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Part 1. Conductivity: from insulators to su-
perconductors

We will begin this lecture course with an overview of the forms of electrical
conduction covered in earlier lectures, namely by free electrons, and see how
metals, semiconductors and insulators differ in this respect. We will then
move onto other forms of electrical conduction, such as by diffusion of ions in
ionic solids, and by Cooper pairs in superconductors, giving essentially zero
resistivity.

1.1 Electrical conductivity by free electrons

Electrons obey the Pauli exclusion principle and cannot occupy the same
state. They therefore must occupy a range of energy levels up to a maximum
— at 0 K this maximum is well defined and termed the Fermi energy, EF . As
the temperature is increased above absolute zero, the distribution of energies
smears around the Fermi energy, such that the only vacant energy states can
be found around EF . The behaviour of the electrons around EF is therefore
critical for defining the electrical conductivity (and other properties) of the
material.

The outermost electrons in solids can often be modelled as free (or ‘nearly
free’) carriers, in a weak periodic potential from the positive ions in the
lattice. The effect of the lattice is to introduce discrete energy bands of
allowed electronic states. This further imposes restrictions on the number of
free electrons available for electrical conduction.

1.1.1 Metals

In metals, EF lies within a band of allowed states, so there is no shortage
of available carriers for conduction. Conductivity is determined by the scat-
tering properties of the material (mean free path between scattering events)
and by the electron velocity between scattering events (the Fermi velocity).
Electrical conductivity is defined as:

σ = j/E, (1.1)

where j is the current density (in units of A/m−2) and E is the applied
electric field (in units of V/m). The equation of motion for the electron
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1. Conductivity: from insulators to superconductors

under an electric field E is:

−eE = me
dv

dt
(1.2)

We integrate over a period between collisions, τ . On each scattering event, it
is impossible to know what the change in electron velocity will be, but we can
say that it has some average non-zero value (remember velocity is a vector
quantity) otherwise there would be no net current flow. We call this average
resultant electron velocity the drift velocity, or vd. This is in contrast to the
Fermi velocity, vF , which is the velocity between scattering events. Thus,

−eEτ = mevd (1.3)

We can write the time between collisions, τ , in terms of the Fermi velocity
and a mean scattering length (or mean free path), λs.

τ = λs/vF (1.4)

Thus:

j = −nevd =
ne2Eλs
mevF

(1.5)

σ =
ne2λs
mevF

, (1.6)

where n is the density of free electrons. Typical values are σCu = 108 (Ωm)−1,
vF = 106 ms−1, n = 1029 m−3. These values give a mean free path λ ≈ 3.5×
10−8 m, or about 100 atoms. It is therefore not the periodic lattice which is
scattering electrons, but deviations from the perfect lattice such as vibrations
(which show a linear temperature dependence at elevated temperatures and
go away at low temperatures), and impurities/vacancies etc. in the lattice
(which show no temperature dependence).

Figure 1.1: The resistivity of a typical metal as a function of temperature
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Figure 1.2: Summary of conductivity versus temperature for metals, semi-
conductors and insulators. Note the log scale for conductivity.
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1. Conductivity: from insulators to superconductors

1.1.2 Semiconductors and insulators

In semiconductors and insulators, the Fermi energy lies in the middle of a
band gap — a region of forbidden energy states. At low temperatures there
is therefore a negligible number of electrons with sufficient energy to cross
the band gap and occupy the higher lying states. The electrical conductivity
is therefore determined primarily by the free carrier concentration which
depends exponentially on temperature and the band gap energy Eg.

σ ∝ n ∝ exp (−Eg/2kBT ) (1.7)

The distinction between semiconductors and insulators essentially lies in
the magnitude of the band gap, compared with room temperature (below
about 3.5 eV, materials are generally termed semiconductors). Note that
diamond, for example, has a band-gap of 5.5 eV and is an excellent insulator
at room temperature. However, at high temperatures it would make a pretty
good semiconductor. Semiconductors would be far less interesting if the
story ended here. They can be doped with impurities which artificially add
free electrons to the material, dramatically altering the conductivity (they
can also remove electrons from a full band creating ‘holes’ with an effective
positive charge which are also capable of electrical conduction). It is this
property of being able to engineer regions of semiconductor with different
conducting properties which has made the semiconductor-based electronics
industry possible.

Figure 1.3: The number of free carriers in semiconductors and insulators is
exponentially dependent on temperature and the band gap energy
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1.2 Electrical properties of alkali halides

In the above section we revised the basic properties of conduction by free
electrons, and found that in the case of insulators, the free electron concen-
tration was negligible at room temperature. In this case, other mechanisms
may take over, such as conduction by ion transport. In this section we will
deal with the electrical and diffusional properties of ionic crystals by look-
ing at a particular example, the alkali halides. The structures of the alkali
halides are well known, the most common being NaCl, being describable as
two interpenetrating face-centred cubic arrangements of positive and nega-
tive ions, the origins of the two substructures being separated by half the
cuvic cell edge. We are not concerned with the structure in any detail, ex-
cept to note that there are equal numbers of positive and negative ions and
that the coordination number, Z, is 6 (i.e. each ion has 6 nearest neighbours
of the opposite sign).

1.2.1 Intrinsic vacancy density

Clearly, the ability of ions to diffuse through a solid will depend strongly on
the concentration of vacancies for it to hop through. We therefore begin by
using a thermodynamic argument to estimate the vacancy density.

Recap Free energy = Internal energy - Temperature × Entropy

The free energy of the perfect crystal is:

Gp = Up − TSp (1.8)

While the free energy of the actual crystal has additional contributions from
the vacancies (let there be N ions and n vacancies of each sign, so 2N ions
and 2n vacancies in total):

Ga = Gp + nφ− 2kBT ln [(N + n)!/N !n!]− Tn∆Sfreq (1.9)

Here, φ is the total energy of formation for a vacancy pair, one on each sub-
lattice, not necessarily adjacent but not too far apart for electrostatic reasons.
There are two ways in which the entropy has changed with the introduction
of vacancies. The first is the configurational entropy term S = kB lnW , the
second is associated with a change in the oscillator frequency of the ion when
it has a vacancy as its nearest neighbour (we define ∆Sfreq as the change in
entropy due to change in oscillator frequency, per ion pair). We have also
neglected any volume change created by introducing vacancies, which would
produce an additional term pV to the free energy).
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1. Conductivity: from insulators to superconductors

We differentiate and set to zero to find the equilibrium number of vacan-
cies, making use of Stirling’s approximation (ln x! ≈ x lnx− x):

∂Ga

∂n
= φ− 2kBT [ln(N + n)− lnn]− T∆Sfreq = 0 (1.10)

Making the assumption that N >> n, this simplifies to:

n = N exp

(
∆Sfreq

2kB
− φ

2kBT

)
(1.11)

Calculating ∆Sfreq depends in detail on the model chosen to represent
vibrations in the solid, but all models produce the same overall behaviour
which is typified by the Einstein model of 3N harmonic oscillators per ion
for each direction x, y, z.

The entropy of one oscillator with angular frequency ω is given by (see
webnotes for a derivation, or a statistical mechanics text book):

S = kB[1 + ln (kBT/~ω)] (1.12)

We have 2N ions, and thus 6N oscillators, so in the perfect crystal:

Sp = 6NkB + 6NkB ln (kBT/~ω)] (1.13)

In the actual crystal with 2n vacancies and coordination number Z, there
will be 2nZ ions abutting onto vacancies, and so 6nZ of these oscillators will
have some lower frequency ω′:

Sa = (6N − 6nZ)

(
kB + kB ln

kBT

~ω

)
+ 6nZ

(
kB + kB ln

kBT

~ω′

)
(1.14)

∆Sfreq =
Sa− Sp

n
= 6ZkB ln

ω

ω′
(1.15)

Plugging this back into Eq. 1.11, we get:

n

N
=
( ω
ω′

)3Z
exp

(
−φ

2kBT

)
= C exp

(
−φ

2kBT

)
(1.16)

Adding a vacancy adjacent to an ion reduces the interatomic forces it expe-
riences, and hence the vibrational frequency drops. Hence ω′ < ω and we
expect C to be greater than 1. The prefactor C is not strongly temperature
dependent. Similar expressions for ∆freq can be obtained from other models,
but all produce something of the same form as the above. Note also the
similarity between the form of this expression, and that of the number of
free carriers in intrinsic semiconductors (see Eq. 1.7).
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Simple vacancies of the kind described above are not completely free:
positive and negative ion vacancies will be attracted to each other as this re-
duces their electrostatic energy. They may therefore form an associated pair,
or even larger aggregates. Such restrictions limit their ability to conduct.

Other defects may be more mobile. For example, consider an associate
pair of a (negatively charged) positive ion vacancy and positive ion interstitial
(or the inverse version) which is known as a Frenkel defect. As electrical
neutrality is maintained locally, there can be unequal numbers of Frenkel
pairs of opposite sign. Again the same form of vacancy density results, with
an additional correction (N is replaced with

√
NNi):

n = C
√
NNi exp

(
−φ

2kBT

)
(1.17)

Ni is the number of possible interstitial sites in the crystal (e.g. Ni = 2N for
the [4] coordinated sites in fcc).

As with semiconductors, it is possible to dope the crystal with defects
to artificially increase the number of defects and thus tailor the conduct-
ing properties of the material. For example, if a small quantity of CaCl2
is dissolved in NaCl, the resulting crystal has the NaCl structure with the
Cl− sublattice perfect and the Na+ sublattice occupied at random by (i) a
majority of Na+ ions, (ii) a minority of Ca2+ ions and (iii) an equal minor-
ity of vacancies. This results in a temperature independent contribution to
the number of positive ion vacancies, necessary to preserve the structure,
with local electrical neutrality preserved by the Ca2+ ions and positive ion
vacancies tending to occur close to each other.

1.2.2 Self-diffusion of ions

The ability of particles to diffuse in a medium is characterised by the Diffusion
coefficent D, defined as the flux of particles (amount of substance diffusing
through some area per unit time) given some concentration gradient (dN/dx).

J = −DdN
dx

(1.18)

Einstein showed in 1905 while describing Brownian motion that this was
related to the mobility of particles, µ, where mobility is defined as the ratio
of the drift velocity to the applied force:

Einstein relation D = µkBT
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Figure 1.4: Energy barrier for hopping ion

For electrical conductors where the carriers have charge q, the applied
force is qE. Thus,

D =
vdkBT

qE
(1.19)

Remembering that j = ncqvd = σE (where nc is the concentration of charge
carriers), we obtain a relation between the electrical conductivity and the
diffusion coefficient:

σ =

(
nce

2

kBT

)
D (1.20)

We model diffusion of ions in solids as oscillators with frequency ν which
are held in their equilibrium position by an energy barrier of height εi (see
Figure 1.4). The probability of jumping to an adjacent site is therefore:

p = ν exp

(
−εi
kBT

)
(1.21)

The probability of that site actually consisting of a vacancy is n/N , and
so the above probability must be multiplied by this factor. Following the
ordinary laws of kinetic theory, the diffusion coefficient may be shown to be:

D =
1

3
a2
n

N
p, (1.22)

where a is the jump distance. In Eq. 1.16 we obtained an expression for
n/N for an intrinsic (un-doped) crystal. We can add to that a term arising
from extrinsic doping of defects next into the crystal using methods outlined
above. Thus:

D =
1

3
a2ν exp

(
−εi
kBT

)[
next

N
+ C exp

(
−φ

2kBT

)]
(1.23)

lnD = ln
νa2

3
− εi
kBT

+ ln

[
next

N
+ C exp

(
−φ

2kBT

)]
(1.24)
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ln D
ln σT

1/T

high T

low T

slope = – (2εi+φ)
2kB

slope = – εi/kB

increasing 
purity

Figure 1.5: The logarithm of D and σT versus reciprocal temperature. Such
a plot is termed an Arrhenius plot.

At high temperatures the intrinsic carriers in semiconductors outnumber
those from the dopants. Similarly, at high temperatures we can make the
approximation that intrinsic vacancies are dominant. Thus, at high temper-
atures:

lnD = −2εi + φ

2kBT
+

(
ln
νa2

3
+ lnC

)
(1.25)

Conversely, at low temperatures the number of vacancies will be dominated
by the extrinsic contribution, and we have:

lnD = − εi
kBT

+

(
ln
νa2

3
+ ln

next

N

)
(1.26)

In the two above results, the final term in brackets in a constant with tem-
perature. The dependence of lnD, and thus ln(σT ), with temperature is
therefore 1/T, with two different slopes in the high- and low-temperature
regions. The behaviour is sketched in Figure 1.5. Performing experiments to
measure this temperature dependence across a sufficiently wide range there-
fore allows the determination of φ and εi. For example, values obtained using
NaCl for the Na+ ion are:
εi ∼ 0.77 eV = 1.23× 10−19 J = 74 kJmol−1

φ ∼ 2.06 eV = 3.30× 10−19 J = 198 kJmol−1
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1. Conductivity: from insulators to superconductors

Figure 1.6: Energy barrier for hopping ion under the application of a voltage
V

1.2.3 Ionic conductivity

The application of an electric field E creates an asymmetry in the potential
barrier on either side of the ion by ±1

2
aEe, as illustrated in Figure 1.6, so

the probability of jumps with, or against, the field become different:

p+ =
ν

3
exp

[
−
(
εi −

eaE

2

)
/kBT

]
(1.27)

p− =
ν

3
exp

[
−
(
εi +

eaE

2

)
/kBT

]
(1.28)

The rate of charge hopping in any one direction will be (n/N)p±, so the
resulting current along one conducting chain of ions is:

Ichannel = e
n

N
(p+ − p−) (1.29)

Figure 1.7 shows that for this particular NaCl crystal structure, one chain of
ions has effective cross-sectional area of a2/2, so the overall current density
is:

j =
2

a2
e
n

N
(p+ − p−) (1.30)

j =
2

a2
e
n

N

ν

3
exp

(
−εi
kBT

)[
exp

(
eaE

2kBT

)
− exp

(
−eaE
2kBT

)]
(1.31)

At realistic electric fields, aEe << 2kBT , and thus we can approximate
exp(x) = 1 + x...., giving:

σ =
2e2ν

3akBT

n

N
exp

(
−εi
kBT

)
(1.32)
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area = a2/2

vol. = a3/2

conc. = 2/a3

a
½

½

½

½

NaCl
fcc

atom spacing = a = acell/�2

area per atom = a2
cell/4 = a2/2

Figure 1.7: Calculation of area and volume factors for the NaCl fcc structure

Recalling the relationship between σ and D following the Einstein relation
(Eq. 1.20), we can express the above in terms of D (from Figure 1.7 we see
that nc, the concentration of carriers is equal to 2/a3):

D =
a2

3

n

N
ν exp

(
−εi
kBT

)
(1.33)

This is identical to the expression used in Eq. 1.22. We have assumed the
same species / same mechanism is responsible for diffusion and conduction.
Deviations from the Einstein relation indicate the breakdown of this assump-
tion.

1.2.4 Which ion conducts?

The theory above was derived for the case of vacancies of one type of site
being responsible for all conduction. Generalisation to mixed conductivity is
only an algebraic difficulty. However, it is possible to experimentally deter-
mine the relative importance of the two processes of conduction by positive or
negative ions. Two weighed slabs of salt M+X− are pressed together between
two weighed electrodes of the metal M. Electric current is passed through
the cell. In the two extreme cases (see Figure 1.8):

a. If only positive ions conduct (i.e. via positive ion vacancies) the cathode
[4] will grow at the expense of the anode [3]. The slabs of salt will
remain unchanged in size, acting purely as conduction paths.

b. If only negative ions conduct (again via a vacancy mechanism) the X−

ions are neutralised at the anode [3] and form new layers of salt M+X−

by dissolving the metal. The salt layers are added to block [1] while
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M

M

M+X–

M+X–[1]

[4]

[3]

[2]

+

–

Figure 1.8: Schematic of experiment used to determine relative contributions
of positive and negative ions to electrical conductivity

+ve ion dominates -ve ion dominates
akali halides: other halides:

Li, Na, K, Rb, Cs Pb, Ba
F, Cl, Br, I

silver halides

Table 1.1: Dominant ions for electrical conductivity in various ionic solids

the anode [3] decreases in weight. At the cathode [4], an equivalent
number of metal ions M+ are deposited as neutral atoms from the salt
layers close by. Thus, salt block [2] also decreases in weight (efflux of
X− and deposition of M+ and the cathode [4] grows.

Weighing the electrodes and salt blocks before and after a measured quan-
tity of electric charge has passed through the cell (checking for consistency
via Faraday’s Law and relative atomic masses) enables the proportions of
conductivity modes to be deduced in the mixed case. In the alkali halides,
the ion current is carried mainly by the positive ions, as is the case with the
silver halides.
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Figure 1.9: Ionic conductivity versus temperature in various superionic ma-
terials

1.3 Superionic conductors

A subset of ionic conductors which have attracted particular interest are the
superionic conductors (or fast-ion conductors). As the name implies, they
have a very large conductivity compared with normal ionic conductors. The
temperature dependence of some examples is shown in Figure 1.9. One of the
most spectacular examples is silver iodide AgI: at the superionic transition
its conductivity increases by more than ×5000. There is a corresponding
decrease in the apparent activation energy for hopping εi — this is a key
characteristic of the class of superionic conductors.

The transition is associated with a crystallographic phase change. The
“super”-phase must have a transport mechanism which is especially efficient
(e.g. via interstitial sites such as those illustrated in Figure 1.10). In the
α-AgI structure there are 24 tetrahedral interstitial sites through which the
smaller positive Ag+ ion may move rapidly through the bcc lattice of I− ions.
The structure is thus somewhat analogous to liquid crystals (covered later in
this course) — the lattice has partially melted (we can call it pseudo-molten
with respect to Ag+, crystalline with respect to I−).
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Figure 1.10: α-AgI structure

Figure 1.11: Sodium β-alumina electrolyte

Figure 1.12: Schematic of an Na-S cell (courtesy of Chloride Silent Power)
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1.3.1 Sodium-sulphur battery: Na β-Al2O3 electrolyte

Technologically one of the most important superionic systems may be sodium
β-alumina (e.g. Na2O.11Al2O3) for use in the sodium-sulphur high temper-
ature battery. Spinel blocks of Al3+ and O2− are separated by Al-O-Na
conducting planes as shown in Figure 1.11. The Na+ ions in the conducting
planes are disordered and can move rapidly from site to site, giving the high
conductivity. In the context of the Na-S battery, the fact that the Na is
transported (as well as the electric charge) is not a problem — in fact, it is
what’s needed for a battery to function.

A schematic of a Na-S battery is shown in Figure 1.12. Molten sodium in
the centre of the cell releases sodium ions into the electrolyte and electrons
to the electrode. The sodium ions react with sulphur at the other electrode
taking up electrons. An EMF ξ is produced, defined as the energy gained
per unit charge:

ξ = −∆G

Fz
(1.34)

∆G is the standard free energy (in units of J mol−1), z is the charge of the
ion (e.g. +1, +2 etc.), and F is the Faraday constant (defined as the electron
charge e times Avagadro’s number NA such that F = 96400 Cmol−1).

∆G = −RT ln

(
a1
a2

)
(1.35)

ai is the activity (a measure of effective concentration) of a species at the
electrodes on either side of the electrolyte. Thus,

ξ =
RT

Fz
ln

(
a1
a2

)
(1.36)

For an Na-S cell, the EMF is 2.7 V.

1.4 Electron hopping (polaron) conduction

An alternative electron conduction mechanism may also play a role in certain
impure (or deliberately doped/alloyed) ionic solids if the metal cation can
exist in different ionisation states (e.g. if it is a transition metal). As an
illustration, if Li2O is added to NiO and the mixture fired under oxidising
conditions then the resulting crystal structure is found to contain Li+, Ni2+

and Ni3+ on the “Ni” sites of the NiO structure as indicated in Figure 1.13.
An electron hopping from a Ni2+ ion to an adjacent Ni3+ ion transfers neg-
ative charge in the direction of the hop and swaps the occupancy of the site

15



1. Conductivity: from insulators to superconductors

Figure 1.13: A polaron consists of an excess bound charge and associated
polarisation of nearby ions

Poly(p-phenylene vinylene ) ‘PPV’ 2.4 eV ∼520 nm
Polyacetylene 1.5-1.7 eV ∼780 nm
Polyisothianaphtene 1.0-1.2 eV ∼1120 nm

Table 1.2: Some example band gaps for conducting polymers

in a way analogous to that of an ion hopping into a vacancy. Likewise, there
will be an activation energy associated with the transfer and so on. Again,
there will be a logarithmic dependence of the diffusion coefficient with 1/T ,
as shown in Figure 1.5.

The term polaron is sometimes used because the Ni3+ ion, being positive
with respect to the expected Ni2+ ion, polarises the surrounding oxygen ions.
It is this composite entity which should be considered, not just electron
transfer between bare ions.

1.5 Conducting polymers

Typical organic polymers where the carbon atoms exhibit sp3 hybridization
are good insulators (e.g. PVC). However, in certain classes of polymer where
there are alternating single-double bonds along a carbon backbone exhibit sp2

+ pz hybridization and there is the possibility of delocalised π-bond formation
along the chain involving the pz orbitals. The simplest example of such a
conjugated polymer is polyacetylene (see Figure 1.14). Their behaviour is
much like semiconductors, where excitation across a band gap is required to
promote electrons to a delocalised energy where they are capable of electrical
conduction. Some typical band gaps are given in Table 1.2 below.

Conducting polymers can be doped, just like traditional semiconductors.
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Figure 1.14: Structure of the most basic conjugated polymer: polyacetylene

Figure 1.15: Conductivity of polyacetylene doped with AsF5
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1. Conductivity: from insulators to superconductors

This can be performed by adding electron-withdrawing or -donating side-
chains to the polymer, or through electrochemical doping, or through a redox
agent. Figure 1.15 shows how the conductivity of polyacetylene varies with
AsF5 doping concentration.

Polymer-based LED technology is an exciting way in which these mate-
rials are being exploited to yield flexible displays with vibrant colours. PPV
or poly (p-phenylenevinylene) is widely used in this context. Electrons are
injected from a negatively biased metal electrode (e.g. Ca or Al) and holes
injected from a semi-transparent electrode (e.g. indium tin oxide, ITO).
The electrons and holes recombine within the polymer radiatively, emitting
a photon at a wavelength given by the bandgap of the polymer. There are
several processing advantages to polymer LEDs, and cost is widely touted
as an advantage though it is difficult to challenge the remarkably efficient
semiconductor industry in this regard. One major challenge which polymer
LEDs have faced is the often short lifetimes of the devices, though there has
been much progress in this area in recent years and several polymer based
products (including large flat screen TVs) are now on the market.
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1.6 Superconductivity

The successful liquification of helium at the beginning of the 20th century
opened the doors to a new temperature regime in which to explore the prop-
erties of materials. There was considerable disagreement, for example, re-
garding what would happen to the resistance of metals as the temperature
approached absolute 0. Metals such as Cu, which are good conductors at
room temperature, where first measured. These showed a behaviour consis-
tent with Figure 1.1 — scattering by impurities and defects dominated the
low temperature resistance of the material. Then in 1911, Kamerlingh Onnes
began studying mercury as it could be more readily purified. His remarkable
discovery was that rather than a gradual change with temperature, there was
a sudden transition in the material to a state which appeared to have zero
resistance.

Figure 1.16: Heike Kamerlingh Onnes (left) in Leiden was the first to liquify
helium in 1908, which then led to the discovery of superconductivity three
years later. Also in the photo is Johannes Diderik van der Waals (right). On
the right is the plot of the measured resistance of a mercurcy sample as a
function of temperature, as measured by Kamerlingh Onnes

1.6.1 What is the resistivity of a superconductor?

Experiments have been conducted since the 1950s which measure the decay
time for a current which has been established in a superconducting ring.
For example, in 1961 a decay time of > 105 years was established (within
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experimental error), providing an upper limit of 4 × 10−25 Ωm for the su-
peconducting resistivity. Subsequent experiments have measured limits down
to ∼ 10−29 Ωm. These numbers can be contrasted with a good conductor
such as copper, which does not superconduct: ρ(4.2 K)=∼ 7× 10−13 Ωm.

1.6.2 Superconducting elements

The table below shows the distribution of superconductivity amongst some
of the elements. In addition, there are many hundreds of alloy systems which
are superconducting, and indeed it is these that are generally of most interest
for practical applications.

Table 1.3: Some of the superconducting elements and their superconducting
transition temperature, Tc in Kelvin in zero applied magnetic field for “pure”
material. Boxes edged in single lines are Type I, double lines are Type II.

1.6.3 Magnetic field effects on superconductors

The excitement experienced by early researchers having discovered resistance-
less conductivity is palpable. However, it soon became clear that some of the
applications one would envisage for this type of material were limited —
passing a modest current or applying a modest magnetic field was enough
to turn the material back into the normal state. Therefore, in addition to a
critical transition temperature Tc, superconductors can be characterised by
critical magnetic field and critical current values.

Twenty years later, Meissner discovered another fundamental property of
superconductors which differentiated them from a simple ‘perfect’ conductor.
Material in a superconducting state completely expels an applied magnetic
field — in other words it behaves as a perfect diamagnet. This is known as
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the Meissner effect, and illustrated in Figure 1.17. A perfect conductor will
have no internal electric field — Ohm’s law tells us E = ρj, so ρ→ 0 implies
E → 0. One of Maxwell’s equations (discussed in detail later in this course)
relates the time variation of the magnetic field to the spatial variation of the
electric field:

Maxwell 3
∂Ex
∂z = −∂By

∂t

Given E = 0, this tells us that a perfect conductor must have ∂B/∂t = 0,
but not necessarily B = 0. Hence, when a material which becomes perfectly
conducting below Tc is placed in a magnetic field and cooled through Tc ,
the B field in the material stays constant, and is not expelled. On the other

Figure 1.17: Magnetic field lines around a perfect conductor, and a super-
conductor, above and below the critical temperature

hand, when a superconductor is placed in a field and cooled through Tc, the
magnetic field is expelled upon transition to the superconducting state. In
other words the material acquires a magnetisation, carried by surface current
loops, which is equal and opposite to the applied field. Such currents must
be maintained ad infinitum, so for a material to be a perfect diamagnet in
this way it must also have zero resistance.

1.6.4 Magnetisation curve

For a specimen in the shape of a long thin rod with a magnetic field applied
parallel to its length, the geometry is termed “ideal”. The magnetisation
curve for such a specimen is shown in Figure 1.18, where H is plotted against
−M (the magnetisation opposes the applied field). We’ll concentrate first on
what are termed Type I superconductors shown on the left of the figure. Fol-
lowing the Meissner effect, the magnetisation of the sample exactly opposes
the applied field, so −M = H up until a critical field, Hc. Above this field,
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superconductivity is destroyed and the material returns to the normal state.
Correspondingly, the resistivity (also plotted in Figure 1.18) becomes finite
at fields about Hc. In the ideal case, the magnetisation path is completely
reversible. The work done by the superconductor in expelling the applied
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superconducting 
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Figure 1.18: Magnetisation and resistivity curves for Type I and Type II
superconductors, as a function of magnetising field H, below Tc

field is the area under the magnetisation curve of M vs B (where B = µH).
Once this energy reaches a certain point, the superconducting state no longer
becomes favourable for the material, and it turns normal. If we call the free
energy difference between the superconducting state and the normal state
∆Gsuper (per unit volume), we can write:

∆Gsuper =
1

2
µH2

c (1.37)

Based on this magnetic field dependence, there are clearly implications for
the maximum current that can be passed through a superconductor which
we will examine in a subsequent section.

1.6.5 Type I vs Type II superconductors

So far we have described the properties of so-called Type I superconductors,
which we can think of as ideal, pure superconductors. A technologically
more interesting class is the Type II superconductors, whose magnetic field
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dependence is shown on the right-hand part of Figure 1.18. We see two
distinct critical fields Hc1 and Hc2. For fields up to Hc1, the Meissner effect
still holds and the applied field is completely expelled, just as for a Type
I material. However, as the field is raised above Hc1, the magnetisation
falls off gradually until Hc2 where it drops to 0. The resistivity remains
zero until Hc2, above which it becomes finite and the material returns to
the normal state. It is still possible to define the thermodynamic critical
field Hc for Type II materials such that the area under the M -H curve is
1/2 H2

c , which must lie between Hc1 and Hc2. Type II materials tend to be
alloys, or transition metals with high values of resistivity in the normal state
(see Figure 1.3). Furthermore, the magnetisation curve depicted for Type II
materials is idealised, and one would expect some hysteresis in real materials.

The magnetisation behaviour of Type II superconductors is explained by
the penetration of magnetic flux into the material, creating small puddles of
normal material within a superconducting bulk. The material is said to be
in the mixed state or vortex state. Because the bulk of the materials remains
in the superconducting state, there remain conducting pathways of zero re-
sistance, and hence the resistivity remains zero until the bulk turns normal
at Hc2. The magnetic flux penetrates the material in discrete quanta Φ0,
with a small screening current induced in the surrounding superconducting
material — hence, a vortex.

1.6.6 Flux quantisation

The derivation of the quantisation of flux into multiples of Φ0 lies beyond
scope of this course. However, there is a nice argument based on the Aharonov-
Bohm effect which illustrates the idea, as depicted in Figure 1.19. The

Figure 1.19: An illustration of the Aharonov-Bohm effect: in the absence of
scattering, a charge carrier will pick up different phases depending on which
path it takes around some flux.
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Aharonov-Bohm effect states that if we have two current paths, carried by a
charge q, around either side of some flux Φ, and there is no scattering, then
the phase difference ∆φ of the two paths is:

∆φ =
qΦ

~
(1.38)

If the two paths interfere in any way other than perfectly constructively,
then the presence of the flux appears as a source of scattering, which the
superconductor does not permit. We can therefore state that the supercon-
ductor will only allow flux penetration in units where the two paths interfere
constructively, i.e. their relative phase must be a multiple of 2π.

∆φ =
qΦ

~
= 2Nπ and thus, Φ =

Nh

q
= NΦ0 (1.39)

So the allowed flux is quantised in units of Φ0 = h/q. We can measure the
flux quantum to be:

Φ0 =
h

2e
= 2× 10−15 Weber (1.40)

So, the charge carriers in superconductors appear to have a charge of twice
the electric charge... the entities responsible for electrical conduction in su-
perconductors are electron pairs, known as Cooper pairs. If it seems coun-
terintuitive that electrons should pair up in this way, don’t be discouraged
— it was not until 46 years after the discovery of the phenomenon that a
satisfactory theory for superconductivity was put forward! The paired state,
where two electrons couple to the same lattice vibration, becomes energet-
ically favourable below Tc. Electrons paired in this way cannot be readily
scattered, hence the resistance-less current flow.

1.6.7 The flux lattice

Using very small amounts of powder and replica techniques for the electron
microscope, several research groups have imaged the flux lattice emerging
from the surface of a Type II superconductor by decorating it with ferro-
magnetic powder particles. More recently, the use of scanning tunneling
microscope (STM) at cryogenic temperatures has enabled the direct imaging
of the regions of normal state of the material, and thus the flux lattice (see
Figure 1.20. The flux lattice is triangular, and has a lattice constant which
decreases as the applied field increases. As with atomic lattices, movements
of flux-lattice dislocations, vacancies etc. are important to understand the
behaviour of the superconductor, especially when a field gradient is applied.
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Figure 1.20: Scanning tunneling microscope images of the vortex lattice of
a Type II superconductor as a function of applied magnetic field at 2.3 K
[Courtesy of the Electron Physics Group at NIST]

In high-temperature ceramic superconductors there is much discussion on
whether the flux distribution is amorphous or glassy in nature, and whether
it has a ‘melting’ temperature in the region of 30 K.

1.6.8 Critical current

We have already seen that there is a critical field above which a supercon-
ductor is driven into the normal state. It follows that if we try to drive too
great a current along a superconductor, the associated magnetic field will
exceed Hc and the material goes normal. For Type I materials, the critical
current Ic is simply that which generates the critical magnetic field at the
surface. For a long thin wire of radius r, it follows directly from Ampère’s
Law (H = I/2πr) that:

Ic = 2πrHc (1.41)

However, the low value of Hc in Type I materials restricts their use in appli-
cations such as superconducting magnets. In Type II materials, where flux
is allowed to penetrate the material, the situation is more interesting. Let
us consider current through a Type II superconductor in the mixed state, in
the geometry shown in Figure 1.21 where there is a magnetic field running
perpendicular to the current. There is a Lorentz force on each electron of
−evx×By. This force therefore acts along z, and has the following magnitude
per unit volume of material (where n is the electron concentration and N is
the number of flux quanta per unit area):

Fz = −nevxNΦ0 (1.42)

The current density j = −nevx, so this can be rewritten as:

Fz = jxNΦ0 (1.43)
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Figure 1.21: The effect of current on flux quanta

There must be an equal and opposite force on the flux lines. So if we apply a
fixed current j along the sample, each flux quantum experiences a force jΦ0

in a direction perpendicular to the current flow. If these flux lines are allowed
to move under this force, we have a time-varying magnetic field, and by the
same Maxwell’s equation used above, an induced voltage (electric field per
unit distance)

Maxwell 3
∂Ex
∂z = −∂By

∂t

Thus, we have an induced voltage which is proportional to the current
through the material — it looks like a resistor. Materials in the mixed state
with no flux pinning are therefore not capable of carrying much current.

1.6.9 Flux pinning

If the force derived above is insufficient to move the flux line through the
material, it is possible for a large current to flow without resistance. By
equating this pinning force to that derived above, we obtain:

Fpinning = jcritΦ0 (1.44)

This argument is oversimplified, neglecting (i) the fact that the flux lines
through the material are precisely due to the applied current in the first
place and (ii) the effects of interactions between flux lines, amongst other
things. However, it does illustrate the critical role which flux pinning plays
in enabling superconductors to carry large currents and make them techno-
logically useful. In looking for suitable materials from which to fabricate a
high-field magnet, for example, we therefore require something with a com-
bination of:

a. large flux pinning

b. high value of Hc2
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High temperature / high field alloys

Alloys tend to be Type II materials. Examples include:

Tc (K) Bc2 (T)
Nb40-Ti60 9 10
Nb3Sn 18.5 20
Nb3(Ge0.8Al0.2) 10
Chevrel phases 10 60

Table 1.4: Some superconducting alloys and compounds and their properties

There is still much basic research to be done into the underlying mechanisms
of both these properties and so at present these qualities are mainly empirical
as we shall see when discussing actual materials in the following section. A
Type II superconductor is termed hard if the flux lines within it experience
a high pinning force.

1.6.10 Superconducting materials

Tables 1.4 and 1.5 survey some example values for critical temperature and
field in Type II superconductors. There is a very approximate correlation
between Tc and Hc, but as seen from the Chevrel phase materials this doesn’t
always hold. The whole panoply of complication of the metallurgical phase
diagram spills over into superconductivity parameters such as Tc, as different
phases become stable in different composition ranges. Most of the work on
the alloys described in Table 1.4 was done before the 1980s, when attention
shifted towards the higher-Tc ceramic materials. Note that as usual, the
application of these materials lags a decade or so behind their discovery.

In the 1980s, superconducting ceramic metals with ‘high’ critical temper-
atures was discovered and they continue to attract considerable attention.
Their general formula is (LxM1−x)mAnDp, where L is usually a rare earth,
M an alkali earth, A is Cu (part 2+, part 3+) and D is oxygen. Some
examples are shown in Table 1.5.

1.6.11 Organic superconductors

There is also renewed interest in superconductors based on organic materials.
Although the values of Tc and Jc are typically very low, they provide a useful
test bed to explore theories and subsequently improve the characteristics of
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High temperature ceramic superconductors

Tc (K) structure
(La2−xBax)CuO4−y 33 K2NiF4 structure (Nobel Prize 1987)
YBa2Cu3O7 93 layered perovskite
Bi2Sr2CaCu2Om 96 layer
(Bi1−xPbx)2Sr2Ca2Cu3O11 110 layer
TlBamCanCupOy up to 125 layer

Table 1.5: Some superconducting ceramic materials and their properties

other superconductors. An example is the layered charge transfer salt shown
in Figure 1.22 where the current runs along the layers of Cu(CSN)2.

Figure 1.22: An example organic superconductor: k-BEDT-TTF2Cu(CSN)2

1.6.12 Superconducting materials for high field magnets

Following the arguments described earlier, the critical current must depend
on temperature and externally applied magnetic field. For a fixed tempera-
ture, applying an external magnetic field causes the critical current to fall.
However, curves of Jc vs H for traditional ‘hard’ Type II materials typically
exhibit a plateau, and sometimes even a peak effect. Figure 1.23 shows an
example for the 75Zr-25Hb alloy. In its purest (recrystallised) state it ex-
hibits no plateau, just a reasonable monotically decreasing value of Jc with
increasing H. This is consistent with the flux in the material being due to the
combination of a term induced by current through the superconductor, plus
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an applied external field. The same material, only partially recrystallised
after cold work has a much higher value of Jc at elevated fields. The highest
values of all for this system are found after cold work and a particular heat
treatment, the latter probably involving some precipitation due to the pres-
ence of oxygen. If the scale of the precipitation, or of the dislocation tangles
in polygonised walls, is right, then large pinning (and high Jc) results.

The curve of Figure 1.23 is typical of superconducting wires for appli-
cations in high-field magnets. Such curves are constantly being revised as
manufacturers vie with each other to produce better and better wires. The
first generation of wires were NbZr and NbTi (mostly the latter is used now,
for example in the LHC in CERN). A second generation is Nb3Sn, which is
used, for example, in fusion energy research.

Figure 1.23: Critical current density Jc versus applied field H
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