CREATING EUROPE’S LARGEST ACADEMIC HEALTH SCIENCE PARTNERSHIP

For further information, please visit the UCL Partners website at www.uclpartners.com or contact Neil Goodwin, Project Director, UCL Partners, on +44 (0)7831 886 834 or at neil.goodwin@uclh.nhs.uk.

Printed on certified FSC mixed source stock.
World-class medical researchers and clinicians in London are coming together to create Europe’s largest and strongest academic health science partnership to be known as UCL Partners.

By promoting a strategic approach to medical research and healthcare across the member organisations, the partnership intends to deliver significant improvements in health for those living in London, which can be shared around the world.

The partnership will comprise around 3,500 scientists, senior researchers and consultants and is expected to oversee a combined annual turnover of around £2 billion.

The partnership will be between UCL (University College London), Great Ormond Street Hospital for Children NHS Trust (GOSH), Moorfields Eye Hospital NHS Foundation Trust (Moorfields), the Royal Free Hampstead NHS Trust (the Royal Free), and University College London Hospitals NHS Foundation Trust (UCLH).

UCL Partners will be part of London’s new Global Biomedicine Hub.

The partnership initially will focus on research and care in ten key areas: the nervous system, children’s health, heart disease, transplantation, immunology, ophthalmology, deafness and hearing impairment, dental and oral disease, and cancer and women’s health.

The strategic development, funding and delivery of UCL Partners’ services and associated research programmes will be driven by a board of directors who will oversee and coordinate these activities. Members of the board will comprise representatives of the partner organisations.

OUR VISION
By bringing together world-class researchers and clinicians, our aim is to create Europe’s strongest academic health science partnership with a focus on preventing or treating major diseases that affect populations in London, the UK and worldwide.

OUR VALUES
1. Integrity
We are committed to maintaining the highest standards of ethical conduct.

2. Teamwork
We are committed to working together to create better healthcare and research for patients and the people we serve.

3. Innovation
We are committed to enhancing scientific knowledge and translating it into practical benefit for patients.

4. Social responsibility
We are committed to contributing to the well-being, welfare and economic development of the communities we serve and our partners.

5. Respect
We are committed to treating patients and staff with honesty, decency and fairness.
A FOCUS ON TODAY'S HEALTH CHALLENGES

The world today faces a wide array of new and existing health challenges. The UCL Partners Academic Health Science Partnership will focus on ten of these major themes: children's health, heart disease, hypertension, diabetes and kidney disease, oral health, and cancer. Each of these is a significant problem throughout the world and presents unique challenges for the health care systems of individual countries.

1. **Heart and circulatory disease** is the UK's biggest killer. In the UK, one in three people will die from cardiovascular disease (CVD). The number of people with heart disease continues to rise and over 80% of deaths related to CVD are due to ischaemic heart disease. CVD is the leading cause of death worldwide and is a significant public health issue in parts of the UK.

2. **Cancer** takes more lives than heart disease and is the second biggest cause of death worldwide and is a significant public health issue in parts of the UK. In 2015, there were an estimated 14.1 million new cancer cases and 8.2 million deaths from cancer worldwide. In the UK, there are 42 types of cancer and in the year to March 2018 there were 384,540 new cancer registrations, with 139,490 people dying from cancer in the UK. Cancer alone is responsible for over one in eight deaths worldwide each year and over one million people die from cancer every year. Every year, 9.6 million new cases of cancer are diagnosed and 7.6 million people die from the disease. Cancer is the second leading cause of death worldwide and is a significant public health issue in parts of the UK.

3. **Diabetes** is currently responsible for 1 in 10 of all deaths worldwide, and over 400 million people worldwide have diabetes. By 2040, it is estimated that over 642 million people will have diabetes. Diabetes is a significant public health issue in parts of the UK.

4. **HIV and AIDS** continue to be significant global health challenges. The number of people who are HIV-positive has continued to increase over the past few years, with an estimated 37.9 million people who are HIV-positive at the end of 2015 worldwide. In the UK, the number of people who are HIV-positive has increased by 20% in the last five years, with an estimated 104,400 people being HIV-positive at the end of 2015 in the UK.

5. **Hepatitis C** is a significant public health issue in parts of the UK. Hepatitis C affects about 180,000 people in the UK and is a significant public health issue in parts of the UK.

6. **Alcohol** is a significant public health issue in parts of the UK.

7. **Mental health** remains a significant public health issue in parts of the UK.

8. **Global health** is a significant public health issue in parts of the UK.

9. **Infectious diseases** remain a significant public health issue in parts of the UK.

10. **Women's health** is a significant public health issue in parts of the UK.

The contribution of child health to quality of life in adulthood is enormous. It has been estimated that every child death in the first year of life is equivalent to 10 years of life lost in adulthood. In high-income countries like the UK, in 2017, 1 in 10000 live births will suffer from childhood blindness. In the developing world, research into the determinants of health has greatly improved understanding of the underlying causes of some of the most common childhood diseases and conditions. In developing countries, half of all severe disability can be traced to undernutrition and other environmental factors. This is, according to WHO, “a serious global public health problem.”

Chronic diseases carry a massive economic cost; between 2005 and 2010, WHO predicts that the UK will spend £20 billion on diseases such as heart disease, stroke, cancer, and diabetes and it will spend £27 billion on diseases such as cancer, diabetes, and chronic respiratory disease. With an increasing number of such links emerging, it is now more important than ever to aspire to optimum health for the individual’s health in adulthood, affecting, for example, the risk of stroke and heart disease. The contribution of child health to quality of life in adulthood is enormous. It has been estimated that every child death in the first year of life is equivalent to 10 years of life lost in adulthood. In high-income countries like the UK, in 2017, 1 in 10000 live births will suffer from childhood blindness.

Breast and ovarian cancers are major issues for women’s health. In the UK, nearly 40000 new cases of breast cancer are diagnosed each year, with over 12000 women dying from breast cancer each year. Breast and ovarian cancer are major issues for women’s health in parts of the UK.

Hepatitis C is a significant public health issue in parts of the UK. Hepatitis C affects about 180,000 people in the UK and is a significant public health issue in parts of the UK.

Infectious diseases remain a significant public health issue in parts of the UK.

Global health is a significant public health issue in parts of the UK.

Women’s health is a significant public health issue in parts of the UK.

Mental health remains a significant public health issue in parts of the UK.

Infectious diseases remain a significant public health issue in parts of the UK.

Global health is a significant public health issue in parts of the UK.

Women’s health is a significant public health issue in parts of the UK.
Meeting the Challenges:

To meet these challenges, world-class medical researchers and clinicians from London's leading universities and hospitals are coming together to create an academic health science partnership. This will be Europe's largest and strongest body dedicated to tackling these health challenges and delivering real benefits for patients.

Evidence from other countries shows the benefits of bringing together researchers and clinicians. All of the United States' top 16 hospitals in 2005 were academic health science partnerships. Similarly, in Toronto, Singapore and Houston, patients have benefited from such collaborations. These partnerships have become hubs of innovation, with clinicians and researchers creating "spin-off" companies that create new treatments and generate wealth and jobs for local economies.

Patients in London and across the country will benefit from some of the world's best medical research, and a powerhouse in clinical medicine that is second to none in Europe. The partnership will boost investment in research, strengthen Britain's international competitiveness in healthcare, make our health system more productive and improve patient care.

Research also strengthens prevention, the promotion of good health, and wise policy choices.

London – home to medical expertise

London institutions have led innovation for over 150 years through excellence in teaching, specialist care and research and development. Today, they lead academic and clinical research in key areas, such as clinical trials and top-rated research departments. There are more than 3,500 academic researchers working in top rated biological sciences and clinical departments in North Central London alone, as well as more than a third of the MRC-funded research partnerships, which operate in a range of areas.

These institutions also train more members of the medical and clinical workforce than any part of the country. London has the largest concentration of undergraduate, postgraduate and training teaching in England.

London is also home to some professional and regulatory healthcare bodies in the world, such as 65 life sciences companies, 170 healthcare companies, 195 medical equipment manufacturers and more than 50 clinical research partnerships. This provides tremendous opportunities for not just research but commercial formations like these to be attracted around academic health science partnerships.

There are strong foundations on which to build an academic health science partnership. It is an opportunity to do so in concert with the work the London NHS is doing: "The old way of doing things cannot deliver what London needs, neither now or in the future," according to a report published by NHS London, Healthcare for London: A framework for action (July 2007). The capital's population is growing. The fastest growing parts of London's population are those aged 40 to 64, and those over 85 – groups which are much more healthcare needs than younger ones. The NHS needs to focus its research activities to help address these challenges, and deliver health and care benefits to patients.

New focus will also help the UK as a whole. Currently, we lag behind other industrialized countries in the amount of research we do. For example, the UK now spends half as much as a proportion of GDP as the US on research. The number of commercial drug trials taking place in India and Russia is growing exponentially. In the UK, it is static.

If we are to make up lost ground, London is the logical focus for our efforts. Half of all biomedical research in the UK takes place in London. Almost a third of healthcare students are educated here. And the talent, experience and reputation of the London-based health care sector is in many ways the best in Britain, if not the world. London's diverse populations, and stark differences in life chances between groups, make it an ideal setting for research tackling health inequalities.

An Academic Health Science Partnership
The partners behind the UCL academic health science partnership include world-renowned partnerships for research and treatment:

- **University College London (UCL)**, which is one of the world’s top 10 universities, and the best UK university for health research;
- **Great Ormond Street Hospital for Children NHS Trust (GOSH)**, which is a world-class children’s research hospital, with the broadest range of pediatric specialists under one roof anywhere in the UK;
- **Moorfields Eye Hospital NHS Foundation Trust (Moorfields)**, which, together with the UCL Institute of Ophthalmology, is one of the world’s leading partnerships for eye health;
- **The Royal Free Hampstead NHS Trust (the Royal Free)**, whose clinical transplant unit is one of the most diverse in Europe; and
- **University College London Hospitals NHS Foundation Trust (UCLH)**, which is one of the largest trusts in the NHS, and together with UCL forms one of the largest partnerships for biomedical research in Europe.

These bodies, together, form one of the world’s largest, most productive and most influential health science partnerships. Together, they have a world-class reputation for research and delivery of services to patients and communities.

The research programme is largely driven by UCL, supported by its numerous research institutes, for example the world famous institutes of child health, neurology and ophthalmology.

UCL is one of the world’s top 10 universities (according to the Times Higher Education World University Rankings), is the best UK university for health research (according to the Department of Health’s Guide to Medical Schools), is one of the top 20 universities in the world for medicine (according to the Shanghai Jiao Tong University rankings).

UCL is Europe’s second most productive partnership for biomedical science research (according to The Partnership for Science & Technology Studies), which accounts for 65 per cent of all University activity. In the 2001 Research Assessment Exercise, most biomedicine departments at UCL received 5* or 5 ratings – as did the physical/chemical sciences.

A study sponsored by the Department of Health into health research found that, between 1995 and 2001, UCL produced more highly cited papers than any university in the UK – some 1000 more than the university in second place, Oxford.

20 Nobel Prize winners have worked or studied at UCL. These include two of the driving forces behind research into the nervous system, Sir Andrew Huxley and Sir Bernard Katz.

UCL’s academic community includes 35 Fellows of the Royal Society and 77 Fellows of the Academy of Medical Sciences. At UCL, ground-breaking discoveries include the hormone adrenaline, the immune system and autoimmune disease. Other pioneering developments at UCL include the first use of ultrasound in medicine, and the first ever use of gene therapy to cure children with inherited immuno-deficiency.

UCL and UCLH have formed strong research links. Together, they have a unique breadth of research expertise ranging from any other university/NHS trust in the UK and feature one of the National Institute for Health Research’s Comprehensive Biomedical Research Centres. A study of health research sponsored by the Department of Health found that between 1995 and 2001, 11 out of 12 UCL/UCLH studies had more than 10 per cent of highly cited publications.
The creation of UCL Partners will boost the benefits that these organisations can bring to patients in our key areas. At both UCL and GOSH, doctors, nurses, and scientists already have a track record of ground-breaking research.

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 per cent of highly cited papers in the UK.

The nervous system

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 per cent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 per cent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 per cent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 per cent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.

UCL is also a world leader in the Wellcome Trust Partnership for Neuroimaging producing 65 percent of highly cited papers in the UK.

The nervous system

The nervous system

Diseases that affect the nervous system, such as Alzheimer’s and Parkinson’s, are increasingly seen as a major challenge for medical research. UCL researchers are at the forefront of this work, an area which is critical to patient health and care. UCL is second in the world for neuroscience and behaviour, according to the ISI Citation Index – six of the world’s 20 leading neuroscientists are at the university.
Help for babies with heart disease

Every day 13 children are born with congenital heart disease. GOSH has founded a new magnetic resonance imaging (MRI) scanner unit and catheter laboratory – a specially designed, state-of-the-art partnership which will partly be used for heart research. This provides an accessible new resource to allow British Heart Transplant-funded research clinicians to continue to explore the heart diseases that affect children and young adults, and to develop new non-invasive treatment techniques to save the lives of young patients.

Help for babies with cancer

A breakthrough study on identical twins has for the first time confirmed the existence of cancer stem cells that cause the most common form of childhood cancer, acute lymphoblastic leukaemia (ALL) – backing evidence that this childhood cancer starts in the womb.

Help for babies who need heart transplants

Heart transplantation has become a reliable method of treating children with serious heart conditions, and the improved survival of children with congenital heart disease means that ever more children are waiting for a heart transplant. However, the shortage of donors remains a major problem and 23 per cent of all paediatric heart transplant candidates die while waiting for a donor organ. In the past there were limited options for children waiting for donor organs, but GOSH has been working with a pioneering ‘bridge’ device, nicknamed the ‘Berlin Heart’, which can help keep children alive and stable for a long time. Children around the world have been known to survive on the device for as long as 15 months.

Infant nutrition

Scientists at the MRC Childhood Nutrition Centre at UCL's Institute for Child Health carried out some of the most important research ever into breastfeeding and infant feeding – research which concluded that the usual hypothesis that babies who grow more slowly have healthier cardiovascular indicators and are at less risk of diabetes. This has profound public health implications.

Heart disease

Research across the partnership is breaking new ground in the understanding of heart disease. Scientists at UCL, GOSH and UCL have developed a new means of measuring stress for children with heart problems, shown the benefits of bypass surgery in chronic heart failure, researched the links between stress and heart disease and validated the genes that cause inherited forms of cardiac disease in children. Research is now beginning to show stress-related substances might be responsible for heart attack victims.

Beta-blockers and heart failure

Beta-blockers heal the heart via the brain when administered during heart failure, according to a study by UCL. Up to now, it was thought that beta-blockers worked directly on the heart, but this new study shows that the drugs act via the brain, suggesting that future therapies to reverse conditions of heart failure could target the central nervous system. Heart failure patients are normally given beta-blockers, although doctors do not know exactly how these drugs help cardiac performance and reduce the risk of death. The study has discovered that the beta-adrenoceptor blocker metoprolol acts directly in the brain to slow the progression of heart failure. The study has also discovered that the beta-adrenoceptor blockers themselves are directly to the brain to slow the progression of heart failure. The study has also discovered that the beta-adrenoceptor blockers themselves are directly to the brain to slow the progression of heart failure. The study has also discovered that the beta-adrenoceptor blockers themselves are directly to the brain to slow the progression of heart failure. The study has also discovered that the beta-adrenoceptor blockers themselves are directly to the brain to slow the progression of heart failure. The study has also discovered that the beta-adrenoceptor blockers themselves are directly to the brain to slow the progression of heart failure. The study has also discovered that the beta-adrenoceptor blockers themselves are directly to the brain to slow the progression of heart failure. The study has also discovered that the beta-adrenoceptor blockers themselves are directly to the brain to slow the progression of heart failure.
FROM BENCH TO BEDSIDE

First face transplant now a possibility

Transplantation

The potential of organ transplantation is limited by the success rate of the transplanted organs. In Europe, it is estimated that a quarter of all surgical procedures are performed on patients who have undergone transplantation. Both the Royal Free Hospital and the Royal National Throat, Nose and Ear Hospital (part of the Royal Free), Europe’s first laryngeal transplant could be followed shortly after at the Royal Free Hospital by the first hand transplant in this country; and at the Royal National Throat, Nose and Ear Hospital (part of the Royal Free), Europe’s first face transplant is being planned.

Immunology

EVT (the first genetic risk factor for HIV found only in people of African descent and which evolved to protect people of African descent against malaria) increases HIV risk in Africans

Genetic variation increases HIV risk in Africans

The researchers found that around 30% of people in Africa carry the protective gene. In the UK, the number is much lower – one in a thousand, according to estimates provided by the Blizard Institute.

Hepatitis B virus (HBV) is one of the most common viruses in the world, infecting millions of people every year. However, the immune system is able to control the virus very well and is, in most cases, able to contain it effectively, so that the immune system can fight it. In those cases where the immune system is unable to control HBV, patients suffer from chronic infection.

In the majority of adults, HBV is acquired in childhood by the first time the child is exposed to the virus, during active, effective or any contact available treatment.

Fish eyes hold clue to repairing damaged retinas in humans

A special type of cell found in the eye has been found to be very important in regenerating the retina in zebrafish and restoring vision even after damage. The researchers found that around 90% of people in Africa carry the protective gene. In the UK, the number is much lower – one in a thousand, according to estimates provided by the Blizard Institute.

More patients in the UK come to Moorfields than to any other eye hospital – known as Müller glial cells – to regenerate the retina in humans. Crucially, the therapy is safe, and secondly to find out if it can benefit vision in young adults who already have advanced retinal disease. Crucially, the FORUM trial has already shown that people with Leber’s congenital amaurosis (LCA), a rare inherited eye disease caused by an abnormality in a gene called RPE65 for which there are currently no effective treatments available. Participants in the trial, of which was published today, are being recruited from UK hospital-based low-vision clinics. Moorfields' researchers recently achieved levels of vision at least equivalent to before the operation, but one patient benefited from significantly improved night vision. The team is now working to improve sight. The trial, which was published today, states that the new treatment is safe and effective, and is now available. Participants in the trial, of which was published today, states that the new treatment is safe and effective, and is now available. This could be an important factor in determining why these patients' immune systems cannot fight the infection, and a process which could be a useful target for new treatments.

Genetic variation increases HIV risk in Africans

The researchers found that around 30% of people in Africa carry the protective gene. In the UK, the number is much lower – one in a thousand, according to estimates provided by the Blizard Institute. The researchers found that around 30% of people in Africa carry the protective gene. In the UK, the number is much lower – one in a thousand, according to estimates provided by the Blizard Institute. The researchers found that around 30% of people in Africa carry the protective gene. In the UK, the number is much lower – one in a thousand, according to estimates provided by the Blizard Institute. The researchers found that around 30% of people in Africa carry the protective gene. In the UK, the number is much lower – one in a thousand, according to estimates provided by the Blizard Institute.

This could be an important factor in determining why these patients' immune systems cannot fight the infection, and a process which could be a useful target for new treatments.

Genetic variation increases HIV risk in Africans

The researchers found that around 30% of people in Africa carry the protective gene. In the UK, the number is much lower – one in a thousand, according to estimates provided by the Blizard Institute.

In the majority of adults, HBV is acquired in childhood by the first time the child is exposed to the virus, during active, effective or any contact available treatment. The trial, which was published today, states that the new treatment is safe and effective, and is now available. Participants in the trial, of which was published today, states that the new treatment is safe and effective, and is now available. This could be an important factor in determining why these patients' immune systems cannot fight the infection, and a process which could be a useful target for new treatments.
Defeasence and hearing impairment

UCL's Partnership for Auditory Research, established in 2005, together with the Royal National Throat, Nose and Ear Hospital next door (part of the Royal Free Hampstead NHS Trust), constitutes the largest single grouping of basic and clinical scientists interested in hearing and deafness in the UK. Research focuses on the genetics of deafness, which could help explain why hearing loss occurs and is critical to preventing hearing loss in future generations, how to repair the damage to sensory cells in the inner ear which could lead to the restoration of hearing function, how the ear is repaired, a brain understanding of which will improve the efficacy of potential new treatments delivered directly to the ear and how the brain responds to sound which will make therapies much more effective at reversing hearing loss.

The associated UCL Ear Institute, established as part of UCL's Faculty of Dental and Oral Sciences in 2005, looks at the world in understanding hearing and deafness and how hearing can be improved, advanced and overcome with the Royal National Throat, Nose and Ear Hospital, including a neuro-otology professor from the UCL Institute of Neurology, one of the largest centres in the UK. The programme is based at the Royal National Throat, Nose and Ear Hospital, the UCL Ear Institute now constituting the largest single grouping of basic and clinical scientists interested in hearing and deafness in the UK.

The cochlear implant programme at the Royal Free, founded in 1982, was the first clinical programme in the UK. The team has been involved with cochlear implantation and a professor planning Europe’s first laryngeal transplant.

Cochlear implants

Cochlear implants are surgically implanted electronic devices that provide a sense of sound for people who are profoundly deaf or severely hard of hearing. They enable children and adults who are unable to benefit from hearing aids, to learn about the sounds around them, help them learn lip-reading and even use a conventional telephone.

Cochlear Implant Programme at GOSH was set up in 1992. It is one of the largest paediatric cochlear implant teams in the UK. Dedicated research programmes are in place covering otology, such as work on Usher Syndrome and the genetic causes of hearing loss, the impact of smoking cessation on cochlear implant performance and the impact of mobile phones on hearing.

As of 1 April 2009, 380 children have received a cochlear implant at GOSH and they are currently implanting up to 60 children per year. GOSH is expanding its cochlear implant service in response to increased demand and the need to provide a specialist service for patients with severe hearing difficulties.

Dental and oral diseases

UCL's Eastman Dental Institute is the largest postgraduate dental school in Europe. The impact of research at Eastman is enormous: more than 55 text books – among the largest number per head of staff worldwide. Its research findings are regularly published in high impact journals including the top five dentistry journals and 29 per cent of its research publications have impact factors greater than the top dentistry journal.

The Eastman has also been a driving force behind the development of new models of care in the NHS. For example, Eastman staff pioneered the first smoking cessation clinic based exclusively in a dental hospital.

For 60 years Eastman scientists have been working to promote oral health by advancing knowledge of the causes of oral disease and the prevention, repair and regeneration of the resultant tissue abnormalities and to translate their findings into clinical practice.

For example, output levels at the Eastman have developed a revolutionary new practice procedure which uses light activated antimicrobial agents to destroy and then to restrain the life-threatening damaging bacteria. The approach has already been adopted by 13 NHS Trusts – out of the most common chronic diseases in humans.

The incidence of oral cancer is a developing concern in smoking and over 50 per cent of patients with this disease will die within five years of diagnosis.Fortunately the Eastman have made significant progress in developing methods of detecting the risk of oral cancer among at becoming advanced.

The Eastman has also developed new methods to treat premalignant and early oral cancer using photodynamic therapy.

Researchers at the Eastman have made significant progress in developing methods of reducing the risk of oral cancer arising or becoming advanced.

The Eastman is ranked in the top stratum in the latest UK Government national assessments of research and education. The 2001 Research Assessment Exercise ranked the Eastman as a centre of international and national excellence and the 1999 Teaching Assessment Exercise ranked the Eastman 23 out of a maximum of 24. Eastman staff have authored more than 55 text books – among the largest number per head of staff worldwide. Their research findings are regularly published in high impact journals and 29 per cent of its research publications have impact factors greater than the top dentistry journal.

For 60 years Eastman scientists have been working to promote oral health by advancing knowledge of the causes of oral disease and the prevention, repair and regeneration of the resultant tissue abnormalities and to translate their findings into clinical practice.

For example, output levels at the Eastman have developed a revolutionary new practice procedure which uses light activated antimicrobial agents to destroy and then to restrain the life-threatening damaging bacteria. The approach has already been adopted by 13 NHS Trusts – out of the most common chronic diseases in humans.

The incidence of oral cancer is a developing concern in smoking and over 50 per cent of patients with this disease will die within five years of diagnosis. Fortunately the Eastman have made significant progress in developing methods of detecting the risk of oral cancer among at becoming advanced.

The Eastman has also developed new methods to treat premalignant and early oral cancer using photodynamic therapy.

Researchers at the Eastman have made significant progress in developing methods of reducing the risk of oral cancer arising or becoming advanced.

The Eastman is ranked in the top stratum in the latest UK Government national assessments of research and education. The 2001 Research Assessment Exercise ranked the Eastman as a centre of international and national excellence and the 1999 Teaching Assessment Exercise ranked the Eastman 23 out of a maximum of 24. Eastman staff have authored more than 55 text books – among the largest number per head of staff worldwide. Their research findings are regularly published in high impact journals and 29 per cent of its research publications have impact factors greater than the top dentistry journal.

For 60 years Eastman scientists have been working to promote oral health by advancing knowledge of the causes of oral disease and the prevention, repair and regeneration of the resultant tissue abnormalities and to translate their findings into clinical practice.

For example, output levels at the Eastman have developed a revolutionary new practice procedure which uses light activated antimicrobial agents to destroy and then to restrain the life-threatening damaging bacteria. The approach has already been adopted by 13 NHS Trusts – out of the most common chronic diseases in humans.

The incidence of oral cancer is a developing concern in smoking and over 50 per cent of patients with this disease will die within five years of diagnosis. Fortunately the Eastman have made significant progress in developing methods of detecting the risk of oral cancer among at becoming advanced.

The Eastman has also developed new methods to treat premalignant and early oral cancer using photodynamic therapy.

Researchers at the Eastman have made significant progress in developing methods of reducing the risk of oral cancer arising or becoming advanced.

The Eastman is ranked in the top stratum in the latest UK Government national assessments of research and education. The 2001 Research Assessment Exercise ranked the Eastman as a centre of international and national excellence and the 1999 Teaching Assessment Exercise ranked the Eastman 23 out of a maximum of 24. Eastman staff have authored more than 55 text books – among the largest number per head of staff worldwide. Their research findings are regularly published in high impact journals and 29 per cent of its research publications have impact factors greater than the top dentistry journal.

For 60 years Eastman scientists have been working to promote oral health by advancing knowledge of the causes of oral disease and the prevention, repair and regeneration of the resultant tissue abnormalities and to translate their findings into clinical practice.

For example, output levels at the Eastman have developed a revolutionary new practice procedure which uses light activated antimicrobial agents to destroy and then to restrain the life-threatening damaging bacteria. The approach has already been adopted by 13 NHS Trusts – out of the most common chronic diseases in humans.

The incidence of oral cancer is a developing concern in smoking and over 50 per cent of patients with this disease will die within five years of diagnosis. Fortunately the Eastman have made significant progress in developing methods of detecting the risk of oral cancer among at becoming advanced.

The Eastman has also developed new methods to treat premalignant and early oral cancer using photodynamic therapy.

Researchers at the Eastman have made significant progress in developing methods of reducing the risk of oral cancer arising or becoming advanced.

The Eastman is ranked in the top stratum in the latest UK Government national assessments of research and education. The 2001 Research Assessment Exercise ranked the Eastman as a centre of international and national excellence and the 1999 Teaching Assessment Exercise ranked the Eastman 23 out of a maximum of 24. Eastman staff have authored more than 55 text books – among the largest number per head of staff worldwide. Their research findings are regularly published in high impact journals and 29 per cent of its research publications have impact factors greater than the top dentistry journal.

For 60 years Eastman scientists have been working to promote oral health by advancing knowledge of the causes of oral disease and the prevention, repair and regeneration of the resultant tissue abnormalities and to translate their findings into clinical practice.

For example, output levels at the Eastman have developed a revolutionary new practice procedure which uses light activated antimicrobial agents to destroy and then to restrain the life-threatening damaging bacteria. The approach has already been adopted by 13 NHS Trusts – out of the most common chronic diseases in humans.

The incidence of oral cancer is a developing concern in smoking and over 50 per cent of patients with this disease will die within five years of diagnosis. Fortunately the Eastman have made significant progress in developing methods of detecting the risk of oral cancer among at becoming advanced.

The Eastman has also developed new methods to treat premalignant and early oral cancer using photodynamic therapy.

Researchers at the Eastman have made significant progress in developing methods of reducing the risk of oral cancer arising or becoming advanced.

The Eastman is ranked in the top stratum in the latest UK Government national assessments of research and education. The 2001 Research Assessment Exercise ranked the Eastman as a centre of international and national excellence and the 1999 Teaching Assessment Exercise ranked the Eastman 23 out of a maximum of 24. Eastman staff have authored more than 55 text books – among the largest number per head of staff worldwide. Their research findings are regularly published in high impact journals and 29 per cent of its research publications have impact factors greater than the top dentistry journal.
The Royal Free is the only hospital in the country offering several novel treatments for breast cancer, including endoscopic mastectomy, in which the breast tissue is removed via keyhole surgery, preserving the skin and nipple intact. It is also conducting a trial in intraoperative breast MRI to monitor breast cancer recurrence. Thanks to UCLH managing the largest breast cancer trial ever performed, this new technique is now allowing a cutting-edge treatment for patients with advanced breast cancer. The technique will help patients with advanced tumours, where there has been spread extensively to the portal vein, a major vessel behind the pancreas. In patients with cancer who have tumours with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out tumours with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein. This can show whether tissue is normal or cancerous. It is hoped that this technique will enable a rapid, accurate way of predicting cancer risk – based on a simple blood test. These findings open a complete new window of opportunity to identify people at risk of breast or ovarian cancer independently of their family history. 90 per cent of ovarian and breast cancers in the UK occur in women at risk of breast or ovarian cancer independently of their family history. The UCL Institute for Women’s Health has conducted the largest ever screening programme for ovarian cancer, screening 20,000 women. It established one of the world’s largest international studies into lung cancer; and referred 1,700 patients for radiotherapy. A new laser technique is being developed at UCL’s National Medical Laser Centre to treat millions of patients across the world. This was discovered thanks to UCLH managing the largest breast cancer trial ever performed.

Breast cancer
Breast cancer is the most common cause of cancer affecting women. UCL research has radically altered the way doctors prescribe drugs for breast cancer. Tamoxifen had been considered the gold standard adjuvant drug for patients with hormone-responsive breast cancer for decades and was not used to treatment of patients across the model. This new discovered benefits to UCLH managing the largest breast cancer trial ever performed.

The Royal Free is the only hospital in the country offering several novel treatments for breast cancer, including endoscopic mastectomy, in which the breast tissue is removed via keyhole surgery, preserving the skin and nipple intact. It is also conducting a trial in intraoperative breast MRI to monitor breast cancer recurrence. Thanks to UCLH managing the largest breast cancer trial ever performed, this new technique is now allowing a cutting-edge treatment for patients with advanced breast cancer. The technique will help patients with advanced tumours, where there has been spread extensively to the portal vein, a major vessel behind the pancreas. In patients with cancer who have tumours with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein, a major vessel behind the pancreas. It involves cutting out the tumour with a long segment of the portal vein and replacing it with a new synthetic vein. This can show whether tissue is normal or cancerous. It is hoped that this technique will enable a rapid, accurate way of predicting cancer risk – based on a simple blood test. These findings open a complete new window of opportunity to identify people at risk of breast or ovarian cancer independently of their family history. 90 per cent of ovarian and breast cancers in the UK occur in women at risk of breast or ovarian cancer independently of their family history. The UCL Institute for Women’s Health has conducted the largest ever screening programme for ovarian cancer, screening 20,000 women.

Ovarian cancer
In the UK, nearly 7,000 women are diagnosed with cancer of the ovary every year. On average, only about 34% of these will be alive five years later. The UCL Institute for Women’s Health has been internationally recognised for its research into:

- The prevention and treatment of ovarian cancer;
- Understanding and preventing maternal complications in pregnancy and their long term implications;
- Screening and early detection of cancer of the ovary; and
- Understanding ovarian cancer, its causes, and its long term implications.

The Royal Free is now offering a cutting-edge treatment for patients with ovarian cancer only affects the ovaries), will survive beyond five years. Screening is therefore a powerful tool in improving survival rates for this type of cancer.

Screening and early detection of cancer of the ovary

Screening and early detection of cancer of the ovary. The UCL Institute for Women’s Health has been internationally recognised for its research into:

- The prevention and treatment of ovarian cancer;
- Understanding and preventing maternal complications in pregnancy and their long term implications;
- Screening and early detection of cancer of the ovary; and
- Understanding ovarian cancer, its causes, and its long term implications.

The Royal Free is now offering a cutting-edge treatment for patients with ovarian cancer only affects the ovaries), will survive beyond five years. Screening is therefore a powerful tool in improving survival rates for this type of cancer.
The UCL Partners’ board will be the vehicle driving the development of a strategy to deliver the expanded mission of enhancing service delivery, research and teaching across and between the partner institutions. The partnership will identify and promote translational research and awareness of and access to other sources of research funding that also have an impact on health, including from the physical and social sciences. The directors of the board will be representatives of the university and NHS organisations that together make up the Partnership.

Each of the services will be managed on a network basis spanning the geographical footprint of UCL Partners. Programme directors will be appointed by the board to lead this strategic development working closely with the statutory organisations of the Partnership and other key stakeholders. Much of the research currently undertaken by the services involves medical care and treatment of patients. For example, GOSH is carrying out studies improving pain relief in children, cutting hospital acquired infections, and treating cancers in ways which reduce the risk of lifelong side effects.

Improving the quality of patient care will be a key driver of the Partnership’s member organisations. The directors of the Board will also ensure that local access to constituent hospitals is maintained in accordance with hospital contracts with local primary care trusts. The only change that patients will see is improvements in care and treatment resulting from the facilitation of access to cutting-edge research.

The research-driven services that will initially make up UCL Partners have been chosen on the basis of two criteria, which can be summarised as nascent or established world-class excellence, and the potential to develop a clinical service organisation which will support translational research. On this basis the services initially identified are:

- Neurosciences
- Children’s health
- Cardiac services
- Transplantation
- Immunology
- Ophthalmology
- Deafness and hearing impairment
- Dental and oral diseases
- Cancer
- Women’s health

A WORLD CLASS ACADEMIC HEALTH SCIENCE PARTNERSHIP

The research-driven services that will initially make up UCL Partners have been chosen on the basis of two criteria, which can be summarised as nascent or established world-class excellence, and the potential to develop a clinical service organisation which will support translational research. On this basis the services initially identified are:

- Neurosciences
- Children’s health
- Cardiac services
- Transplantation
- Immunology
- Ophthalmology
- Deafness and hearing impairment
- Dental and oral diseases
- Cancer
- Women’s health

A WORLD CLASS ACADEMIC HEALTH SCIENCE PARTNERSHIP

The research-driven services that will initially make up UCL Partners have been chosen on the basis of two criteria, which can be summarised as nascent or established world-class excellence, and the potential to develop a clinical service organisation which will support translational research. On this basis the services initially identified are:

- Neurosciences
- Children’s health
- Cardiac services
- Transplantation
- Immunology
- Ophthalmology
- Deafness and hearing impairment
- Dental and oral diseases
- Cancer
- Women’s health