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A magnetoresistive heat switch has been developed to improve the performance of our flight-worthy
cryogen-free ADR. We have characterised the switch’s thermal conductivity in the temperature range
0.3–4 K under an applied magnetic field of 1.8 T for two tungsten samples of different purity. The results
are discussed relating to the key aspects of semi-classical magnetoresistance theory. We show that crys-
tal purity has a strong effect on switch performance and magnetoresistive effect. Our findings are verified
by comparison to results obtained by other authors. The measured switching ratio for our best sample is
1.75 � 104 at 1.5 K and 1.51 � 104 at 4.26 K. The lattice conductivity remains dominated by the electronic
conductivity in the investigated range of temperatures under an applied magnetic field of 1.8 T. In order
for the lattice conductivity to dominate a purity of >99.999% would be required.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many cryogenic systems require heat flow to be controlled.
Heat switches provide this control, allowing thermal isolation
and connection between different system components. An ‘ideal’
heat switch would provide complete thermal isolation in its ‘off’
state and a strong thermal link in its ‘on’ state. Complete isolation
can only be achieved using mechanical heat switches, which are
undesirable for use in space due to the potential for failure.

There has been considerable interest in the concept of exploit-
ing thermal magnetoresistance to form the basis of a heat switch
especially for use in adiabatic demagnetisation refrigerators due
to the high switching ratio (ratio of ‘on’ conductance to ‘off’ con-
ductance). In the space worthy ADR developed at the Mullard
Space Science laboratory the low temperature performance is lim-
ited by the heat switches used. As shown in [1] replacement with
magnetoresistive heat switches offers considerable improvement
in performance thereby justifying the slight increase in mass asso-
ciated with the additional magnet needed. Magnetoresistance is a
phenomenon that occurs markedly in compensated metals with
closed Fermi surfaces, and is simply a large change in electrical
resistance under the application of a sufficiently strong magnetic
field. Since the electrical resistance in metals can be related to
the thermal resistance (via the Wiedemann–Franz law), an applied
magnetic field also changes the thermal conductivity. For tungsten
it has been shown [2] that a change in thermal conductivity in the
region of 104 at 4 K is obtained with magnetic fields in the region of
2–3 T. This allows the possibility of a solid state heat switch with a
ll rights reserved.
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large switching ratio and where the switching time is limited only
by the time taken to magnetise or demagnetise the magnet.

We have measured the thermal conductivity of a tungsten mag-
netoresistive heat switch over the temperature range 0.3–4 K un-
der an applied magnetic field of 1.8 T for two samples of
different purity. In order to identify the relative phonon and elec-
tron contributions to the thermal conductivity and the tempera-
ture dependency we compare our results to theory.

2. Theoretical treatment of magnetoresistive thermal
conductivity

In metals, heat is transported by phonon propagation and free
electron diffusion. In the liquid helium regime, the electron diffu-
sion mechanism strongly dominates the thermal conductivity, typ-
ically carrying several orders of magnitude more heat per unit time
when compared to the phonon mechanism [3]. In zero applied
magnetic field, the low temperature thermal conductivity k is a
sum of the two contributing mechanisms,

kðTÞ ¼ kgðTÞ þ keðTÞ ð1Þ

where kgT is the phonon conductivity term and keT the electronic
conductivity term where both are functions of temperature (T).
Compensated metals with a closed Fermi surface are known to ex-
hibit a large thermal magnetoresistive effect. Metals meeting these
criteria include Ga, Cd, Be, Zn, Mo and W [3]. Magnetoresistive ef-
fect will refer to the thermal magnetoresistive effect only for the
rest of this paper.

The origin of the magnetoresistive effect arises from the action
of the Lorentz force upon the electrons within the metal when an
external magnetic field is applied. The electrons describe curved
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paths under such conditions, manifested as helical orbits in the
plane normal to the applied magnetic field. If the magnetic field
is strong enough to significantly curve an electron’s trajectory
within a mean free path, it is likely magnetoresistance will be ob-
served [4]. Electrons describe such orbits on surfaces of constant
energy in k-space, e.g. on sheets of the Fermi surface, and have cor-
responding real space orbits [4]. The frequency of the orbit is the
cyclotron frequency, xc ¼ eB=m�, where e is the electronic charge,
B is the applied magnetic field, and m* is the effective electron
mass. Since the electrons are locked into these orbits, they diffuse
through the metal along a temperature gradient at a greatly re-
duced rate. As electron diffusion is the dominant process contrib-
uting to thermal conductivity, the thermal conductivity is
significantly reduced. For the metals Ga, Cd, Be, Zn, Mo and W with
a sufficiently high magnetic field, the electron thermal conductiv-
ity can be reduced so that phonon conductivity becomes the dom-
inant heat transfer [3].

Magnetoresistive heat switch applications have been investi-
gated for Ga [5], Cd [6], Be [7] and W [3,8]. At sufficiently low tem-
perature these metals all become superconducting. In order for a
magnetoresistive heat switch to maintain a useful switching ratio,
it needs to be operated above its superconducting transition tem-
perature, Tc. For applications involving milli-Kelvin temperatures,
only beryllium and tungsten have a sufficiently low Tc, at 0.026 K
and 0.015 K, respectively. To ensure minimal heat conduction in
the thermal ‘off’ state (i.e. the low thermally conducting state
achieved with a magnetic field), a metal with a low phonon con-
ductivity must be chosen. A higher Debye temperature, hD, implies
a lower phonon thermal conductivity. Beryllium has a hD of 1000 K,
whereas Tungsten has a hD of 310 K. Thus, beryllium is clearly an
excellent candidate, as Radebaugh’s results indicate [7]; however,
large single crystals are difficult to obtain and beryllium is highly
toxic. Given the present problems in obtaining beryllium, tungsten
is the best second choice.

Tungsten has a body-centred cubic (bcc) lattice structure. Fol-
lowing the theoretical approaches taken by Canavan et al. [3], Long
[9] and Wagner [10] we summarize the key aspects of the theory
for comparison to our thermal conductivity measurements. For
an applied magnetic field aligned along an axis of high symmetry
within the tungsten crystal, the thermal conductivity tensor sim-
plifies to:

k ¼
kxx kxy 0
�kxy kxx 0

0 0 kzz

0
B@

1
CA ð2Þ

where the applied field is aligned in the z direction and the thermal
gradient is along the x direction. The z component of the thermal
conductivity does not contribute to heat flow in the orthogonal
x–y plane, reducing the effective tensor to a 2 � 2. The transverse
thermal conductivity kxy has been determined by Long [9] to be only
a few percent of kxx in the investigated range of temperatures and
fields. Thus, it is reasonable to neglect the effects of kxy and assume
the thermal conductivity is isotropic within the x–y plane.

Semi-classical magnetoresistance theory shows that compen-
sated metals have a magnetoresistive effect that has a quadratic
dependence on applied magnetic field [4,9,10]. Wagner [10], Long
[9], and Batdalov [2] find that for high magnetic fields, kxx has the
form:

Kxx ¼ kgðTÞ þ
AxxðTÞ

B2 ð3Þ

where the lattice conductivity kgðTÞ is assumed to be completely
independent of magnetic field, B is the applied magnetic field
and AxxðTÞ represents the magnetoresistive electronic thermal
conductivity. For high fields, Wagner [10] found AxxðTÞ to be of
the form AxxðTÞ
T ¼ a0 þ a3T3, where a0 and a3 are constant

coefficients.
The high field criterion is given by xcs� 1 [4,9,10], where s is

the electronic relaxation time. xcs, the mean angle turned be-
tween collisions [4], is a difficult quantity to calculate as it requires
knowledge of the electron effective mass (m*) which is a variable
quantity. However, we can obtain an estimation of xcs by consid-
ering the cyclotron frequency definition (shown above) and the
electrical conductivity. In the absence of a magnetic field the elec-
trical conductivity, a0, is given by r0 ¼ ne2s=m�, where n is the
electronic number density. By combining this with the cyclotron
frequency definition we obtain

xcs ¼
Br0

ne
ð4Þ

The thermal conductivity k may be related to the electrical con-
ductivity via the Wiedemann–Franz law (Eq. (5)) if inelastic scat-
tering between electrons and phonons may be neglected [11], i.e.
at not too low temperatures (whilst the electron momentum dissi-
pation path length remains equal to the electron energy dissipation
path length) and high temperatures (significantly above the Debye
temperature):

k
r0
¼ L0T ð5Þ

where L0 is the Lorenz number derived from free-electron theory
and has the theoretical value L0 ¼ 2:44� 10�8 W X K�2. Long [12]
shows that in the 1–4 K region the Lorenz number increases from
L0 with increasing temperature to a value of �4� 10�8 W X K�2 at
4 K. Wagner et al. [13] show that the Lorenz number decreases from
L0 with increasing temperature within the same temperature region
as Long, but with variations between different samples of Tungsten.
Wagner et al.’s value of the Lorenz number varies between
�1:2� 10�8 W X K�2 and �2:2� 10�8 W X K�2 at 4 K. Noting the
difference between the experimentally measured results of these
authors, we assume the Wiedemann–Franz law makes a reasonable
approximation to the Lorenz number for Tungsten. We use our
measured zero magnetic field thermal conductivity
(48.27 kW m�1 K�1 at 4.26 K for sample 1) to determine r0, and find
r0 ¼ 4:64� 1011 X�1 m�1. Assuming two conduction electrons per
atom [14], the electron number density, n, will be
1:26� 1029 m�3. Using Eq. (4) we find xcs ¼ 23B for sample 1. For
an applied field of 1.8 T we have a value of 41 for xcs for this sam-
ple. The requirement for the high magnetic field case is that xcs is
much greater than 1. We will consider that a value of 41 satisfies
this criterion.

The temperature dependency of the phonon conductivity com-
ponent kgT is dependent upon the nature of the scattering mecha-
nisms present. If the phonon current is limited by scattering of
conduction electrons or dislocations, we would expect a T2 rela-
tionship; whereas if it is limited by boundary scattering then a T3

relationship would be expected [12]. In the analysis of our mea-
surements we will consider both cases. We thus fit our thermal
conductivity data to the equation:

kxx ¼ PTu þ AxxðTÞ
B2 ð6Þ

where P is the phonon conductivity coefficient, u will be either 2 or
3 and AxxðTÞ is the high magnetic field electronic conductivity term
which has the form Axx

T ¼ a0 þ a3T3. Long [12] suggests that bound-
ary scattering is not significant for his sample, and thus expects the
phonon conductivity to have a T2 form.

3. Experimental

Two samples of different purity single crystal Tungsten were
used for the characterisation of the thermal conductivity.



Table 1
Full results of GDMS (gas discharge mass-spectrometry) purity analyses for samples 1
and 2. Elemental concentrations are by mass in lg/g.

Element Sample 1 Sample 2 Element Sample 1 Sample 2

Ag <0.004 <0.005 N <0.01 <0.01
Al 0.02 0.05 Na 0.10 0.06
As <0.004 <0.008 Nb 0.04 0.2
Au <0.009 <0.009 Nd <0.002 <0.002
B <0.001 <0.002 Ni <0.006 <0.009
Ba <0.002 <0.002 O <0.7 <0.5
Be <0.0006 <0.0008 Os <0.07 <0.07
Bi <0.004 <0.005 P <0.003 <0.004
Br <0.005 <0.004 Pb <0.006 0.03
C <2.7 <3.7 Pd <0.002 <0.002
Ca 0.04 <0.01 Pr <0.0003 <0.0004
Cd <0.02 <0.03 Pt <0.003 <0.003
Ce <0.0008 <0.001 Rb <0.0005 <0.0007
Cl <0.009 <0.004 Re <0.08 <0.09
Co <0.001 0.01 Rh <0.0009 <0.003
Cr 0.02 0.05 Ru 0.00 <0.004
Cs <0.06 <0.03 S 0.06 0.04
Cu 6.1 2.7 Sb <0.009 <0.01
Dy <0.001 <0.002 Sc <0.0001 <0.0002
Er <0.0009 <0.001 Se <0.02 <0.02
Eu 0.08 0.1 Si 0.20 0.08
F <0.003 <0.01 Sm 0.00 0.01
Fe 0.04 0.2 Sn <0.03 <0.04
Ga 0.01 <0.009 Sr 0.00 <0.0004
Gd <0.002 <0.002 Ta <1.8 <22
Ge <0.08 <0.09 Tb <0.0003 <0.0004
Hf <0.01 <0.01 Te <0.009 <0.01
Hg <0.05 0.9 Th <0.0004 <0.0002
Ho <0.0003 <0.0005 Ti <0.0006 0.01
I <0.0004 <0.0005 Tl <0.0005 <0.0008
In 0.01 <0.005 Tm <0.0004 <0.0005
Ir O.0007 0.02 U <0.0003 <0.0004
K <0.03 <0.09 V <0.0005 0.01
La <0.0007 <0.0009 W Matrix Matrix
Li 0.00 <0.001 Y <0.0002 0.001
Lu <0.0003 <0.0005 Yb <0.001 <0.002
Mg 0.01 0.08 Zn 0.06 0.5
Mn 0.00 <0.002 Zr <0.002 <0.002
Mo 0.60 50

Total 9.3 lg/g 77.2 lg/g
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Photographs of the samples are shown in Fig. 1. The geometry
of the samples were based on a design permitting a long path
length yet preserving a small physical size, as shown in Cana-
van et al. [3]. The key dimensions of the thermal path are a
square cross section A of 1.5 mm � 1.5 mm and an effective
path length of L = 0.43 m. The purity of sample 1 has been mea-
sured to be 99.999% and that of sample 2 to be 99.992%. Both
samples were grown and wire-electronic discharge machined
by Mateck GmbH [15]. Purity analyses were performed using
GDMS (Glow Discharge mass-spectrometry), and the full results
are presented in Table 1. The thermal conductivity experiments
were carried out in a laboratory cryostat containing an ADR
cooled by a liquid helium bath.

Sample 1 was vacuum brazed onto two copper arms (one per
end of the tungsten crystal) in order to be able to mount the sam-
ple for testing. For sample 2 the mounting flanges were an integral
part of the crystal as can be seen in Fig. 1b. In order to measure the
thermal conductivity one of the arms was bolted to the cold finger
of the ADR while the other was left free. The magnetic field for the
tungsten samples was generated by a magnet surrounding the cold
finger of the ADR, capable of providing a magnetic field of up to
1.8 T. In order for the vacuum brazed joint of sample 1 to not influ-
ence the measurements the thermometers and heater were
mounted on one layer of the tungsten giving an effective path
length of L = 9.4 mm. In order to minimise any radiation heat load
from higher temperature stages (4 K), a dual-layer Mylar radiation
shield was used to enclose the crystal and its support structure.

Power was applied to a heater (10 kX metal film resistor) to
create a small but measureable temperature difference (DT) of
0.1 K between the two ends for different base temperatures set
by the ADR. For each measurement, the base temperature (cold
end) was set by manually magnetising/demagnetising the ADR un-
til the desired temperature was achieved. Once the cold end was at
the desired temperature, the system was left to achieve thermal
equilibrium, so as to ensure that the initial conditions saw the
two ends of the crystal at the same temperature, i.e. no tempera-
ture gradient with zero applied power. Current was then supplied
to the heater. The input power was measured by monitoring the
supplied current and the voltage across the 10 kO resistor. The ap-
plied heater power is then simply equal to the product of these
quantities. For each measurement, the power was gradually in-
creased by increasing supply current, until a sufficient tempera-
ture gradient was achieved between the two crystal ends. Once
such a temperature gradient was established, the equilibrium
Fig. 1. The tungsten magnetoresistive heat switch. MSSL tungsten heat switch samples
order to mount the sample during measurement. Fig. 1b (Right) shows sample 2, with i
temperatures were recorded. The applied power was then re-
moved and the thermometer resistances recorded as the tungsten
cooled back thus ensuring that the previous initial conditions were
still valid and no change had occurred.
. Fig. 1a (Left) shows sample 1. Copper arms are vacuum brazed to the tungsten in
ntegral mounting support arms.
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Fig. 3. Measured ‘off’ conductivity for samples 1 and 2. Measured thermal
conductivity under 1.8 T applied field ‘off’ state plotted as a function of temperature
for sample 1 (x’s) and sample 2 (crosses). Sample 1 data is fit to Eq. (6) assuming:
(1) No lattice contribution to the thermal conductivity (solid line), (2) a T3

dependent lattice conductivity (dotted line) and 3) a T2 dependent lattice
conductivity (dashed line). The lines for scenario (2) and (3) directly overlap.
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The temperature measurements were made using Cernox resis-
tance thermometers (which are insensitive to magnetic fields) and
an AVS 47 resistance bridge. Thus, for each measurement, the raw
data consists of the supplied heater power _Q and the equilibrium
resistances of the hot and cold end thermometers. The resistances
are converted to temperature using the thermometer manufac-
turer’s supplied calibration data and a polynomial fit to this cali-
bration data. The thermal conductivity is then simply calculated
using Eq. (7):

kðTÞ ¼ L
A

_Q
DT

 !
ð7Þ

where DT is the average temperature between the hot and cold
thermometers; L and A retain their previous definitions.

4. Experimental results and analysis

The measured thermal conductivity for sample 1 (the higher
purity sample) is shown in Fig. 2 for both the ‘on’ and ‘off’ states,
where the ‘on’ state refers to zero applied magnetic field (high
thermal conductivity) and the ‘off’ state refers to an applied 1.8 T
magnetic field, hence a low thermal conductivity. Due to the high
thermal conductivity in the ‘on’ state we have only been able to
measure it at 1.5 and 4.2 K, the temperatures obtained with our li-
quid helium bath. We find that the ‘on’ thermal conductivity of
sample 1 is 48.3 kW m�1 K�1 at 4.26 K, and 14.4 kW m�1 K�1 at
1.50 K. Fig. 3 shows more clearly the measured ‘off’ thermal con-
ductivity values presented in Fig. 2, along with the measured ‘off’
state conductivity for sample 2. The apparent scatter in the data
at the high end of the investigated temperature range is a result
of measurement uncertainty due to the lower measurement reso-
lution associated with the thermometry at higher temperatures.

We fit the data shown in Fig. 3 with Eq. (6) for the following sce-
narios for sample 1:

(1) No phonon contribution to the thermal conductivity.
(2) A T3 phonon conductivity dependence.
(3) A T2 phonon conductivity dependence.

As can be seen from Fig. 3, a fit with no phonon contribution fits
the sample 1 data well indicating that the phonon contribution to
the thermal conductivity for this sample may be low in this tem-
perature range at an applied magnetic field of 1.8 T. Fits to the data
with the T3 and T2 phonon relationship are identical and fit our
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Fig. 2. Measured sample 1 thermal conductivity in ‘on’ (zero field) and ‘off’ (1.8 T
field) switch states. Measured sample 1 thermal conductivity as function of
temperature for zero applied field ’on’ state (diamonds) and 1.8 T applied field ’off’
state (x’s).
data better. However, we cannot distinguish whether the phonon
contribution follows a T3 or T2 form and thus use the assumption
of Long [12], i.e. a T2 relationship.

Assuming a phonon relationship of T2 we can obtain from our fit
to the data values for P, a0 and a3. These are presented in Table 2
along with published values.

Fig. 3 shows very clearly that the measured ‘off’ state conductiv-
ity of sample 2 is much higher than that of sample 1. The lower
purity of sample 2 is a highly plausible explanation for this sam-
ple’s poor performance. Clearly purity has a very strong influence
on magnetoresistive effect; the steeper gradient of the sample 2
thermal conductivity data suggests the electron contribution to
the thermal conductivity is significantly higher than for sample
1. Attempting to fit the sample 2 data to high field theory yields
unphysical negative values for the parameter a3. This indicates that
1.8 T is insufficient to push sample 2 into the high field regime.
4.1. Comparison of thermal conductivity to results from the literature

Measurements of the total thermal conductivity of tungsten un-
der an applied magnetic field have been made by Batdalov and
Red’ko [2], Duval et al. [8] and Canavan et al. [3]. Fig. 4 shows
our measured data in comparison to the work of these authors un-
der similar conditions to our measurements. It appears that our
sample 1 measured thermal conductivity under an applied field
of 1.8 T correlates well with Duval et al.’s [8] measured thermal
conductivity under an applied field of 3 T. Duval et al. point out
the 3 T magnetic field was inhomogeneous along the length of
their sample; hence the effective field will likely be lower than
3 T. Canavan et al.’s [3] data provides us with only two relevant
Table 2
Table comparing calculated coefficients in Eq. (6) to published values. Comparison of
calculated fit parameters for sample 1 to published values.

Parameter Wagnera Long Canavan Our sample

P 0.050 W m�1 K�3 0.037
W m�1 K�3

– 0.066 T2 W
m�1 K�3

l 2 2 – 2
a0 0.42 T2

W m�1 K�2
– 1.37 W T1.7

m�1 K�2
1.4 T2 W
m�1 K�2

a3 0.0063 T2

W m�1 K�5
– 0.0061 T2

W m�1 K�5
0.0040 T2

W m�1 K�5

a Calculated by Canavan et al.
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data points, which agree well with both our measured sample 1
1.8 T data and Duval et al.’s 3 T data [8]. Duval et al.’s [8] data have
similar temperature dependence for 0.6 T and 3 T, and agrees with
the temperature dependence of our measured data. Our measured
data for sample 2 under an applied field of 1.8 T correlates well
with Duval et al.’s [8] measured data under an applied field of
0.6 T. This suggests our sample 2 is less pure than that tested by
Duval et al. [8], as a much higher magnetic field is required to
achieve similarly low thermal conductivity. Batdalov and Red’ko’s
[2] 2 T data has a much lower thermal conductivity, and a stronger
temperature dependence. Canavan et al. [3] measure a minimum
RRR value of 7 � 103, with a stated purity of 99.995%. Our sample
1 has a measured purity of 99.999%, thus it may be inferred that it
has an RRR that is above 7 � 103. Duval et al. [8] claim their sample
has an RRR value of the order of 100–200, implying purity below
that of Canavan et al.’s sample. Our sample 2 has a measured purity
of 99.992%, but since a higher field (1.8 T) is required to achieve the
same performance as Duval et al.’s sample under a 0.6 T field we
can infer that Duval et al.’s sample has a higher purity. We would
therefore expect sample 2 to have a lower RRR value than the sam-
ple of Duval et al. [8]. Batdalov and Red’ko [2] measure their RRR to
be 1.55 � 105, implying exceptional purity which would explain
their extremely high measured performance.

The zero field thermal conductivity strongly depends on purity.
The measured zero field conductivities for our sample 1 is shown
in Fig. 5, plotted against the equivalent measurements taken by
Duval et al. [8] and Batdalov and Red’ko [2]. Lower purity implies
more crystal defects and impurities which cause increased scatter-
ing of the heat carriers, and a lower zero field thermal conductivity.
The Wiedemann–Franz law states the proportionality between the
thermal and the electrical conductivity, r0. Thus, samples of higher
purity will have a higher r0, hence a greater xcs for a given applied
field B. As previously stated, a greater xcs implies a greater mag-
netoresistive effect. Duval et al.’s [8] lower purity sample will
therefore need a higher field to have the same magnetoresistive ef-
fect as our sample 1, as is seen from Fig. 4. The same argument ap-
plies to our sample 2. A higher purity sample will have a greater
magnetoresistive effect as seen in Batdalov and Red’ko’s data [2].
In fact, Batdalov and Red’ko [2] measure exceptionally high values
for the low temperature zero field thermal conductivity,
100 kW m�1 K�1 at 4.2 K and increasing with decreasing tempera-
ture. Duval et al. [8] measure the equivalent quantity to be
0.4 kW m�1 K�1 at 4.2 K, where we measure 48.3 kW m�1 K�1 at
4.26 K for our sample 1, both decreasing with temperature (Fig. 5).

Another important property in sample difference is the geome-
try, specifically, the crystal width. The width of crystal used by
Canavan et al. [3] was identical to our sample, at 1.5 mm. Duval
et al. [8] use crystals of width 0.5 mm, whereas Batdalov and Red’-
ko [2] use a crystal of diameter 4.3 mm. Batdalov and Red’ko [2]
calculate the mean free path of electrons to be d � 1:4 mm at
4 K. Crystal widths comparable to, and smaller than d will cause
the electron conductivity to be limited more by boundary scatter-
ing. We see zero field conductivity measurements highest in Batda-
lov and Red’ko’s [2] data, followed by our sample 1, and lastly in
the results of Duval et al. [8]. Canavan et al. [3] have not published
their zero field conductivity measurements. The 4.3 mm crystal
tested by Batdalov and Red’ko [2] will have less significant bound-
ary scattering, hence a higher zero field electronic conductivity and
a higher r0. The 0.5 mm crystal of Duval et al. [8] will have a far
higher degree of boundary scattering, as its width is smaller than
d. This implies a lower zero field electronic conductivity, r0. This,
and the purity argument, provides an explanation of why Duvall
et al.’s [8] sample has the poorest zero field conductivity. The effect
of crystal width on r0 will inevitably affect xcs, and hence the
strength of field required to achieve the same magnetoresistive ef-
fect. This theory agrees well with the observed results, in much the
same way as the previous purity argument.
5. Conclusions

The thermal conductivity of a tungsten magnetoresistive heat
switch, for use in an ADR, has been measured in the temperature
range 0.3–4 K under applied magnetic fields of 0 T (‘on’ state)
and 1.8 T (‘off’ state) for two samples of different purity. The result-
ing measurements for sample 1, of 99.999% purity, were fit to an
equation originating from semi-classical magnetoresistance theory
(Eq. (6)). Although results from other authors [10] indicate a T2

dependent lattice conductivity, a T3 dependence cannot be ruled
out from our data. It seems that for our samples, under an applied
field of 1.8 T, the dominant heat transfer mechanism is still heat
transport via electrons.

The lower purity sample, sample 2, has a purity of 99.992%. This
sample has a higher ‘off’ state conductivity than sample 1. It has a
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comparable ‘off’ state conductivity under 1.8 T applied field to
Duval et al.’s sample under an applied field of 0.6 T. It seems that
the third decimal point in percentage purity has a strong effect
on the magnetoresistive effect and the performance as a heat
switch.

The switching ratio at 1.5 K for our sample 1 is 1.75 � 104 and at
4.26 K it is 1.51 � 104. This indicates a reasonably stable switching
ratio over the investigated temperature range. Based on the pre-
sented measurements we suggest that to maximise the switching
ratio a highly pure sample of tungsten (>99.999%) is required,
and optimising its dimensions to control the scattering mecha-
nisms that limit the flow of heat.
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