Designing a Fault Tolerance Control Strategy for a Fire-rescue UAV with Tilting Rotors and **Deformable Arms** Yanchao Wang, Dr Mehdi Baghdadi, Dr Francesca Boem

University College London

Introduction

In the past ten years, the supply and demand of multi-rotor UAVs have increased sharply in modern lives, which promoted the optimization of multi-rotor UAV control algorithms and structures. Currently, the main consideration for boosting the UAV's usage is whether the drone can be reliable enough not to be a hazard to the working environment when accidents happen. Despite breakthroughs in fault-tolerant algorithms, it is rare to see fault-tolerant multi-rotor UAVs used in practice. Although fault-tolerant control of multi-rotors has successful cases, those studies are not suitable enough to be put into common use.

Accelerometer Dead Reckoning

Several flying process simulations of a quadrotor shows an accelerometer with proper filtering can over come the integral drift to increase the accuracy of the system.

Closed Loop System Identification

For better performance of the controller, system identification has been processed with different frequency of sine waves (frequency sweep).

Controller Test Bench and All 3D-Printed Body

Augmented Ziegler-Nichols PID (AZNPID)

An optimization to adjust PID parameters is implement on the prototype

to minimize the error between simulation and experimental tests.

UCL

Gazebo Simulation

As part of the future work, Gazebo simulation will be done after simulating the fault-tolerant controller before its implementation.

Tiltable Rotor Unit

A tiltable rotor unit is introduced to stop the endless rotation in the fault tolerance mode and transform the drone into a tri-rotor.

Conclusion and Future Work

- · The tilting motor units bring more flexibility and robustness to the drone system.
- The future work includes design a proper fault-tolerant controller and a strategy to quickly stop the endless rotation with the help of rotating the motor units when the drone working in a fault-tolerant mode.

