Selecting suitable habitats for off-world living using 3D and super-resolution

Jan-Peter Muller*, Yu Tao, Alistair Francis, Si-Ting Xiong

*HRSC Col on ESA Mars Express (1993-present), Col on NASA MSL (2012-16)
Head of Imaging Group, Mullard Space Science Laboratory
Dept. of Space & Climate Physics
University College London (UK)

ESA_LAB: Off World living, 6-May-2021

Surveying suitable locations

• Where should we live?
 • Building detailed 3D models using stereo photogrammetry fused with shape-from-shading
 • Building very high resolution (up to 5cm) using Super-Resolution Restoration

• How can we shelter?
 • Detecting suitable sheltered habitats (e.g. caves) using 3D and SRR
 • Detecting natural caves as pre-eminent shelters using machine learning

• Where do we find local resources
 • Using images to decide on the depth of the regolith
 • Using neutron spectroscopy & subsurface radar for subsurface water
CASP-GO based on the open source NASA Ames Stereo Pipeline (ASP: Beyer et al., ESS, 2018). Open source tie-point based multi-resolution image co-registration (Tao & Muller, Icarus, 2016), and Gotcha (Shin & Muller, 2012) sub-pixel refinement method.

(a) Co-registered geo-spatial coordinates w.r.t HRSC (and thence MOLA) data;
(b) Improved DTM completeness for unmatched areas;
(c) Reduced DTM artefacts;
(d) Improved DTM accuracy;
(e) Fully documented uncertainty value for all interpolated area

UCL-FUB HRSC DTM and ORI mosaic products over Valles Marineris

Mosaic of 82 of 50m HRSC Digital Terrain Models Tao et al., Remote Sensing 2021

Mosaic of 12.5m HRSC Orthorectified and surface BRDF-corrected Images Courtesy of G. Michael, FUB (ibid)
Automated co-registration and orthorectification

- HRSC 50m DTM
- CRISM 20m HI
- CTX 18m DTM
- HRSC 12m ORI
- HiRISE 1m

Muller et al., 2021 ISPRS

Super-resolution Restoration of single ESA CaSSIS from 4-6m to 1m

NASA Perseverance rover landing-site
Tao, Muller et al., Remote Sensing, 2021
Use of stereo CTX 18m and shape-from-shading +SRR->1m DEMs

Tao, Muller et al., in preparation

Visualisation of SRR+SfS-DTM and subsequent 3D measurement (Pro3D® VRVis, Vienna, Austria)

Automated Small Crater Detection

Isidis Planitia chosen as study site for analysis of small crater populations as area is one age. N.B. Mars2020 rover will land in this area.

Implementation of Mask R-CNN for crater detection, trained on our dataset plus others. Kaiming He et al. CVPR 2017

Over 8 million ≤1 km craters detected on Isidis Planitia. Study ongoing into cave and pit detections

Dataset of over 5,000 small craters from 12 random locations on MC-11 E, annotated by citizen scientists

DATASET

Alistair Francis

Extension of machine learning techniques to automated cave detection on Mars

Training dataset CTX images@6m

Auto-Cave detection using Machine learning

Eleni Ravenis (MSc Planetary Science) and Alistair Francis (PhD candidate)
How do we make concrete on the Moon & Mars – regolith and water

<table>
<thead>
<tr>
<th>TYPE OF CONCRETE</th>
<th>Lunar soil but water and alumina cement from Earth</th>
<th>All materials from Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength</td>
<td>10,970 psi</td>
<td>7960 psi</td>
</tr>
<tr>
<td>Static modulus of elasticity</td>
<td>1.1 million psi</td>
<td>1.8 million psi</td>
</tr>
<tr>
<td>Dynamic modulus of elasticity</td>
<td>3.12 million psi</td>
<td>2.81 million psi</td>
</tr>
<tr>
<td>Poisson’s ratio at peak load</td>
<td>0.39</td>
<td>0.37</td>
</tr>
<tr>
<td>Modulus of rupture</td>
<td>1210 psi</td>
<td>1240 psi</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>0.0000029 in./in./F</td>
<td>0.0000035 in./in./F</td>
</tr>
</tbody>
</table>

Figure 1. Small cubes and beams made with lunar soil brought from the moon by Apollo 16 were tested and compared with similar specimens made entirely from earth materials. The results show that lunar soil would make an excellent aggregate for concrete.

Concrete Construction, T.D. Lin, 1987

Where do we find water?

Neutron spectroscopy – HEND on TGO2016
Malakhov et al., Astron. Lett., 2020

SHARAD radar profiles and automated labelling

Xiong..Muller, Earth & Sp. Sci. 2020