UCL Graduate degrees


Data Science for Cultural Heritage MSc

The Data Science for Cultural Heritage MSc (DSCH) provides an innovative opportunity to study data science through the exciting lens of cultural heritage. It is the first MSc to provide in-depth, practice-based data science training in a cultural heritage context, and aims to broaden the horizons of data science. The MSc will equip you to succeed as data scientist in diverse fields such as marketing, architecture, construction or media, as well as heritage and many more.

Key information

Programme starts

September 2019

Modes and duration

Full time: 1 year
Part time: 2 years
Flexible: up to 5 years

Application dates

All applicants
Open: 15 October 2018
Close: 26 July 2019
Open: 15 October 2018
Close: 30 August 2019

Tuition fees (2019/20)

UK/EU: £13,750 (FT) £6,840 (PT)
Overseas: £25,150 (FT) £12,510 (PT)

Note on fees: The tuition fees shown are for the year indicated above. Fees for subsequent years may increase or otherwise vary. Further information on fee status, fee increases and the fee schedule can be viewed on the UCL Students website. Fees for flexible, modular study are charged pro-rata to the appropriate full-time Master's fee taken in an academic session.

Optional qualifications: This degree is also available as a PG Diploma with fees set accordingly.
Location: London, Bloomsbury

Entry requirements

A minimum of a second-class UK Bachelor's degree from a UK university or an overseas qualification of an equivalent standard is required.

English language requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.

The English language level for this programme is: Standard

Further information can be found on our English language requirements page.

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from the International Students website.

International applicants can find out the equivalent qualification for their country by selecting from the list below.

Select your country:

About this degree

This programme pioneers a new way of teaching data science through application in a cross-disciplinary context. You will explore the complexities of acquisition, analysis and exploitation of the variety of data that is generated and used in heritage contexts. You will develop advanced data science skills, such as crowd sourced data science, machine learning or imaging data analysis.

Students undertake modules to the value of 180 credits, comprising 120 taught credits and a 60 credit dissertation.

The programme consists of four compulsory modules (75 credits), three optional modules (45 credits) and an individual research dissertation (60 credits). 

A Postgraduate Diploma, four compulsory modules (75 credits), three optional modules (45 credits) is offered.

Compulsory modules

Students will take three compulsory modules in the first term and a fourth one in the second term. 

  • Science and Engineering in Art, Heritage and Archaeology in Context
  • Introduction to Statistical Data Science
  • Heritage Data Mapping and Visualization
  • Heritage Data Management

Optional modules

  • Machine Learning for Heritage
  • Heritage Imaging
  • Crowd-sourced and Citizen Data for Cultural Heritga
  • Heritage Building Information Modelling


Students are required to submit a 10,000-word dissertation. The topic of the dissertation, which is supervised by a member of BSEER staff, is selected by the student in agreement with the programme director. It can be taken from a wide range of subjects related to the main themes of the programme and may be selected to assist career development or because of its inherent interest. Collaboration with industry or the heritage sector for the selection of dissertation projects will be encouraged and facilitated whenever possible.

Teaching and learning

The programme is taught using various strategies including lectures, tutorials, problem-based learning, project work, coursework and reports.

You will get hands-on experience working with realistic data-sets and within heritage contexts, which will include field trips.

Skills-based learning will be delivered through small-group exercises promoting peer-to-peer learning and learning through research.

Additional costs

You will require your own laptop. Recommended specs can be provided on request.

Please note that the list of modules given here is indicative. This information is published a long time in advance of enrolment and module content and availability is subject to change.


For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.


Data science is in high demand in many and diverse industries. As a graduate of MSc DSCH you will be ideally placed to gain employment as data scientist, in particular in those sectors that foster interdisciplinarity and break barriers between technology and humanities or social sciences. 

The programme has been developed with input from industry leaders from a diversity of sectors, including architecture, heritage, social media or digital technologies. You will gain exposure to real data challenges from these industries and will develop skill set in data science that will be highly transferable across these and many other sectors.


Cross-disciplinarity, an applied focus, an emphasis on innovation and critical thinking are the key qualities that will define the professional character of our graduates and will make you stand out from other data scientists. 

You will develop advanced data science skills, as well as many transferrable skills such as coding, presentation and communication skills, working with different stakeholders, problem contextualization or public engagement techniques.

Why study this degree at UCL?

From historic buildings and sites to museums, cultural heritage provides an exciting setting to learn and apply data science through real applications that combine science and engineering with social sciences and humanities. 

This cross-disciplinary programme will give you a balance of advanced data science skills, active learning experience and valuable cross-cutting and transferrable skills, including communication and interdisciplinary collaboration, that are in high demand in many industries and sectors.

Developed and delivered by leading academics at the UCL Institute for Sustainable Heritage, in collaboration with UCL Department of Statistical Science, industry and major national and international heritage institutions.

Department: Bartlett School of Environment, Energy & Resources

Application and next steps


Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

Who can apply?

You will have an engineering, computer science, applied mathematics or science background. Candidates with suitable professional experience or a social science or humanities background can also apply if they have a demonstrable computational or data analysis capability.

Application deadlines

All applicants
26 July 2019
30 August 2019

For more information see our Applications page.

Apply now

Contact information

Page last modified on 14 November 2017 by UCL Student Recruitment Marketing