- 2012 award to Dr Paola Oliveri for the purchase of an nCounter analysis system, for the quantification of genetic material.
In 2011, Paola Oliveri's group in the UCL Department of Genetics, Evolution and Environment received a SLMS capital infrastructure award to purchase an nCounter Analysis system (Nanostring). This cutting-edge equipment quantifies the abundance of RNA and other nucleic acids with sensitivity and precision surpassing current standard protocols, and can be used in a variety of genetic studies. At the time of purchase it was the first such machine in the UK.
To detect genetic material, the system uses colour-coded probes which are designed to bind specific genetic sequences. The coloured probes bind their targets and, acting as barcodes, they are digitally imaged, allowing abundance to be determined by the system's software. The technology can be used in diverse scientific areas, ranging from the elucidation of gene expression levels in health and disease, and throughout the process of development. The Oliveri group is using the equipment to investigate mechanisms of cell specification during early development in the sea urchin model.
Initial data from UCL and other institutions show that the technology quantifies genetic material more accurately than microarrays, and has similar sensitivity to polymerase chain reaction (the current gold standard). Importantly, the nCounter can analyse the abundance of several hundred genes simultaneously, with minute amounts of starting material, and without the need for prior amplification. Using small samples of patient DNA or RNA, the equipment can thus be used to support molecular diagnosis - the identification of disease on the basis of specific genetic changes. Cancer research is one area for which the nCounter has great potential to confirm the genetic changes associated with disease progression. The machine is fully-automated and with a user-friendly interface, experiments can be set up rapidly and require minimal hands-on time, increasing the efficiency of data acquisition.
Moreover, the system facilitates the analysis of archived tissue. The formalin-fixing and paraffin-embedding procedures used for long-term tissue preservation typically damage genetic material, limiting expression analysis by conventional methods. However, the high sensitivity of the nCounter system overcomes this issue, allowing preserved biopsy tissue to be more accurately investigated.
UCL was an early adopter of the system. The technology has since gained momentum, with researchers from more institutions using it to answer a range of scientific questions. UCL is keen to make its nCounter system available for users within the college and beyond to access - contact research-equipment@ucl.ac.uk with details of your project if interested.