Skip to main content
Navigate back to homepage
Open search bar.
Open main navigation menu

Main navigation

  • Study
    UCL Portico statue
    Study at UCL

    Being a student at UCL is about so much more than just acquiring knowledge. Studying here gives you the opportunity to realise your potential as an individual, and the skills and tools to thrive.

    • Undergraduate courses
    • Graduate courses
    • Short courses
    • Study abroad
    • Centre for Languages & International Education
  • Research
    Tree-of-Life-MehmetDavrandi-UCL-EastmanDentalInstitute-042_2017-18-800x500-withborder (1)
    Research at UCL

    Find out more about what makes UCL research world-leading, how to access UCL expertise, and teams in the Office of the Vice-Provost (Research, Innovation and Global Engagement).

    • Engage with us
    • Explore our Research
    • Initiatives and networks
    • Research news
  • Engage
    UCL Print room
    Engage with UCL

    Discover the many ways you can connect with UCL, and how we work with industry, government and not-for-profit organisations to tackle tough challenges.

    • Alumni
    • Business partnerships and collaboration
    • Global engagement
    • News and Media relations
    • Public Policy
    • Schools and priority groups
    • Visit us
  • About
    UCL welcome quad
    About UCL

    Founded in 1826 in the heart of London, UCL is London's leading multidisciplinary university, with more than 16,000 staff and 50,000 students from 150 different countries.

    • Who we are
    • Faculties
    • Governance
    • President and Provost
    • Strategy
  • Active parent page: Population Health Sciences
    • Study
    • Research
    • Institutes and Schools
    • Active parent page: News
    • Events
    • About
    • People

Further hope for base-edited T-cell therapy to treat resistant leukaemia

Three young patients with relapsed T-cell leukaemia have now been treated with base-edited T-cells, as part of a ‘bench-to-bedside’ collaboration between UCL and Great Ormond Street Hospital for Children (GOSH).

15 June 2023

Further hope for base-edited T-cell therapy to treat resistant leukaemia

Breadcrumb trail

  • Population Health Sciences
  • News

Faculty menu

  • Current page: All news headlines
  • Around the faculty

The data from the NHS clinical trial, published in The New England Journal of Medicine and funded by the MRC, shows how donor CAR T-cells were engineered using cutting edge gene editing technology to change single letters of their DNA code so they could fight leukaemia.

The experience of using the cells in three patients is shared, and includes 13-year-old Alyssa from Leicester, who last year was the first person in the world to be treated on the trial for T-cell acute lymphoblastic leukaemia (T-ALL)*. This is a cancer of white blood cells and is usually treated with chemotherapy, but if it comes back, can be hard to clear.

Within four weeks of receiving the cells Alyssa’s leukaemia was undetectable and she went on to have a successful bone marrow transplant, and is still well and at home almost a year later.

A second teenager cleared their leukaemia within a similar time period and is now recovering at home after their transplant. Sadly, while a third child responded to the CAR T-cell therapy, their course was complicated by serious infections and their family agreed with the clinical team to move to palliative care.

This first human application of base-editing technology was designed and developed by a team of researchers at UCL, led by Professor Waseem Qasim (UCL Great Ormond Street Institute of Child Health and Honorary Consultant at GOSH), working with Dr Robert Chiesa and the Bone Marrow Transplant/CART/Haematology teams at GOSH.  

The project is supported by Wellcome and the National Institute of Health and Care Research (NIHR).

Professor Waseem Qasim, Professor of Cell and Gene Therapy at UCL, said: “It’s nice to be able to see the fruits of a long period of work coming together from multiple teams and being brought into play for new treatments. It’s still early, and we need more follow up and to treat more patients to know how it might impact treatments long term.”

Dr Robert Chiesa said: “It is really crucial that children affected by cancer who failed standard of care have access to innovative strategies in the context of clinical trials such as this. A research hospital such as GOSH offers the ideal setting for developing experimental approaches that might offer hope to children with otherwise very poor prognosis. This is possible due to the dedication of scientists, doctors, nurses and allied professionals working for these children and their families.”

To generate banks of ‘universal’ anti T-cell CAR T-cells for the study, the researchers used healthy donor T-cells, arranged by the Anthony Nolan registry. They then made changes to the cells using ‘base editing’, which works by chemically converting single nucleotide bases (letters of the DNA code) which carry instructions for a specific protein, in order to prevent them being produced.

The steps were:

1.  Removing existing receptors so that T-cells from a donor can be banked and used without matching – making them ‘universal’.

2.  Removing a ‘flag’ called CD7 that identifies them as T-cells (CD7 T-cell marker). Without this step the T-cells – which are designed to recognise and attack cancerous cells – could also kill each other.

3.  Removing a second ‘flag’ called CD52. This makes the edited cells invisible to some of the strong drugs given to the patient during the treatment process.

4.  Adding a Chimeric Antigen Receptor (CAR) which recognises the CD7 T-cell receptor on leukemic T-cells. The cells become armed against CD7 and recognise and fight T-cell leukaemia.

Professor Qasim said: “Base editing involves making changes to single letters of DNA code to change signals and stop genes being expressed, without having to make a cut to the chromosomes. It works really well for engineering T-cells.”

The clinical trial for this treatment is still open and aims to recruit up to 10 NHS patients with T-cell leukaemia, who have exhausted all conventional treatment options, referred by NHS children’s leukaemia specialists. Patients are treated in the Bone Marrow Transplant Department at GOSH under the care of the BMT/CART/Haematology teams. Any patients eligible to receive treatment under the NHS and interested in this trial should approach their specialist healthcare provider.

If shown to be widely successful, the teams hope that it can be offered to more children and earlier in their treatment journey when they are less sick. With additional funding, they also hope to make it available for adults in the future.

The researchers also believe the base editing technique could be used for multiple other conditions, where changes in single letters of DNA cause illness such as sickle cell disease.

Professor Qasim explained: “The technology itself could also have wide reaching applications for corrections of certain inherited conditions such as sickle cell disease. As the technology matures and is shown to be safe, it could be applied quite widely, although there will need to be careful testing and longer-term studies.”

The cells were manufactured as part of a long-standing research programme led by Professor Qasim at UCL Great Ormond Street Institute of Child Health. Thanks to early funding from Great Ormond Street Hospital Children’s Charity (GOSH Charity), Professor Qasim has been a pioneer in developing new CAR T-cell treatments using innovative gene editing techniques.

The research team thanks Anthony Nolan for providing the donor T-cells and all of the donors who donate to the register.

Links

  • Professor Waseem Qasim's academic profile
  • UCL Great Ormond Street Institute of Child Health
  • UCL Population Health Sciences
  • Great Ormond Street Hospital for Children
  • Paper in NEJM

Images

  • Alyssa. Credit: GOSH

Media contact 

Poppy Danby 

E: p.danby [at] ucl.ac.uk

ich-front

UCL Great Ormond Street Institute of Child Health

Further information

  • About Us
  • Athena SWAN
  • Strategic Partners
  • Support Us

Contact

  • People
  • Contact Us

Follow us: 

Tweets by @UCLchildhealth

UCL footer

Visit

  • Bloomsbury Theatre and Studio
  • Library, Museums and Collections
  • UCL Maps
  • UCL Shop
  • Contact UCL

Students

  • Accommodation
  • Current Students
  • Moodle
  • Students' Union

Staff

  • Inside UCL
  • Staff Intranet
  • Work at UCL
  • Human Resources

UCL social media menu

  • Link to Soundcloud
  • Link to Flickr
  • Link to TikTok
  • Link to Youtube
  • Link to Instagram
  • Link to Facebook
  • Link to Twitter

University College London, Gower Street, London, WC1E 6BT

Tel: +44 (0) 20 7679 2000

© 2025 UCL

Essential

  • Disclaimer
  • Freedom of Information
  • Accessibility
  • Cookies
  • Privacy
  • Slavery statement
  • Log in