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Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a
subject to be produced from multiple impedance measurements. It has the potential to become a portable
non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward
models may be used to improve image reconstruction but, until now, have employed an assumption of
isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those
such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for
the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the
head and assess the resulting improvement in image quality in the case of linear reconstruction of one
example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments
for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated
from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the
structural information. A method for incorporation of anisotropy in the forward model and its use in image
reconstruction was produced. The improvement in reconstructed image quality was assessed in computer
simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach.
The mean boundary data difference between anisotropic and isotropic forward models for a reference
conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic
one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus,
improved localisation for conductivity changes deep in the brain and due to epilepsy by 4–17 mm, and,
overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in
numerical models used for image reconstruction is likely to improve EIT image quality.

© 2008 Elsevier Inc. All rights reserved.

Introduction

Electrical Impedance Tomography is a relatively new medical
imaging method with which reconstructed tomographic images of the
internal electrical impedance of a subjectmaybemadewith rings of ECG
type electrodes. Its advantages are that it is fast, safe, non-invasive, low-
cost and has a high temporal resolution. It has the potential to provide a
uniquely useful new imaging method in clinical or experimental

neuroscience, for imaging in acute stroke (Romsauerova et al., 2006),
localising the seizure onset zone in epileptics undergoing pre-operative
assessment for neurosurgery (Fabrizi et al., 2006b), imaging blood
volume related changes related to evoked physiological activity
(Tidswell et al., 2001) or imaging fast neuronal depolarization (Gilad
et al., 2005). Its principal limitation is a relatively poor image resolution
and one important limiting factor is the accuracy with which brain
electrical conductivity is modelled in forward models used for image
reconstruction. So far most of these models have approximated body
tissues as isotropic. For many body tissues in the thorax and abdomen,
this appears to be a reasonable approximation. However, for imaging
brain function in the adult head, this could introduce a significant
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inaccuracy as white matter, muscle in the scalp and brain tissue are
well documented to be highly anisotropic. In EEG/MEG inverse
modelling and TMS simulation studies, it has been shown that
anisotropic conductivity of the skull and white matter can have a
considerable impact on the electrical voltage distribution and image
reconstruction (Wolters et al., 2006; De Lucia et al., 2007). A
combination of MRI and EIT, MR-EIT, in which one injects electrical
current using EIT and measures the magnetic flux density with MRI,
has taken the first steps to provide numerical anisotropic conductivity
images (Seo et al., 2004; Degirmenci and Eyuboglu, 2007), but the
currently required current level to achieve a good resolution is
excessively high for being safely used in the head (Liu et al., 2007).
The purpose of this work was to develop a method for incorporation
of anisotropy into the forward Finite Element Model used in image
reconstruction, and evaluate the advantages of its use in computer
simulation of EIT imaging in the human head.

The aim of EIT is to recover the conductivity inside an object by
injecting electrical current and measuring voltage on the boundary
(Barber and Brown, 1984; Holder, 2005). Small and safe currents are
applied across a pair or several electrodes and the resulting voltage is
recorded across other electrodes. Measurements from multiple
electrode combinations are recorded, usually serially, which provides
a set of few hundred independent voltage measurements that are
non-linearly related to the conductivity of the object. EIT has been
successfully employed for imaging in the thorax or abdomen, such as
to image gastric emptying (Mangall et al., 1987), gastric acid
secretion, and lung ventilation (Metherall et al., 1996; Harris et al.,
1988). For imaging brain function, the problem is made more difficult
by the presence of the skull which has a high resistance and so tends
to divert current away from the brain. Studies over two decades have
indicated that imaging is accurate during epilepsy and evoked
activity with cortical electrodes in experimental animals, and also
in realistic tank studies. In clinical studies with non-invasive scalp
electrodes, there have been some encouraging findings in raw
impedance data but it has not yet been possible to produce images
that are sufficiently accurate for clinical or scientific routine use (see
Holder, 2005 for a review). This limitation is being addressed by
improvements in instrumentation (McEwan et al., 2006), signal
processing (Abascal, 2007, Chapter 6) (Fabrizi et al., 2007), and image
reconstruction (Abascal, 2007, Chapter 5); this work forms part of
these developments.

In image reconstruction, the aim is tomap boundary voltages into a
3D conductivity image. A forward model is employed to calculate
boundary potentials for a given internal conductivity distribution
estimate and known injected currents (Cheney et al., 1999; Lionheart,
2004). This is achieved by solving the generalised Laplace's equation
with boundary conditions for the injected currents. This may include
modellingof the potential drop across electrodes, such as the Complete
Electrode Model (CEM) (Isaacson et al., 1990; Paulson et al., 1992). For
complex geometries like the human head, for which an analytical
solution does not exist, this is commonly solved numerically with the
Finite Element Method (FEM). This usually employs conductivity
values with an assumption of isotropy (Braess, 1997; Bagshaw et al.,
2003). To our knowledge, nomodel which incorporates anisotropy has
been reported for EIT, but it has been employed for EEG inverse source
modelling (Wolters et al., 2006). A realistic finite element mesh
comprising a four-shell model— scalp, skull, cerebrospinal fluid (CSF),
and brain has been used for EITof brain function (Bagshawet al., 2003),
obtained by manual segmentation and meshing from a structural
imaging technique like MRI or CT (Bayford et al., 2001; Tizzard et al.,
2005). Amore advanced and automatedmethodology has been used in
this work (Shindmes et al., 2007b, 2007a).

The inverse conductivity problem has a unique solution for
isotropic media, from full knowledge of the complete Neumann to
Dirichlet map, for piecewise analytical conductivities with smooth
boundary (Kohn and Vogelius, 1984, 1985) and for continuously

differentiable conductivities in the domain (Sylvester and Uhlmann,
1987), in which the conductivity can be represented by a scalar
function; but it is non-unique for anisotropic media (Lassas et al.,
2003), in which the conductivity is given by a rank-2 symmetric
tensor. However, it has been shown that uniqueness can be recovered
by providing additional information (Lionheart, 1997; Alessandrini
and Gaburro, 2001). Almost all previous EIT studies have assumed
isotropic media; anisotropic conductivity was reconstructed under
specific assumptions or simplistic symmetries in some exceptions
(Glidewell and Ng, 1995, 1997; Pain et al., 2003; Heino et al., 2005). An
empirical study of the convergence of a numerical finite element
solution towards an analytical solution has been undertaken (Abascal
et al., 2007). Because the forward problem is a nonlinear function of
the conductivity, absolute imaging is demanding and is usually solved
using iterative methods that minimise the difference between the
measured and predicted data along with a regularisation functional
which allows imposition of a-priori information into the solution
(Arridge, 1999). In addition to nonlinearity, the reconstruction
problem suffers from ill-posedness such that boundary data is more
sensitive to modelling parameters than to internal conductivity
(Horesh et al., 2005; Kolehmainen et al., 1997). Thus, it is unlikely
that meaningful nonlinear reconstruction can be successfully
achieved, where one is interested in absolute conductivity, without
an accurate knowledge of modelling parameters (Lionheart, 2004).
Parameters that might be expected to influence the reconstruction are
the geometry, contact impedance, electrode position, and anisotropy.
Because the inverse problem is ill-posed and data is usually
incomplete, regularisation is required to convert the problem into a
well-conditioned one.

Normalised difference data and linear reconstruction methods can
reduce the influence of mismodelling (Holder, 1993, Chapter 4)
(Barber and Brown, 1988), and have been hitherto considered the
sole clinical remedy when a reference voltage is available (Barber and
Seagar, 1987; Bagshaw et al., 2003). That is, a linear inversion method
can be used to reconstruct a local change of conductivity in the brain
from a small change of voltage on the scalp (Bagshaw et al., 2003). A
methodology to obtain an optimum solution using Tikhonov–Phillips
for the linear inversion and the Generalised Cross Validation for
selecting the regularisation parameter has been proposed for EIT of
brain function (Abascal, 2007, Chapter 5).

In the head, two tissues are known to have a high degree of
anisotropy, white matter and skull. The conductivity ratio of normal:
parallel to white matter fibres has been estimated to be 1:9
(Nicholson, 1965). The skull, which comprises two plates of cortical
bone tissue enclosing the diploe, which contains marrow and blood,
and so of higher conductivity, could be represented as a layer with an
effective anisotropic conductivity ratio radial:tangential to the skull
surface of 1:10 (Rush and Driscoll, 1968). This ratio has been adopted
as an upper bound ratio for studying the influence of anisotropy of the
skull for EEG (Wolters et al., 2006). In vivo, the brain conductivity
tensor can be estimated from the water self-diffusion tensor by using
the cross-property relation (Tuch et al., 2001; Tuch, 2002), which
relates the transport model for the two tensors with the underlying
microstructure. A statistical analysis of the microstructure in terms of
the intra- and extra-cellular space transport coefficients yields the
conductivity and diffusion tensors sharing eigenvectors. Furthermore,
at quasistatic frequencies where a relatively small portion of the
current flows through the intracellular space, there is a strong linear
relationship between the diffusion and conductivity tensor eigenva-
lues. The scalp, which contains muscle, may be estimated as being 1.5
times more resistive in the radial than in the tangential direction at
50 kHz (Horesh, 2006). A comprehensive review of dielectric proper-
ties of the head tissues can be found in Horesh (2006, Chapter 2). The
effect of anisotropy of muscle tissue on absolute reconstruction for EIT
of the heart has been studied by providing information about the
tissue boundaries, obtained fromMRI, and the anisotropic structure of
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muscle, which was assumed to have cylindrical symmetry and a
conductivity ratio tangential:normal to the muscle of 4.3:1, in 2D and
3D (Glidewell and Ng, 1995, 1997). The anisotropy of the myocardium
was not modelled because of the difficulty in estimating its
anisotropic structure. In 3D, anisotropy of the muscle resulted in a
shunting effect of the currents which influenced the measurements
and reconstructed conductivity, however, this effect did not pre-
dominate over other modelling inaccuracies. The conductivity values
tangential and normal to the muscle were reconstructed assuming
that the conductivity was constant for each tissue.

So far, the influence of anisotropy for EIT of the head has not been
studied, as it has been done for EEG and TMS. A high resolution FEM
model was used to analyse the influence of anisotropy of white matter
on the EEG forward model, incorporating the brain conductivity
tensors from DT-MRI. From the results on the forward problem, it was
concluded that the magnitude of the sources would be more affected
than localisation, and the effect would be greater for deeper sources in
the brain (Haueisen et al., 2002). In contradiction with the previous
result, a study using a 2D EEG forward model emphasized that
examination of the correlation was not enough and found a high
correlation yet more than 30% discrepancy in the relative potential
error between the isotropic and anisotropic models. It was concluded
that anisotropy of whitematter would influence source localisation, as
in a previous analysis, for which mismodelling using a three-shell
spherical model yielded 5–10% relative error and an averaged 1.97 cm
localisation error (Kim et al., 2003). A study that modelled anisotropy
of the skull and white matter for the EEG forward problem analysed
the effect of anisotropy by increasing the conductivity ratio of both
tissues from one to ten, in terms of the Relative Difference Measure
(RDM), which was described as a measure of the topographic error
that compared the isotropic and anisotropic electrical fields (Wolters
et al., 2006). For sources near the cortex, RDM was 11%, and was
mainly affected by the skull anisotropy; for sources deeper in the
brain, RDM was 10%, in which case white matter anisotropy appeared
most relevant. The inverse source localisation problem has a unique
inverse solution under certain constraints or priors (Pascual-Marqui,
2002; Trujillo-Barreto et al., 2004). The effect of anisotropy on the EEG
inverse problem has been quantified using numerical data. Neglecting
anisotropy in EEG source localisation yielded a localisation error of up
to 18 mm, for superficial and 6 mm for deeper sources (Wolters, 2003,
Chapter 7).

The purpose of this study has been to present a method for use of
anisotropy in the forward model for EIT and to study the influence of
its incorporation on the forward and inverse linear solutions in a
realistic numerical head model. This included four tissue types: scalp,
skull, CSF, and brain (Tizzard et al., 2005), and anisotropywas included
for all except for CSF. The forward solution was analysed in terms of i)
the current density norm, ii) the percentage error on the boundary
voltages when anisotropy was neglected, and iii) the percentage
difference between boundary voltages corresponding to a model with
and without a conductivity perturbation in the brain. For the linear
inverse solution, the objective was to study if use of an anisotropic
forward model in image reconstruction conferred a significant
benefit: images were reconstructed from simulated data produced
with an anisotropic forward model. These were reconstructed with an
isotropic or anisotropic model; the latter conveyed the assumption
that conductivity tensors were only allowed to be modified by a scalar
multiplying the tensor.

A realistic FEMmodel of the head incorporated segments for scalp,
skull, CSF, and brain was created from the segmentation of a T1-MRI
and tessellation in tetrahedra for the volume enclosed by the
segmented surfaces (Shindmes et al., 2007b). Before meshing, the
T1-MRI was coregistered to the reference of the DT-MRI (Friston et al.,
1995; Ashburner et al., 1997). The selected isotropic conductivity
values, obtained from (Horesh, 2006), corresponded to a frequency of
50 kHz that provided the largest SNR in measuring conductivity

change for epilepsy (Fabrizi et al., 2006a). Three tissues weremodelled
as anisotropic: the scalp, the skull, and white matter. The anisotropic
information for the brain was obtained in three steps. First, for a DT-
MRI, of the same subject as the T1-MRI, the diffusion tensor
coefficients were interpolated at the centre of the brain tetrahedra.
Second, the conductivity tensor was linearly related to the diffusion
tensor by assuming both tensors shared eigenvectors and eigenvalues
were linearly related. Third, the conductivity tensor trace was scaled
to match the equivalent isotropic trace. The anisotropy for the scalp
and skull was approximated by using the eigenvalue decomposition
such that eigenvectors were two unit vectors parallel to the surface
and one perpendicular to it. Eigenvalue tangential:normal ratios were
1.5:1 for the scalp (Horesh et al., 2005) and 10:1 for the skull (Wolters
et al., 2006). Also, the skull and scalp tensor trace was constrained to
be equal to the equivalent isotropic trace. The effect of neglecting
anisotropy in the reconstructed images was studied by simulating
boundary voltages which resulted from 15 perturbations in the brain.
Changes in the occipital part of the brain simulated stimulation of the
visual cortex, and changes in the temporal and hippocampus
simulated changes in epilepsy (Fabrizi et al., 2006a). Another two
perturbations were placed in the parietal and temporal lobe
surrounded by white matter.

Methods

Head model: geometry and mesh

MRI and DT-MRI data sets
A T1-weighted MRI and a diffusion weighted MRI of the same

subject, a 24 year old male, were obtained from the IXI-server
(Rowland et al., 2004), a project that uses GRID technology for image
database and image processing. Both were acquired at 3T. The DTI had
15 diffusion weighted images in different directions (b=1000 s/mm2)
and a reference image B0 (b=0); each of them comprised of
135×135×75 voxels of resolution 1.75×1.75×2 mm. The T1 images
were undersampled by half, and the inferior anterior part of the head
including the mandible and nasopharnyx was neglected in order to
reduce the mesh size (Tizzard et al., 2005). This yielded an image of
128×128×75 voxels of resolution 1.28×1.28×2.4 mm.

Fig. 1. Head mesh of 311,727 tetrahedra obtained by segmentation and tessellation in
tetrahedra of the coregistered T1-MRI.
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Coregistration of the T1 to the DTI reference
The MRI was normalised and coregistered to the B0 and resliced

after coregistration, using SPM2 (http://www.fil.ion.ucl.ac.uk/spm/)
(Friston et al., 1995; Ashburner et al., 1997). In this process, an affine
transformation followed by a nonlinear deformation was applied in
order to minimised a least squares functional based on maximum
entropy.

Segmentation and meshing
The coregistered T1was segmented and tessellated to a tetrahedral

FEM mesh. The segmentation and surface extraction of brain, CSF,
scalp, and skull, was undertaken using BrainSuite (Shattuck and Leahy,
2002; Dogdas et al., 2002), and the meshing using Cubit (Sandia
National Labs, USA) (Fig. 1) (Shindmes et al., 2007b, 2007a). The mesh
contained 311,727 tetrahedra for the entire meshed head and 132,272
for the brain.

Head model: conductivity tensor estimate

Diffusion tensor estimation
Let DWI be the diffusion weighted images acquired in fifteen

different directions, where g indicates the diffusion direction, the
diffusion tensor D can be approximated by

DWI = B0e−bg
TDg : ð1Þ

The diffusion tensor was reconstructed using least squares minimi-
sation over the logarithmic version of Eq. (1) (Batchelor et al., 2003).

Brain conductivity tensor
The DT coefficients Dij, for i, j=1, 2, 3 and jb i, defined in the regular

grid of theMRI voxels, were interpolated, using B-splines, at the centre
of the brain tetrahedra. The Fractional Anisotropy (FA) (Fig. 2) was
computed for visualisation of anisotropy of white matter, from the
eigenvalues λ1, λ2, λ3 of D, as

FA =

ffiffiffi
3
2

r
λ1−λ
� �2

+ λ2−λ
� �2

+ λ3−λ
� �2

λ2
1 + λ

2
2 + λ

2
3

 !1
2

; ð2Þ

where λ is the mean of the tensor eigenvalues or mean diffusivity
(trace(D) /3). Because the linear relation is not yet well defined within
the same tissue, then the trace of the conductivity tensorwas scaled to
be the same as that of the equivalent isotropic trace (Kim et al., 2003)—
three times the isotropic conductivity value; that is, having
estimated the diffusion tensor D (1) and given the scalar isotropic
conductivity σiso, the tensor σ was scaled as

σp
3σ iso

trace Dð ÞD: ð3Þ

Hence, both the eigenvector and eigenvalue ratios estimated from
the DT were used, yet the trace was constrained to the isotropic
trace 3σiso.

Skull and scalp conductivity tensors
The skull conductivity tensor σ was approximated as σ=VSVT,

where S is a diagonal matrix of eigenvalues, which can be also
interpreted as the conductivity tensor in local coordinates, and V is a
matrix whose columns are the eigenvectors, or a linear transformation
from the local to the global coordinates. Given V=[v1, v2, v3], v1 and v2
spanned a tangential plane and v3 a normal direction to the skull
surface. This defined the eigenvectors for the skull surface; the
eigenvectors for the skull volume were defined by assigning each
tetrahedron with the same V as that of its closest surface element.

Eigenvalues corresponding to the two tangential directions and the
normal direction, S=diag(s1, s2, s3)=diag(stg, stg, s⊥), were computed
by assigning a tangential:normal ratio of 10:1 to the skull surface and
by rescaling the trace to the value of the isotropic trace, trace(σ)=3σiso,
then

= diag 0:0557; 0:0557; 0:00557ð Þ: ð4Þ
The ratio considered here is an upper bound which has been
previously considered for studying the influence of skull anisotropy
for EEG (Rush and Driscoll, 1968; Wolters et al., 2006).

The anisotropy of the scalp, whose tensor was computed as in the
case of the skull, had a ratio tangential:normal to the scalp surface of
1.5:1 that was approximated from its different tissues and contem-
plated anisotropy of muscle tissue at 50 kHz (Horesh, 2006).

Conductivity values for the head model
The conductivity tensor trace for all tissue types was constrained to

match the isotropic one, that is, trace(σ)=3σiso. The anisotropic
conductivity tensor has been described; the isotropic tissue CSF was
defined as σ=σisodiag(1, 1, 1). Isotropic conductivity values and
anisotropic conductivity ratios are given in Table 1. The isotropic
conductivity values used were selected from (Horesh, 2006) corres-
ponding to 50 kHz (Fig. 3).

Forward solution

The voltage was calculated using a modified version (Horesh et al.,
2006) (Horesh, 2006, Chapter 4) of EIDORS 3D (Polydorides and
Lionheart, 2002), piecewise linear for the voltages and constant for the
conductivity, that modelled anisotropic media (Abascal and Lionheart,
2004; Abascal et al., 2007) and solved the electrical voltage for the
complete electrode model equations (Paulson et al., 1992). We used a

Fig. 2. Two axial sections of fractional anisotropy of the conductivity tensor in the brain.

Table 1
Isotropic value σiso and tangential:normal conductivity ratio, such that trace(σ)=3σiso,
for the different tissue types

Tissue σisoSm−1 tg:normal

Grey matter 0.30 DTI
White matter 0.30 DTI
Skull 0.039 10:1
Scalp 0.44 1.5:1
CSF 1.79 1:1

Fig. 3. Conductivity map of the isotropic head model with isotropic conductivity values
(S/m): brain 0.30, CSF 1:79, skull 0.018, scalp 0.44.

S
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31-electrode position and protocol (Bayford et al., 1996), and electrode
contact impedance set to 1 kΩ that simulated skin and electrode
impedance (McEwan et al., 2006). The injected current was set to 5mA.

Numerical phantom data

Relative difference data were simulated as

Vinh−Vref

Vref
ð5Þ

where Vinh=F(σinh) was the boundary voltage for a conductivity
distribution σinh with a perturbation in the brain, and Vref=F(σref) was
the boundary voltage for a reference conductivity distribution σref.
Fifteen boundary data sets were simulated, differing in location, size,
shape, and in magnitude of the conductivity change (Table 3). Two of
the simulated conductivity changes resembled changes during
epileptic seizures in the lateral or mesial temporal lobes (Fabrizi et
al., 2006a): cylinders with a 10% conductivity decrease, 25 mm in
radius and 10mm in height, 18 cm3 in volume, in the temporal lobe, or
30 mm in length and 5.5 mm in radius, 2.5 cm3 in the hippocampus.
The remaining changes were spherical changes with conductivity
increase of 1% or 10% with diameters of 17 or 35 mm and were located
in the occipital (7), or parietal (2) lobes or hippocampus (2).

A change in conductivity was simulated by multiplying the tensor
σ by a scalar βN1 for an increase in conductivity and βN1 for a
decrease in conductivity. Hence, it was assumed that the tensor
structure did not change where simulated conductivity changes were
placed in the grey matter.

Inverse solution

Scalar conductivity reconstruction of relative difference data,
simulated with both the isotropic and anisotropic model, was solved
by using Tikhonov inversion while GCV was employed for regularisa-
tion parameter selection for a range of twenty regularisation
parameters (Abascal, 2007, Chapter 5), where reconstruction was
constrained to the brain. In the isotropic case, the conductivity of the
kth-finite element Ωk was represented as σk=βkdiag(1, 1, 1), where βk

is a multiple scalar to the unit matrix. A change of conductivity that
leaves the conductivity isotropic, δσ=δβdiag(1, 1, 1), yields a change of
voltage δV which can be represented by the linear relation
(Polydorides and Lionheart, 2002)

δV = −
Z
Ωk

δβ ∇uð ÞT∇u⁎; ð6Þ

where u is the electrical voltage and u⁎ is the voltage solved by
considering the measurement electrodes as current injecting electro-
des (adjoint forward solution), and for simplicity, we have assumed
unit current (Polydorides and Lionheart, 2002). Let V be one of the
measurements on the scalp electrodes, then the Jacobian row Jk, for
k=1, N , n, where n is the number of elements, that relates that
measurement to the element Ωk is given by

Jk =
δV
δβ

= −
Z
Ωk

∇uð ÞT∇u⁎ = −
Z
Ωk

X3
i¼1

∇uð Þi ∇u⁎ð Þi: ð7Þ

In the universal anisotropic case, σ is a general tensor, yet, here,
only a perturbation of the tensor that maintains the eigenvectors and

eigenvalue ratios affixed was considered. Let β be a multiple scalar to
the tensor, such thatσ=βσ0, wereσ0 is a known tensorwith det(σ0)=1.
Similarly to the isotropic relation (Eq. (7)), a change of conductivity,
δσ=(δβ)σ0, was related to a change of voltage δV as

δV = −
Z
Ωk

δβ ∇uð ÞTσ0∇u⁎: ð8Þ

Hence, the Jacobian entry Jk that relates the measurement V to the
element Ωk is given by

Jk =
δV
δβ

= −
Z
Ωk

X3
i¼1

X3
j¼1

∇uð Þi σ0ð Þij ∇u⁎ð Þj: ð9Þ

In fact, by assigning σ0=diag(1,1,1), one recovers the isotropic case.
The anisotropic Jacobian differs from the isotropic one, not only in the
tensor product of the electrical fields given by σ0, but also in the fields
given by the gradients of the voltages u and u⁎ obtained by solving the
forward problem for an anisotropic conductivity reference σref.
Previous to the inversion of the Jacobian, it was row normalised to
compensate for the use of relative data by its multiplication by a
diagonal matrix diag(F(σref)−1), where F(σref) is the model reference
voltage for a reference conductivity σref. This step was undertaken to
adjust for the fact that a relative voltage difference was provided,
rather than plain voltage difference.

Comparison of the forward solutions

The isotropic and anisotropic models with the conductivity
parameters from Table 2 were compared in terms of the current
density norm, the percentage voltage error at the boundary by
neglecting anisotropy, and the relative difference between the
voltages for the reference conductivity and the perturbed conductiv-
ity, for both the isotropic and anisotropic models. A comparison of the
current distribution was analysed by the current density norm

‖ J ‖2 = ‖σ∇u‖2: ð10Þ

Maps of current density norm were visualised for a qualitative
comparison, for one current injection (Fig. 4). The total quantity of
current density on each shell was employed to measure the
reduction of current flowing into the brain — in order to assess the
shunting effect of anisotropy, which is a relevant factor for modelling
studies. The percentage current density norm at each shell was
calculated as

100
∑iashell ‖ J i‖2
∑iahead ‖ J i‖2

; ð11Þ

where i corresponded to the tetrahedral elements.

Table 2
Percentage current density norm at each shell (11) for both the isotropic (ISO) and
anisotropic (ANI) models

Model Scalp Skull CSF Brain

ISO 42.8 3.9 31.3 22
ANI 64.4 4 18.2 13.4
ANI/ISO 1.5 1 0.6 0.6

Fig. 4. Current density norm (10) cross section for the isotropic (left) and anisotropic
(right) head models.
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Percentage relative difference (RD) between the anisotropic and
isotropic boundary voltages, for a conductivity reference, which was
computed for the ith-measurement as

RD = 100
jFi σani

ref

� �
−Fi σ iso

ref

� �j
jFi σani

ref

� �j ; ð12Þ

gave a measure of the error of neglecting anisotropy on the scalp
voltages. RD between boundary voltages with and without a 10%
spherical conductivity increase in the occipital lobe, which, for the
anisotropic model, was computed as

RD = 100
jFi σani

inh

� �
−Fi σani

ref

� �j
jFi σani

ref

� �j ; ð13Þ

and similarly for the isotropic model; this provided the magnitude of
the scalp voltages with respect to the local conductivity change for
both the isotropic and anisotropic models.

Comparison of the reconstructed images

Three cases were considered for linear image reconstruction: i)
data simulated with the isotropic model and scalar reconstruction
with the isotropic conductivity model to test the inversion and set a
bound for the best possible isotropic reconstruction in this setup, ii)
data simulated with the anisotropic model and scalar reconstruction
assuming isotropic conductivity to quantify the error associated with
neglect of anisotropy, and iii) data simulated with the anisotropic
model and scalar reconstruction using an anisotropic model to assess
the performance of the proposed method for recovery of a multiple
scalar to a general tensor. Images were visualised using the MayaVi
Data Visualizer (http://mayavi.sourceforge.net/) and compared in
terms of localisation error

LE = ‖rrec−r‖2 ð14Þ
where rwas the central location of the simulated conductivity change
and rrec was the location of the maximum peak in the region of

Table 3
Summary of the linear reconstruction of difference data for the isotropic (ISO) and
anisotropic (ANI) data and models, for simulated conductivity changes (Δσ) differing in
location, magnitude, and diameter (1diameter and high for a cylindrical shape)

Location Δσ % Diameter (mm) Data/model LE (mm) Peak %

Occipital 10 35 ISO/ISO 8 3.7
Occipital 10 35 ANI/ISO 8 0.7
Occipital 10 35 ANI/ANI 8 1.3
Occipital 10 17 ANI/ISO 9 0.1
Occipital 10 17 ANI/ANI 9 0.6
Occipital 1 35 ANI/ISO 9 0.17
Occipital 1 35 ANI/ANI 24 0.55
Temporal −10 150,10 ANI/ISO 20 −0.6
Temporal −10 50,10 ANI/ANI 16 −8.5
Hippocampus −10 16,30 ANI/ISO 24 −0.13
Hippocampus −10 6,30 ANI/ANI 7 −0.47
Parietal 10 17 ANI/ISO 211,25 0.15,0.16
Parietal 10 17 ANI/ANI 13 0.7
Hippocampus 10 17 ANI/ISO 12 0.14
Hippocampus 10 17 ANI/ANI 12 0.41

Comparison between the anisotropic and isotropic conductivity models was done in
terms of the localisation error (LE). 2This result had two maxima. Overall, the LE was
15±3 for the isotropic reconstruction and 13±2 for the anisotropic reconstruction
(mean±SE).

Fig. 6. Cross sections (first and second columns) and isosurface (third column) for a
simulated local perturbation of 10% change and 35 mm diameter in the occipital lobe
(first row), linear reconstruction of isotropic data (second row), linear reconstruction of
anisotropic data with the isotropic (third row) and anisotropic (last row) model.

Fig. 5. Measurement voltage percentage error produced by considering the isotropic
instead of the anisotropic model versus the measurement number (meas. #).
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interest of the reconstructed image. The maximum value (peak)
between the isotropic and anisotropicmodels was also compared. This
measure decreases with the amount of regularisation imposed and so
it must be treated with more caution. In addition to the LE, images of
the simulated and reconstructed conductivity changes were displayed
as axial and sagittal cross sections at the centre of the simulated
locations and as an isosurface 3D image (a surface that represents
points of a constant value) to allow identification of artefacts in the
entire brain.

Results

Comparison of the forward isotropic and anisotropic solutions

In the anisotropic model, the current flowed mainly tangential to
the scalp and skull surfaces with respect to the isotropicmodel (Fig. 4).
The total current that flowed into the brain was reduced by a factor of
two (Table 2). In the brain, current was uniformly distributed in the
isotropic model, and flowed along the white matter fibres in the
anisotropic model. Neglecting anisotropy led to an average relative
voltage error at the boundary of 53% (Fig. 5). Modelling a local
conductivity change of 10% in the occipital part of the brain led to a
change of 0.0124% in the mean boundary voltage for the anisotropic
model, and a five fold greater change of 0.061% for the isotropic
model; the mean boundary voltages was five times smaller for the
anisotropic model.

Effect of anisotropy on linear image reconstruction of difference data

Reconstruction of data simulated with the isotropic model
For a simulated conductivity change of 10% in the occipital lobe, the

maximum reconstructed peak was 4% and the localisation error was
8mm, whichwas set as a lower bound related to the ill-posedness and
regularisation of the problem (first row in Table 3, Fig. 6).

Reconstruction of data simulated with the anisotropic model
Neglecting anisotropy in the reconstruction led to significant

errors in the reconstructed images. In the occipital lobe, there was no
significant effect on localisation. However, an increase of spurious
artefacts may be seen when the diameter of the conductivity
perturbation was reduced from 35 to 17 mm diameter (Fig. 6) and
when the conductivity change was reduced from 10 to 1%, which
simulated stimulation of the visual cortex (Fig. 6). For epilepsy related
changes (Fig. 6), the localisation error was 20 mm in the temporal
lobe, which may be due to shape of the simulated change, and 24 mm
in the hippocampus, for which the simulated change was deep in the
brain. For the other locations (Fig. 6), localisation errors were 11–
13 mm and a significant decrease in image quality may be observed as
artefacts of similar magnitude as the change of interest. In general,
neglecting anisotropy affected image quality with the emergence of
spurious artefacts outside the region of interest, mainly on the surface
of the brain. Modelling anisotropy in the linear reconstruction with
the proposed method led to a substantial improvement in localisation

Fig. 7. Cross sections (first and second columns) and isosurface (third column) for a simulated local perturbation of 10% change and 17mm diameter (three columns on the left) and a
simulated local perturbation of 1% change and 35 mm diameter (three columns on the right) in the occipital lobe (first row), and linear reconstruction of anisotropic data with the
isotropic (second row) and anisotropic (last row) model.
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error, to 8–16 mm, shape of the reconstructed conductivity change,
and in image quality with reduction of spurious artefacts, except for
the simulation in the visual cortex of 1% conductivity change, for
which although the decrease of artefacts was significant, the
localisation error was 24 mm. A decrease of image quality with both
the isotropic and anisotropic models may be observed for the 1%
conductivity change. The maximum peak of the reconstructed image
with the anisotropic model was larger and more accurate than the
corresponding isotropic reconstruction where the amplitude of the
peaks decreased as structure (regularisation) was imposed more
strictly; reconstruction with the anisotropic model led to improve-
ment in image quality (Figs. 7–9).

In summary, neglecting anisotropy led to a localisation error up to
24 mm and worsened image quality while scalar linear reconstruction
basedonanisotropicmodelling reduced localisation error and improved
shape, and peak value. Overall, the LE was 15±3 mm for the isotropic
reconstruction and13±2mmfor the anisotropic reconstruction. For the
epilepsy changes, modelling anisotropy was essential to obtain good
images and reduced localisation error by about three fold; on the other
hand, for visual stimulation there was not significant improvement.

Discussion

Summary of results

A preferred direction of current flow tangential to the scalp and
skull surfaces and alongwhite matter fibreswas evident in the current

density map. In the brain in the anisotropic model, current flowed
along fibres parallel to the injection field, avoiding grey matter and
white matter fibres whose paths were perpendicular to the current
flow direction. Skull anisotropy introduced a shunting effect: in a
comparison of the total current density flowing through the different
brain tissues, the current that flowed into the brain in the anisotropic
model decreased by two fold with respect to the isotropic model, and
50% more current was found in the anisotropic scalp than in the
isotropic case. Neglecting anisotropy led to errors of up to fifty percent
on the boundary voltages. For a local increase of conductivity of 10% in
the occipital lobe, boundary voltages were five times less in the
anisotropic case. The effect of anisotropy on the linear reconstructed
images was analysed in terms of the localisation error, for which a
lower bound of 8 mmwas set from the simulation and reconstruction
of a conductivity change in the isotropic model; that is, the intrinsic
error due to the ill-posedness of the problem in conjunction with the
application of the chosen regularisation scheme to overcome it.
Neglecting anisotropy led to a localisation error between 8 and 24mm
where high errors occurred when the simulated change was deep in
the brain or surrounded by white matter; the largest error was for a
change in the hippocampus. A small increase of error was found for a
decrease by two fold of the diameter of the inclusion or simulation of a
smaller conductivity change. The proposed scalar reconstruction
based on the anisotropic model led to an improvement of the
localisation error up to three fold in the hippocampus and by a lesser
amount for other conductivity changes, but generally it led to errors
between 8 and 24 mm. The overall error was 15±3 for the isotropic

Fig. 8. Cross sections (first and second columns) and isosurface (third column) for a simulated cylindrical 10% local decrease in conductivity in the temporal lobe (three columns on
the left) and in the hippocampus (three columns on the right), which resemble typical changes during temporal lobe seizures, and linear reconstruction of anisotropic data with the
isotropic (second row) and anisotropic (last row) model.
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reconstruction and 13±2 for the anisotropic reconstruction. In terms
of image quality, neglecting anisotropy led to spurious artefacts,
outside the region of interest mainly on the brain surface; modelling
anisotropy led to an improvement in the reconstructed shape and
peak value and reduction of spurious artefacts.

Technical issues

The overall aim of this work was to estimate the effect of
anisotropy for a realistic model; however, some simplifications were
made. Isotropic conductivity values vary with the frequency and the
conditions at which they are acquired. In addition to that, the reported
values vary across the literature. The selected isotropic conductivity
corresponded to published values at 50 kHz (Horesh, 2006), which
yielded the largest measurable changes in epilepsy (Fabrizi et al.,
2006a). White matter conductivity was determined from DT-MRI up
to a scalar factor, where the conductivity and diffusion tensors are
linearly related at low frequencies, that is, for frequencies no larger
than 1 or 50 kHz. Then, the scalar factor was determined by
constraining the anisotropic tensor to be equal to the isotropic trace
at 50 kHz. A previous study has constrained the trace for the white
matter tensor. The rationale of that choice was based on the principle
that conductivity and diffusion tensors are linearly related across
different tissue types, but this linear relation is not as strong within
the same tissue (Kim et al., 2003). The scalp anisotropy was
approximated, by accounting for the scalp anisotropy and tissue
composition at 50 kHz, with a conductivity ratio tangential:normal to
the scalp surface of 1.5:1 (Horesh, 2006), it may be larger at other
frequencies. The muscle conductivity has been previously modelled
with a ratio 4.3:1 (Glidewell and Ng, 1995, 1997). Here, the skull

conductivity ratio tangential:normal to the skull surfacewas chosen as
10:1 (Rush and Driscoll, 1968), which was the largest ratio discussed
for EEG studies (Wolters et al., 2006), so it was selected as an upper
bound to account for the largest effect of neglecting anisotropy.
Besides, it was found that the bone conductivity on the three
orthogonal directions was constant up to 10 kHz (Reddy and Saha,
1984). In conclusion, modelling different conductivity values may vary
the results slightly, yet this analysis was intended to estimate the
importance of anisotropy for EIT of the head.

Incorporation of anisotropy within an accurate model of the head
had a significant influence on the forward model. For the inversion,
the linear approximation for reconstruction of difference data was
used, which reduces modelling and experimental errors. For the
applications of principal interest to our group, like epilepsy and
evoked responses, a reference voltage is known and few percent
conductivity changes in the brain lead to a much smaller data change
on the scalp, and so second order changes can be neglected. Thus,
linear reconstruction of anisotropic difference data using the isotropic
model was possible but had a significant effect on localisation and
image quality. On the other hand, for other relevant applications such
as acute stroke, a reference data is not available, and so nonlinear
reconstruction of absolute conductivity is more likely to be more
influenced by neglecting anisotropy. For the incorporation of
anisotropy in the inversion, the tensor structure was assumed to be
known — eigenvectors and eigenvalue ratios were provided, and
reconstruction was of a scalar multiplying this tensor: this resembles
isotropic reconstruction which has been proven to have a unique
solution (Lionheart, 1997). As the tensor structure is then assumed to
be known, only conductivity changes located in the grey matter can
possibly be reconstructed, and changes in white matter affecting the

Fig. 9. Cross sections (first and second columns) and isosurface (third column) for a simulated 10% local increase in conductivity and 16 mm diameter in the parietal lobe (three
columns on the left) and near the hippocampus (three columns on the right), and linear reconstruction of anisotropic data with the isotropic (second row) and anisotropic (last row)
model.
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anisotropic structure of white matter cannot be accurately modelled.
In this work, reconstruction was undertaken using the anisotropic
model as for the simulation of the data. This was intended to
demonstrate the influence of neglecting anisotropy on linear inversion
for computer simulation; further study is needed to assess the
eventual overall benefit of the incorporation of anisotropy on the
inversion for in vivo data.

In general, the peak in the reconstructed images provided an
estimation of the simulated conductivity changes, where location and
spurious artefacts were reduced when the anisotropic model was
used. The magnitude of the reconstructed images was lower than the
simulated ones, as was expected from the filtering effect of
regularisation of the inverse solution, and the sign was satisfactorily
recovered. Again, the magnitude was better when using the
anisotropic model, which may be due to the fact that less regularisa-
tionwas needed. The shape of the reconstructed conductivity changes,
especially for epilepsy changes, was only approximately recovered.
This may be caused by several factors: larger changes in magnitude
and size in epilepsy, the effect of regularisation, and incomplete
sampling.

This analysis has been done using the same mesh for all models.
The relevance of anisotropy cannot be then concluded till this study is
extended and the effect of anisotropy is shown to be mesh
independent and compared to other modelling errors.

Comparison with previous results

Previous results could be used to set a lower bound for the
localisation error. Distortion of an MRI at the coregistration stage may
lead to errors up to 5 mm, yet they can be reduced to 1 mm using
specific methods (Maurer et al., 1996; Tizzard et al., 2005). Also, the
segmentation and boundaries extraction from a T1-MRI had 1–2 mm
error (Dogdas et al., 2002). A lower bound from mismodelling which
would be unavoidable in practice, including factors as the inhomo-
geneity of the skull, for 64 electrodes and 2% noise, led to 10 mm
localisation error (Ollikainen et al., 1999). An assessment of the head-
shell model for EIT of brain function was undertaken on simulated,
tank, and human data using linear reconstruction (Bagshaw et al.,
2003). Localisation errors were (in millimeters), for simulated data
from a homogeneous head-shaped model 21±6 for head-shaped
reconstruction and 24±10 for spherical reconstruction; for homo-
geneous head tank data, 13±7 for head-shaped reconstruction and 19
±8 for spherical reconstruction; and for the head with skull tank data,
26±8 for head-shaped reconstruction and 24±8 for spherical
reconstruction. For human data, an improvement in image quality
was found. It was concluded that realistic conductivity values and
accurate geometry led to slight improvements where improvements
in image quality were more significant than localisation error and
resolution. Neglecting anisotropy of the skull and white matter in EEG
modelling studies yielded an upper bound of 30% in the forward
solution and 18 mm localisation error. The results presented here led
to a 50% change in the forward solution, which suggests a significant
influence of modelling the anisotropy of the scalp. While for epilepsy
there is a reference voltage, and therefore linear reconstruction of
difference data is recommended, for stroke detection, no time
difference data is possible, and it appears that absolute and multi-
frequency imaging are required. For absolute imaging, one would
expect anisotropy to have a far more significant effect in absolute
nonlinear reconstruction than for linear reconstruction of difference
data. In an assessment study with absolute simulated and tank
measurements, the effect of geometric errors over stroke modelling
were analysed and it was found that geometric errors were by far
larger than those introduced by the pathological perturbation (Horesh
et al., 2005) (Horesh, 2006, Chapters 4 and 6). Linear reconstruction
neglecting anisotropy led here to an error of 24 mm, which compared
with the 13–26 mm error from the EIT studies on tank data, which

suggests that for linear reconstruction of conductivity changes deep in
the brain, modelling anisotropy will improve results if mismodelling
errors of the electrodes accounted in the EIT real studies are resolved
(Bagshaw et al., 2003).

Conclusion and suggestions for further work

Modelling anisotropy therefore appears to be required to obtain an
accurate forward solution and good image quality images and a low
localisation error for linear reconstruction, especially if the imaged
changes are deep inwhitematter. Amore significant influence is likely
to be for absolute imaging, for which we are studying the possibility of
anisotropic tensor reconstruction assuming that a-priori information
is available to correct for awrong anisotropic estimation. Further work
is needed to show that anisotropic modelling is mesh independent,
and to compare its effect to other modelling errors. In addition to this,
analysis of the influence of anisotropic structure on real phantoms
would determine the relevance of anisotropy for many other EIT
applications.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2008.07.023.
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