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1. Introduction and background

Background: %
1 A vital branch in the field of soft robotics aims to develop inherently safe collaborative robots for human-robot interaction.
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Aim of this work

To find out how to utilize
the novel stiffness
controllable joint to
replace the traditional
joint of the collaborative
robot, creating inherent
safe human-robot
interaction.

 The percentage of the soft material is not high enough to have the inherent safety. . ’

 Although, some concepts of soft actuators [1], joints [2] or manipulators have been proposed to contribute in this fields,
there still are some critical gaps.

Critical Gaps:
 The antagonistic actuation behavior for this type of soft joint has not been evaluated experimentally.

 The dimensions, structure, and controlling strategies of existing concepts are not specially designed and optimized
for being a joint for collaborative robots.
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