNPs
were associated with the expression of a total of eight genes in frans (Table 1,
Supplementary Table 8). Of these SNPs, only rs2777888 was in high LD (/2>0.8) with the
strongest eQTL for three of its five associated genes: LRFNI, LAMPZand FGD3.

The meQTL analysis showed that 11 of the 12 independent lead SNPs were associated with
DNA methylation of a total of 131 unique genes in ¢/s (Table 1, Supplementary Table 9).
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Seven of the 11 SNPs were in high LD (/2>0.8) with the strongest meQTL of one of the
corresponding methylation sites, i.e., rs10908557 (associated with methylation of CR7TC2,
SLC39A1, CREB3L4, DENND4B and RAB13), rs1160544 (AFF3), rs2777888 (CAMKYV),
rs6885307 (C50rf34), rs10056247 (JADEZ), rs2721195 (CYHRI) and rs13161115
(EFNADS). Three of the SNPs were associated with the same genes for both methylation and
gene expression in ¢fs. rs10908557 (CRTC2), rs1160544 (AFF3) and rs2721195 (CYHRI)
(Supplementary Tables 7,9). Three SNPs were associated with methylation of a total of ten
genes in trans (Table 1, Supplementary Table 10). Of these SNPs, only rs2777888 was in
high LD (r2>0.8) with the strongest meQTL of a corresponding methylation site (ASAPS).
Of note: rs2777888 was also a franseQTL.

Gene prioritization

Gene-based

We used four publicly available bioinformatics tools to systematically identify genes that are
more likely than neighboring genes to cause the associations identified by our GWAS. Of all
genes that reached A£<0.05 in analyses using Endeavour,3? MetaRanker3! and ToppGene,32
eight genes were prioritized for both AFB and NEB: 7PM3, GRM7, TKT, MAGIZ2, PTPRD,
PTPRM, RORA and WT1. Data-driven Expression-Prioritized Integration for Complex
Traits (DEPICT) — a fourth, comprehensive and unbiased recently described gene
prioritization tool33 — identified three genes in GWAS significant loci as likely being causal
for AFB (MON1A, RBM6 and U73166.2) (Supplementary Tables 11, 12).

results from RegulomeDB

An analysis using RegulomeDB identified 50 SNPs in five loci that most likely have
regulatory consequences (see Causal variants, Supplementary Table 6). Eighteen and 25 of
these SNPs are within the Chr 1 and Chr 3 loci, respectively. Amongst the genes that — at a
protein level — bind at the site of one or more of the 18 variants in the locus on Chr 1 are
CREBBP, HNF4A, CDX2and ERG. These genes may act upstream in the causal pathway
and influence the expression of causal genes at this locus. Of the 25 SNPs on Chr 3, ten
were eQTLs for RBM6 in monocytes, and seven were eQTLs for A/ YAL3in monocytes.
Amongst the genes that — at a protein level — bind at rs2247510 and rs1800688 in the Chr 3
locus are ARID3A, REST and TFAPZC, as well as HNF4A and CDX2, which also bind at
the Chr 1 locus.

Five genes encode proteins that bind at the site of both SNPs on Chr 2 that reach A<5x1078
in the meta-analysis of GWAS. One of these is REST (see Chr 3 locus), another one — ESR1
— is the most likely causal gene in the Chr 6 locus.

Functional network and enrichment analyses

Functional network analysis using five prioritized candidate gene sets as input
(Supplementary Note) showed no significantly enriched biological function. No biological
function was significantly enriched after correction for multiple testing using the Benjamini-
Hochberg procedure. Similarly, no reconstituted gene sets and cell or tissue types were
significantly enriched in the GWAS meta-analysis results based on results from the DEPICT
analysis (Supplementary Tables 13-20). The lack of significantly enriched genes, tissue sets
and biological functions reflects the need for a larger sample size but also the distal nature of
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the phenotypes, which are influenced by a mixture of biological, psychological and socio-
environmental factors.

Polygenic prediction

To assess the predictive power of our results, we produced polygenic scores for AFB and
NEB using sets of SNPs whose nominal P-values ranged from P<5x1078 (i.e. using only
genome-wide significant SNPs) to 1 (using all SNPs that passed quality control) using
PRSice34 (Supplementary Note). We then performed a series of four different out-of-sample
predictions in four independent cohorts: HRS, Lifelines, STR and TwinsUK. Across the four
cohorts, the mean predictive power of a polygenic score constructed from all measured
SNPs is 0.9% for AFB and 0.2% for NEB (Supplementary Figure 2). Despite the low
predictive power of the polygenic scores, the results showed that a 1 standard deviation (SD)
increase of the NEB polygenic score is associated with a 9% (95% CI 5%-13%) decrease in
the probability for women to remain childless, with no significant association in men
(Supplementary Table 21). When we control for right-censored data using a survival model
for AFB, we found that a 1SD increase in the AFB polygenic score is associated with an 8%
(95% CI 7%-10%) reduction in the hazard ratio of reproduction in women and 3% (95% CI
1%-5%) in men (Supplementary Table 22). As an additional test, we examined whether the
aforementioned polygenic scores for AFB and NEB can predict related fertility traits such as
age at menopause and age at menarche (Supplementary Table 23). Our estimates indicate
that a 1SD increase of the AFB polygenic score is associated with a 3% decrease in age at
natural menopause (95% CI 1%-5% ) and a 20 day increase in age at menarche (95% ClI
0.4-40 days).

Genetic association with related traits and diseases

Several loci for which the associations with AFB and NEB reach genome-wide significance
are associated with behavioral and reproductive phenotypes. The lead SNPs in the Chr 2 and
Chr 3 loci have been associated with educational attainment3® and the locus on Chr 5 with
age at menarche36 while the locus on Chr 6 has recently been associated with age at first
sexual intercourse3” (Supplementary Table 24). Some of the 38 loci for age at first sexual
intercourse that were recently identified in 125,667 UK Biobank participants were also
associated with AFB (in/near RBM6-SEMAS3F and ESRI) and NEB (in/near CADMZ2 and
ESRI). The lead SNPs for RBM6-SEMASF (rs2188151) and £SRI (rs67229052) are in LD
with our lead SNPs for AFB on Chr 3 (r?= 0.44) and Chr 6 (r2=0.94), respectively. An in
sifico pleiotropy analysis showed that our lead SNP in the Chr 3 locus (rs2777888) is in LD
(r?=0.59) with rs6762477 — which has been associated with age at menarche2 — while other
SNPs in the same locus have been associated with HDL cholesterol38 (rs2013208; r2=0.81)
and BMI2? (rs7613875; r2=0.81) (Supplementary Table 5). We next performed an
exploratory analysis using the proxy-phenotype method? to examine if the SNPs strongly
associated with AFB in women are empirically plausible candidate SNPs for related traits
like age at menarche and age at menopause (Supplementary Note). After controlling for
multiple testing, we identified three AFB-associated SNPs near rs2777888 on Chr 3 (rs9589,
rs6803222 and rs9858889) that are also associated with age at menarche (P<4.10x1074).
None of the AFB or NEB-associated SNPs are associated with age at menopause.
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We performed a bivariate LD score regression analysis®! to estimate the pairwise genetic
correlation with 27 publicly available GWAS results for traits associated with human
reproductive behavior (Supplementary Note). AFB shows significant and positive genetic
correlations with the human (reproductive) developmental traits age at menarche, voice
breaking, age at menopause, birth weight and age at first sexual intercourse, as well as with
years of education. Conversely, having more AFB-increasing alleles is associated with a
lower genetic risk of smoking (ever, number of cigarettes, later onset) and with lower insulin
resistance-related phenotypes, i.e. BMI, waist-hip-ratio adjusted for BMI, fasting insulin,
triglyceride levels and risk of diabetes (Figure 3 and Supplementary Table 25). All genetic
correlations remain significant after Bonferroni correction for multiple testing (P<2.6x1073).
Years of education (P=6.6x10714) and age at first sexual intercourse (P=1.14x10"1°) are the
only traits that show significant and negative genetic correlations with NEB. We also
observed significant genetic correlations of 75=0.86 (SE=0.052) for AFB and 7,=0.97
(SE=0.095) for NEB between men and women, implying that most genetic effects on
reproductive behavior resulting from common SNPs are shared across the sexes.

Discussion

This GWAS is the largest genetic epidemiological discovery effort for human reproduction
to date, with critical implications for population fitness and clear physiological mechanisms
linking hypothesized genes and observed phenotypes. Related studies previously focussed
on reproductive life span*2:43, age at first sexual intercoursel! and more proximal infertility
phenotypes,2~* largely overlooking AFB and NEB. The rapid postponement of AFB and
increased infertility and involuntary childlessness in many societies” makes it important to
uncover the genetic and biological architecture of reproduction. We identify ten novel and
confirm two recently identified genetic loci that are robustly associated with AFB and NEB,
as well as variants and genes within these loci that likely drive these associations. Four
additional loci were identified in a gene-based GWAS.

Two loci that show interesting results in follow-up analyses are located on Chrs 1 and 3. The
lead SNPs of the Chr 1 locus for AFB and NEB are in LD with likely functional non-
synonymous SNPs in genes encoding: 1) CREB (cAMP responsive element binding)
regulated transcription co-activator 2 (CR7C2), which at a protein level acts as a critical
signal mediator in follicle-stimulating hormone (FSH) and transforming growth factor
B1(TGFp1)-stimulated steroidogenesis in ovarian granulosa cells**; and 2) CREB protein 3-
like 4 (CREB3L4),*> which in humans is highly expressed in the prostate, ovaries, uterus,
placenta and testis, and plays a role in spermatid differentiation® and male germ cell
development.4” The lead SNP and/or functional variants in LD with it are also associated
with the methylation status of these two genes and expression of CR7C2in whole blood and
lymphocytes. Three promising functional variants in the Chr 1 locus reside in binding sites
of the transcriptional co-activator CREB binding protein (CREBBP). In addition to a direct
effect of the above-mentioned non-synonymous SNPs on protein function, the associations
of AFB and NEB with variants in the locus on Chr 1 may thus be mediated by alterations in
cAMP responsive element binding in men and women. The locus on Chr 1 also harbours
DENND4B, a paralogue of DENND1A, implicated in PCOS.*8 While DENNDI1A is
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expressed at the protein level in the ovary and testis, DENND4B is in the cervix, and its
function and role are less well understood.

The lead SNP of the locus on Chr 3 (rs2777888) is associated with methylation and
expression of several genes — in ¢isand #rans — that are known to play a role in cell cycle
progression and/or sperm function. First, rs2777888 is associated with the expression of
RNF123(or KPCI) in cis, which plays a role in cellular transition from the quiescence to
proliferative state. Secondly, rs2777888 — or functional variants in LD with it — may
influence the cell cycle by altering the expression of RBM5and RBM6 (RNA binding motif
proteins 5 and 6). The former plays a role in cell cycle arrest and apoptosis induction and
regulates haploid male germ cell pre-mRNA splicing and fertility in mice. RMB5 mutant
mice exhibit spermatid differentiation arrest, germ cell sloughing and apoptosis, leading to
lack of sperm in ejaculation.#® Thirdly, rs2777888 affects expression of LAMPZin trans,
which is located on the X chromosome and encodes a lysosomal membrane protein involved
in the acrosome reaction, i.e. the enzymatic drill allowing sperm to penetrate and fertilize
ovum.>0 L AMPZis expressed at the protein level in male and female reproductive organs
with an effect size of rs2777888 for LAMPZ mRNA expression that is almost twice as large
in women than in men (Supplementary Figure 4). This suggests an important role for the
lysosome in both sperm and ovum. Finally, functional variants in the Chr 3 locus are
associated with the mRNA expression of HYAL3in monocytes (hyaluronoglucosaminidase
3). The latter degrades hyaluronan, which also plays an important role in sperm function and
the acrosome reaction.49:51

Functional follow-up experiments could disentangle the potential interplay between many
candidate genes in the loci on Chrs 1 and 3 on reproductive behavior and — given our /n
sifico results — infertility. This can be extended to candidate genes in the remaining loci
identified in the present study, some of which are relevant for fertility: mice lacking EFNAS
(Chr 5 NEB locus) are subfertile,>2 £SR1 on Chr 6 encodes an estrogen receptor, 5354 and
CYHRIon Chr 8 is involved in spermatogenesis®®. Such experiments would help
understand whether binding of estrogen receptor 1 — encoded by £5R1 in the locus on Chr 6
— at the site of functional variants in the locus on Chr 2 drives or mediates the association
with AFB in the Chr 2 locus, as well as to identify and characterize causal genes. Recent
developments in high-throughput, multiplex mutagenesis using Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) and associated systems (Cas9) allow such
experiments to be performed using /7 vivo model systems.56

AFB and NEB are not only driven by biological processes, but are also subject to individual
choice and personal characteristics — such as personality traits — as well as by the historical,
cultural, economic and social environment (e.g., effective contraception, childcare
availability). Demographic research has shown a strong positive association between AFB
and educational attainment.12 We show that the associations between fecundity, reproductive
behavior and educational attainment are partly driven by genetic factors, and identified loci
that are associated with AFB as well as with e.g., age at first sexual intercourse 37 and
educational attainment.3°
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Our findings are anticipated to lead to insights into how postponing reproduction may be
more detrimental for some — based on their genetic make-up — than others, fuel experiments
to determine ‘how late can you wait’>’ and stimulate reproductive awareness. Causal genes
in the loci we identified may serve as novel drug targets, to prevent or delay age-related
declines in fertility and sperm quality, or increase Assisted Reproductive Technology
efficiency. Our study is the first to examine the genetics of reproductive behavior in both
men and women, and the first that is adequately powered to identify loci both in women and
men. We also provide support for Fisher’s theorem that fitness is moderately heritable in
human populations. While effect sizes of the identified common variants are small, there are
examples of GWAS-identified loci of a small effect that end up leading to important
biological insights.585% Many of our findings suggest a role for sperm quality, which is one
lead for researchers to pursue. Since current sperm tests remain rudimentary, our findings
could serve as a basis for ‘good quality’ sperm markers. We identified variants that are likely
causal — both coding and regulatory — as well as a set of genes that likely underlie the
associations we identified. Follow-up experiments in animal models are required to confirm
and characterize the causal genes in these loci.

ONLINE METHODS

GWAS of reproductive behavior study design in brief

Genome-wide association analyses of age at first birth (AFB) and number of children ever
born (NEB) were performed at the cohort level according to a pre-specified analysis plan
(see Supplementary Note). Cohorts uploaded results imputed using the HapMap 2 CEU
(r22.h36) or 1000G reference sample. Cohorts were asked to only include participants of
European ancestry, with no missing values on all relevant covariates (sex, birth year, and
cohort specific covariates), who were successfully genotyped genome-wide, and passed
cohort-specific quality controls. We followed the QC protocol of the GIANT consortium’s
recent study of human height8” and employed QCGWAS88 and EasyQC89 software, which
allowed us to harmonize the files and identify possible sources of errors in association
results.

Cohort association results (after applying the QC filters) were combined using sample-size
weighted meta-analysis with genomic control (GC) correction within each study,
implemented in METAL.%0 SNPs were considered genome-wide significant at ~-values
smaller than 5x10798 (a of 5%, Bonferroni-corrected for a million tests). The meta-analyses
were carried out by two independent analysts. Detailed results of each genome-wide
significant locus are shown in in Supplementary Figures 4-29.

The total sample size of the meta-analysis is A=251,151 for AFB pooled and A=343,072 for
NEB pooled. The PLINK clumping function®! was used to identify the most significant
SNPs in associated regions (termed “lead SNPs”). Detailed cohort descriptions, information
about cohort-level genotyping and imputation procedures, cohort-level measures, and quality
control filters are shown in Supplementary Tables 26, 27 and discussed in the
Supplementary Note.
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Dominant genetic variation in fertility

We applied a method recently developed by Zhu and colleagues® to estimate dominant
genetic effects based on the genetic relatedness of unrelated individuals. Our results based
on the combined samples of TwinsUK and Lifelines show no evidence for dominant genetic
effects for either NEB (1.0x107%7, SE=0.07, P=0.45) nor AFB (0.02, SE=0.08, P=0.43.
Results are shown in Supplementary Table 28 and discussed in the Supplementary Note.

Bivariate and conditional analysis

As joint analysis of correlated traits may boost power for mapping functional loci, we
applied a recently developed multi-trait analysis method®? to test the association between
each variant and the two correlated traits AFB and NEB simultaneously using multivariate
analysis of variance (MANOVA) (see Supplementary Note and Supplementary Table 29).
The analysis was performed based on the genome-wide meta-analysis summary statistics of
each single trait. Although it did not reveal additional genome-wide significant loci
(A=0.995), it accounted for the correlation between the two phenotypes, thus improving the
strength of two signals on chromosomes 1 and 5, indicating possible pleiotropic architecture
between AFB and NEB (Supplementary Figure 30). The analysis also provided a conditional
association test of the genetic effect of each variant on AFB including NEB as a covariate,
and on NEB including AFB as a covariate (Supplementary Figure 31)

Population stratification

We used two methods to assess whether our GWAS results exhibited signs of population
stratification (see Supplementary Note). First, we used the LD Score intercept method
described in Bulik-Sullivan et a/%* to test whether inflation in chi-square statistics was due
to confounding biases such as cryptic relatedness and population stratification. In all six
cases, the intercept estimates were not significantly different from 1, suggesting no
appreciable inflation of the test statistics attributable to population stratification. Second, we
conducted a series of individual and within-family (WF) regressions using polygenic scores
(PGS) as predictors®®-97 on a dataset of DZ twins (STR and TwinsUK). The regression
analyses showed that WF regression coefficients for both AFB and NEB were statistically
different from zero when the ~-value threshold was sufficiently high (Supplementary Tables
30, 31 and Supplementary Figures 32, 33).

Sex-specific effects

In addition to the pooled GWAS results presented in the main text, we also ran sex-specific
GWAS meta-analyses for AFB and NEB (see Supplementary Note). The sample size for
sex-specific analysis was: AFB women, A=189,656; AFB men, A=48,408; NEB women
N=225,230; NEB men A=103,909. Our results indicated 6 genome-wide significant
(P<5x10~ 98) independent SNPs for AFB women and 1 genome-wide significant
independent SNP for NEB men (Supplementary Table 32 and Supplementary Figures 34,
35). We also used LD score bivariate regression and GREML bivariate analysis to estimate
the genetic correlation among men and women based on the sex-specific summary statistics
of AFB and NEB meta-analysis results. Our estimates based on LD bivariate regression
indicated a genetic correlation of rg=0.86 (SE=0.052) among the sexes for AFB and r4=0.97
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(SE=0.095) for NEB. Results are shown in Supplementary Tables 33, 34 and discussed in
the Supplementary Note.

Polygenic score prediction

We performed out-of-sample prediction and calculated polygenic scores for AFB and NEB,
based on GWA meta-analysis results and used regression models to predict the same
phenotypes in four independent cohorts: HRS, Lifelines, STR and TwinsUK (see
Supplementary Note and Supplementary Figure 2). We ran ordinary least-squares (OLS)
regression models and reported the R? as a measure of goodness-of-fit of the model. In
addition, we tested how well our polygenic scores for NEB could predict childlessness at the
end of the reproductive period (using age 45 for women and 55 for men), Supplementary
Table 21. Since age at first birth is observed only in parous women, we adopted an
additional statistical model to account for censoring (Cox Proportional hazard model,
Supplementary Table 22) and selection (Heckman selection model, Supplementary Table
35). We additionally tested the predictive value of our polygenic scores for AFB for age at
menarche (using TwinsUK) and age at menopause (using Lifelines), Supplementary Table
23. Finally, we examined whether menopause variants are associated with AFB. We
calculated a PGS of age at menopause based on the recent GWAS results from Day et al.
(2015)%8 and applied them to LifeLines and TwinsUK (Supplementary Table 36).

Genetic correlations

We used information from 27 publicly-available GWAS results to estimate the amount of
genetic correlations between AFB and NEB and related traits (Supplementary Table 25 and
Figure 3 in the main text) using LD score bivariate regression (see Supplementary Note).
Details on these phenotypes are provided in the Supplementary Note. A conservative
Bonferroni-corrected P-value threshold of A<1.85x10703 (=0.05/27) was used to define
significant associations. We also tested the correlation between NEB and AFB using a
bivariate GREML analysis on the Women’s General Health Study (WGHS, A=40,621).

Lookups and proxy phenotype

Following the results on genetic overlap with other phenotypes we tested — in a quasi-
phenotype replication setting — whether the SNPs strongly associated with AFB in women
were empirically plausible candidate SNPs for age at menarche and age at menopause (see
Supplementary Note). We used a two-stage approach applied in other contexts.99:190 |n the
first stage, we conducted a meta-analysis of AFB excluding the cohorts that were part of the
meta-analysis of the phenotype we intended to replicate. We merged the SNPs from this
meta-analysis with the publically available association results of the most recent GWAS on
age at menarche? and age at menopause9? from the Reprogen consortium website.1 SNPs
that were not present in both files were dropped from the analysis. We aligned the alleles and
the direction of effects using the EasyStrata software.102 We then selected the independent
SNPs with a P-value<1x1079, using the clump procedure in PLINK®L, (1000Kb window
and LD threshold of R2>0.1) to identify the most significant SNPs in associated regions

1pata downloaded in November 2015
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included in both files. We defined “prioritized SNP associations” as those that passed the
Bonferroni correction for the number of SNPs tested (0.05/122=4.10x10794, both in age at
menarche and age at menopause). Our results identified three SNPs after Bonferroni-
correction that can be used as good candidates for age at menarche. We did not isolate any
clear “candidate SNP” for age at menopause (Supplementary Figure 36).

Gene-based GWAS analysis

We performed gene-based testing with the full GWAS set (~2.5M HapMap-imputed SNPs)
of both phenotypes using VEGAS (see Supplementary Note and Supplementary Tables
3,4).23.103 Thyjs software has the advantage of accounting for LD structure and the possibility
to define a range beyond the gene bounds to include intergenic regions in the analysis. We
defined a 50kb extra window surrounding the genes and considered every SNP for the gene-
based analysis, ran the analyses per chromosome with up to 10% permutations and
considered P<2.5x10706 as the threshold for significance (0.05/~20.000 genes).

eQTL and meQTL analysis

For each of the 12 SNPs identified in the GWAS, local (c¢/s, exons/methylation sites <1 MB
from the SNP) and genome-wide (#rans, exons/methylation sites > 5 MB from the SNP)
effects were identified by computing Spearman rank correlations between SNPs and local or
global exons/methylation sites (see Supplementary Note). Bonferroni multiple testing
correction was performed for the 12 SNPs tested (A<2.5x107% for cis meQTL analysis,
P<1x10798 for trans meQTL analysis, A<1.2 x10796 for ciseQTL analysis, A<1.3x10798 for
trans eQTL analysis). For each of the significant associations, the exons/methylation sites
were selected, the strongest eQTLs were identified for these exons/methylation sites, and LD
between the strongest eQTLs and the corresponding SNP identified in the GWAS were
computed. LD was computed using BIOS genotypes (the genotypes used for eQTL and
meQTL mapping).

Functional variant analysis using RegulomeDB

We used RegulomeDB?’ to identify variants amongst the 322 SNPs that reached A<5x10708
for association with AFB and/or NEB in the meta-analysis of GWAS that likely influenced
regulation of gene expression (see Supplementary Note). RegulomeDB integrates results
from RoadMap Epigenomics28 and the ENCODE project.1%4 SNPs showing the most
evidence of being functional — defined as a RegulomeDB score <4 — were subsequently
examined in more detail in terms of effects on gene expression (eQTLs) and their protein-
binding capacity (Supplementary Table 6).

Gene prioritization

Potentially causal genes for the associations identified by GWAS were identified using four
previously described bioinformatics tools: ToppGene?, Endeavour®, MetaRankerS, and
DEPICT. To this end, we first retrieved positional coordinates for all lead SNPs according
to GRCh37/hg19 using Ensembl’s BioMart. These coordinates were used to extract all genes
located within £40kb of lead SNPs using the UCSC table browser. The identified genes then
served as input for ToppGene and Endeavour. Genes with established roles in fertility served
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as training genes in this procedure, i.e. BRCA1, EGFR, ERBB2-4, HSD17B1, RBMS5,
ESR1, ESR2and FSHB. For MetaRanker we provided SNPs that reached A<5x107%4 and
their chromosomal position as input, together with the previously mentioned set of training
genes. Since ToppGene, Endeavour and MetaRanker are biased towards larger and well-
described genes, we also performed a gene prioritization procedure using DEPICT.” All
SNPs that reached P<5x10794 in the meta-analysis served as input, and information on
prioritized genes, gene set enrichment, and tissue/cell type enrichment were extracted. Genes
were subsequently prioritized that: 1) reached £<0.05 in DEPICT; or 2) reached A<0.05 in
ToppGene, Endeavour and MetaRanker (Supplementary Table 37).

Functional network and enrichment analysis

DEPICT was used to identify gene set, cell type and tissue enrichment analyses, using the
GWAS-identified SNPs with A<5x107%4 as input (see Supplementary Note). Due to the
relatively small number of identified loci, DEPICT was only able to perform these analyses
for AFB and NEB pooled, and AFB women. To construct a functional association network,
we combined five prioritized candidate gene sets into a single query gene set which was then
used as input for the functional network analysis.2 We applied the GeneMANIA algorithm
together with its large set of accompanying functional association data.19> We used the
Cytoscape software platform,106 extended by the GeneMANIA plugin (Data Version:
8/12/2014, accessed April 24, 2016).197 All the genes in the composite network, either from
the query or the resulting gene sets, were then used for functional enrichment analysis
against Gene Ontology terms (GO terms)198 to identify the most relevant GO terms using
the same plugin.107

Gene-environment interactions

Previous research based on twin studies shows differential heritability of fertility behavior
across birth cohorts.209:110 We used the Swedish Twin Register (STR) to examine whether
the effect of a polygenic score (PGS) of AFB and NEB varies across birth cohort. We
followed the analysis presented in the recent GWAS of education!!! and divide the sample
into six groups based on their year of birth. Each group spans five birth years, with the oldest
ranging from 1929-1933 and the youngest born between 1954-1958. Supplementary Table
38 reports the estimated coefficient from these regressions. The results indicate a U-shaped
trend in AFB and a linear decline in NEB, but do not provide any clear evidence of
interaction effects between the PGS’s and birth cohort. We additionally tested the interaction
effects between educational level and the PGS of AFB and NEB in three different samples
(LifeLines, STR and HRS). Supplementary Table 39 reports the estimated coefficient from
these regressions. The results indicate that years of education are positively associated with
AFB in both LifeLines and STR, and negatively associated with NEB in the HRS. With the
exception of NEB in the HRS, we found no evidence of GxE effects with education.

Robustness checks

To estimate the robustness of our results for AFB, we conducted two additional analyses.
First, we estimated how the coefficients change if we control for Educational Attainment
(EA). Using data from deCODE, we ran an additional association analysis using the 10 loci
that were genome-wide significant in the meta-analysis (P<5x10798). The analysis has been
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restricted to individuals born between 1910 and 1975, who also had data available on
completed education. The total sample size is 42,187 (17,996 males and 24,191 females).
The analysis is adjusted for sex, year of birth (linear, squared and cubic), interaction between
sex and year of birth and the first 10 PCAs. Education is measured by years of education,
ranging between 10 and 20 years. Supplementary Table 40 reports the association results
before and after adjusting for educational attainment. Our analysis shows that the effect sizes
shrink after including educational attainment as a covariate, with an average reduction of
around 15%. We also estimated the effect of a polygenic risk score of AFB calculated from
meta-analysis data excluding the deCODE cohort. The polygenic score remains highly
significant. The effect of 1SD of the AFB score decreases from 0.19 years (69 days) without
controlling for education to 0.16 years (59 days) when we control for years of education.
Second, we estimated how the coefficients change after controlling for Education
Attainment (EA) and Age at First Sex using the UKBiobank (A=50,954). We ran two
association models: the first follows the GWAS analysis plan with no additional covariates
and the second added years of education and age at first sexual intercourse as covariates. The
results are presented in Supplementary Table 41 and Supplementary Figure 37. Our analysis
shows that the effect sizes of our top hits are highly concordant (R2=0.94). The inclusion of
EA and AFS as covariates weakens the effect sizes on average by 40% and increases the ~-
value of the estimated coefficients. Overall, we interpret this additional analysis as a
robustness test that confirm that the top hits from our meta-analysis are robust to the
inclusion of the confounding factors of EA and AFS.

Positive selection

We performed a Haploplotter analysis'12 to examine if lead SNPs and/or functional variants
identified using RegulomeDB show evidence of positive selection. Three variants showed
standardized integrated haplotype scores <-2 or >2, indicating that these variants represent
the top 5% of signals in the population. These SNPs are: 1) rs7628058 on chromosome 3 for
AFB, an eQTLs for RBM6 in monocytes; 2) rs2247510 on chromosome 3 for AFB, an
eQTL for RBM6and HYAL3in monocytes and binding site for a range of transcription
factors; 3) rs2415984, the lead SNP in the chromosome 14 locus for NEB. Results are
presented in Supplementary Table 42.
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Figure 1. Manhattan plots of SNPsfor AFB (age at first birth) and NEB (number of children
ever born) in single genomic control meta-analysis

SNPs are plotted on the x-axis according to their position on each chromosome against
association with AFB (panel a) and NEB (panel b). The solid blue line indicates the
threshold for genome-wide significance (P<5x10798) and the red line, the threshold for
suggestive hits (P<5x1079). Blue points indicate SNPs in a £100 KB region around
genome-wide significant hits. Gene labels are annotated as the nearby genes to the
significant SNPs.
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Figure 2. Quantile-quantile plots of SNPsfor AFB (panel a) and NEB (panel b) in single genomic

control, meta-analysis

The grey shaded areas in the Q-Q plots represent the 95% confidence bands around the ~-

values under the null hypothesis.
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Genetic overlap between fertility traits and other phenotypes

" ———
e Fertility Traits
e [l \vumber of Children Ever Born (NEB)

e [ Age at First Birth (AFB)
e ——
)—r%ﬂ

Genétic Correlation

Figure 3. Genetic overlap between AFB and NEB and other related traits
Results from Linkage-Disequilibrium (LD) Score regressions: estimates of genetic

correlation with developmental, reproductive, behavioral, neuropsychiatric and
anthropometric phenotypes for which GWAS summary statistics were available in the public
domain. The length of the bars indicates the estimates of genetic correlation. Grey error bars
indicate 95% confidence intervals. The mark “*” indicates that the estimate of genetic
correlation is statistically significant after controlling for multiple testing

(P<0.05/27=1.85x1073).
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