XClose

Science Technology Platforms

Home
Menu

Prospective Motion Compensation Systems

Dr Nikolaus Weiskopf and colleagues received funding through the 2011-2012 SLMS capital equipment award program, an internal funding scheme which enables SLMS researchers to bid for new research equipment.

Their award enabled the purchase of three cutting-edge systems which improve the quality of brain scan images obtained through magnetic resonance imaging (MRI). Conventionally, individuals must remain completely still during the MRI scanning process, as motion blurs images, complicating interpretation. Eliminating head movement however can be challenging, especially when subjects are children or have movement disorders, and scans often need to be repeated or conducted under general anaesthetic or sedation, with associated risk.

The new systems, manufactured by KinetiCor, are fitted to existing MRI scanners. Employing a technology called 'prospective motion compensation', they accurately track focus on the brain to a small fraction of a millimetre, compensating for any head motion in real time. By reducing movement artefacts, the systems can produce clearer images and allow more subtle signal changes to be discerned (see image).

At UCL, one of the systems resides with the Weiskopf group at the Wellcome Trust Centre for Neuroimaging (WTCN), one in Dr David Carmichael's lab at the Institute of Child Health (ICH), and one with Prof Marty Sereno's group at the Birkbeck-UCL Centre for Neuroimaging. These researchers, and their collaborators intend to apply the technology to different scientific questions, ranging from basic neurobiology in health and disease, to functional studies investigating cognition, emotion and memory.

As early adopters of the system, the award recipients have been working closely with one another, with KinetiCor, and with other groups - notably the Physics department at the University of Freiburg - to optimise their setups and implement MRI pulse sequences, the computational instructions which specify scanning parameters, and are tailored according to the type of experiment being conducted.

Preliminary data confirm that the system generates high-quality images, and work is underway to develop and maximally exploit the technology. Having the equipment in place has already helped leverage further funding. At WTCN, a PhD student jointly funded by Siemens and the UCL Impact Award benefits from it for the development of robust clinical quantitative imaging, whilst a new research project at ICH, funded by Action Medical Research, will use it to study focal cortical dysplasia in children, an epilepsy-causing condition which is treatable by surgery if the affected brain region can be clearly identified. Dr Weiskopf's application for an ERC Consolidator Grant, which was selected for funding, included some pilot data generated with the system. This project aims at in-vivo histology using MRI with unprecedented resolution and specificity and will benefit from the robust motion correction. 

This SLMS equipment award has already brought great benefits, keeping UCL at the cutting-edge of neuroimaging, fostering and developing collaborations within the university and beyond, and helping to attract additional funding. Dr Weiskopf commented, 'It's hard to think of a more efficient funding project.'

--

The annual SLMS capital equipment call goes out each autumn. For more information, visit www.ucl.ac.uk/platforms.