MSc Scientific Computing








[external source element is broken]
error message: Excessive recursionQ. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.
Q. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.
Q. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.
Q. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.
Q. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.
Q. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.
Q. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.
Q. Is this a programming course?
A. While your programming will undoubtedly improve as a result of taking the MSc, the aim is to provided a fully rounded training in scientific computing including numerical methods, software engineering, use of high performance facilities.
Q. What background in programming do I need for the course?
A. It is assumed that all students will have undertaken some programming in a high level language. In the first term you will take a course Research Software Engineering with Python. This is not a first course on programming: it is assumed that you have prior knowledge of at least one programming language, and are be comfortable with all the basic concepts of computer programming variables, control flow and functions. We do not mind what language you already know – we will teach our research software engineering course using Python, but will introduce the language at the beginning of the course. But you must have programmed in something before!
If you are not confident that you could, for example, write a function to load a data file, with the filename as an input function, and then print out only the mean of the numbers in the second column, but including only those lines with an even number in the third column, then you need to prepare by studying some programming before you join us. To practice with Python, you can try: http://introtopython.org.
Similarly in the second term there is a course Research Computing with C++. This course will assume that you have some familiarity with C++. You do not need to learn the basics of C++ before starting the course but if needed you should do this during the first term of the Christmas vacation.
Q. What project can I chose?
A. The project can be in a very wide ranging choice of topic in physical science, mathematics, computer science and engineering. It must contain an element of programming either in the form of a new program or as a significant addition to an existing code. It can be done using any computer language. A list of projects is provided but many students arrange their own projects by directly approaching academics in whose research they are interested.
Q. I have not done maths since school. Is this a problem?
A. This is fairly formal course in scientific computing and includes masters levels modules in numerical methods, and computation and simulation. These course require a background in university level mathematics so students should have continued their studies of mathematics with courses as part of their first degree.
Q. Is this a course for physicists?
A. No. The course is run jointly between the Department of Physics and Astronomy (who acts as the admitting department) and the Department of Computer Science. We accept students from numerate degrees in physical science, mathematics, computer science or engineering.