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Multifrequency Electrical Impedance Tomography
using spectral constraints

Emma Malone, Gustavo Sato dos Santos, David Holder, Simon Arridge

Abstract—Multifrequency Electrical Impedance Tomography
(MFEIT) exploits the dependence of tissue impedance on fre-
quency to recover an image of conductivity. MFEIT could provide
emergency diagnosis of pathologies such as acute stroke, brain
injury and breast cancer. We present a method for performing
MFEIT using spectral constraints. Boundary voltage data is
employed directly to reconstruct the volume fraction distribution
of component tissues using a nonlinear method. Given that the
reconstructed parameter is frequency independent, this approach
allows for the simultaneous use of all multifrequency data,
thus reducing the degrees of freedom of the reconstruction
problem. Furthermore, this method allows for the use of fre-
quency difference data in a nonlinear reconstruction algorithm.
Results from empirical phantom measurements suggest that our
fraction reconstruction method points to a new direction for the
development of multifrequency EIT algorithms in the case that
the spectral constraints are known, and may provide a unifying
framework for static EIT imaging.

Index Terms—Electrical Impedance Tomography, Inverse
methods, Image reconstruction - iterative.

I. I NTRODUCTION

M ULTIFREQUENCY Electrical Impedance Tomography
(EIT), or EIT Spectroscopy (EITS), exploits the depen-

dence of tissue impedance on frequency in order to recover
an image of conductivity. A small current is injected and
boundary voltage measurements are acquired using peripheral
electrodes. Measurements are recorded simultaneously, orin
rapid sequence, whilst varying the modulation frequency ofthe
current. Data is compared to a reference frequency (frequency-
difference) or considered independently (absolute imaging).

Time-difference EIT, which uses single-frequency measure-
ments referred to a baseline, provides the gold-standard in
EIT imaging, and the overwhelming majority of EIT clinical
images have been produced using time-difference data. How-
ever, frequency-difference and absolute EIT could potentially
allow for the imaging of an event without knowledge of a
prior condition. This is necessary for diagnostic imaging of
conditions such as acute stroke, brain injury and breast cancer,
because patients are admitted into care after the onset of the
pathology and a baseline recording of healthy tissue is not
available [1]–[3].
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The challenge of multifrequency EIT lies in the high
sensitivity of the solution to modelling and instrumentation
errors [4], [5]. Simple frequency-difference methods, which
attempt to reconstruct an image from data referred to a
low frequency using a linear method, have proved effective
in the case of resolving a frequency dependent anomaly
from a homogeneous, frequency invariant background [6].
The weighted frequency difference algorithm, which uses a
weighted difference between data acquired at two frequencies
and a linear method, has been shown to successfully enhance
the contrast given by an anomaly in a frequency dependent
background [7]–[9].

Preliminary studies suggest that nonlinear reconstruction
methods using absolute data hold the potential for clini-
cal imaging [10], [11]. However, absolute imaging fails to
suppress artefacts caused by the high sensitivity of EIT to
modelling errors.

Whereas multifrequency EIT is at an early stage of de-
velopment, an extensive literature has been produced on the
related subject of multispectral diffuse optical tomography
(DOT). In particular, DOT research has produced methods for
directly reconstructing chromophore concentrations using the
wavelength dependence of tissue properties [12].

In this paper, a method is introduced for using frequency-
difference data in a non-linear reconstruction scheme by use
of spectral constraints. We propose to use all multifrequency
data directly to reconstruct the volume fraction distribution of
the tissues. The results of numerical validation and application
of our method to phantom experimental data recorded with the
UCLH Mark 2.5 MFEIT system [13] are presented. The ro-
bustness of our direct multifrequency method is discussed and
compared to an indirect method for estimating the fractions
from the absolute conductivity images. The question of how
fraction imaging compares to weighted frequency-difference
imaging in tank experiments is addressed. The performance
of fraction imaging is compared with weighted frequency-
difference on simulated data that violates the assumptionsof
the latter method. Finally, the approximation introduced by
our fraction model is investigated and discussed.

A. Forward Problem

The forward problem consists in determining the potential
u from knowledge of the conductivity distributionσ and the
Neumann boundary conditions. The forward mapA : σ → v

relates the conductivity distribution to boundary voltagemea-
surementsv for an assumed physical model. An analytical
solution to the forward problem can be obtained only in the
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case of simple geometries, otherwise it is necessary to pursue
numerical methods such as the finite element method (FEM).

B. Inverse Problem

The inverse problem consists in estimating the internal con-
ductivity distribution of an object for which the Neumann-to-
Dirichlet map is known. Non linear methods for reconstructing
an EIT imageσ from boundary voltage datav involve the
iterative minimization of an objective function of the form

l (A(σ),v) + τΨ(σ) (1)

where l is the negative log-likelihood,Ψ is a regularizing
function, andτ is the regularization parameter.

II. M ETHOD

A. Fraction model

The fraction model is a representation of the conductivity
of an object. We employ the fraction model in conjunction
with the FEM to approximate a conductivity distribution. It
is assumed that the object is composed of a limited number
of tissues and that a volume fraction, or concentration value,
can be determined for each component and element of the
mesh. The spatial distribution of the tissues is then described
by the corresponding fraction distributions. Furthermore, the
assumption that the tissues are homogeneous and have char-
acteristic spectral properties allows for the expression of the
conductivity of the object in terms of the conductivity of
individual components.

Let us consider a 3D domain on which a frequency
dependent conductivity distributionσ(x, ω) is defined, where
x denotes the spatial coordinates, andω the frequency. The
conductivity is assumed to be static. A discretization of the
domain is performed, and the conductivity is approximated
using the FEM to represent an element based, piecewise
constant distribution. As a result, the conductivity can
be represented by the mesh and a frequency dependent,
N × 1 vector that determines the value of each element
σ = [σn(ω); n = 1, . . . , N ], where N is the number
of elements. Time-harmonic currents are injected at the
boundary atM frequenciesω1, ..., ωi, ..., ωM and K real
boundary voltage measurementsv = [vk(ω); k = 1, . . . ,K]
are acquired for each frequency.

The following assumptions are made:

1) the domain is composed of a known numberT of tissues
t1, ..., tj , ..., tT with distinct conductivity,

2) the conductivity of each tissue is known for all measure-
ment frequenciesεij = σtj (ωi),

3) the conductivity of thenth element is given by the linear
combination of the conductivities of the component
tissues

σn(ωi) =
T∑

j=1

fnj · εij , (2)

where0 ≤ fnj ≤ 1 and
∑T

j=1 fnj = 1.

Each weighting valuefnj of the linear combination is the
volume fraction, or concentration, of thejth tissue in thenth
voxel. If the nth voxel is occupied only by thejth tissue,
then the conductivity is that of the tissueσ(ωi) = εij . In this
casefnj = 1 and fnl = 0 ∀l 6= j. In the case that the voxel
lies along a tissue boundary, or is otherwise occupied by a
mixture of tissues, the conductivity is approximated by the
linear combination of the conductivities of the components,
weighted by their fraction values.

Under these assumptions the relationship between conduc-
tivity and boundary voltages can be rewritten in terms of the
matrix F =

{
f1, . . . ,f j , . . . ,fT

}
, of dimensionsN × T .

The fraction values are independent of frequency and constant
across all measurements. Using the chain rule we obtain, for
j = 1, . . . , T ,

∂A(σi)

∂f j

=
∂A(σi)

∂σi

∂σi

∂f j

=
∂A(σi)

∂σi
εij = J(σi) · εij (3)

whereσi = σ(ωi) andJ(σi) is the Jacobian of the forward
map at the frequencyωi.

B. Fraction image reconstruction

Assuming the noise is white Gaussian, the objective func-
tion for conductivity imaging (1) becomes

σi = argmin
σi

1

2

[
‖A(σi)− v(ωi)‖

2
+ τΨ(σi)

]
, (4)

for each frequencyωi.
In analogy with conductivity imaging, we attempt to recon-

struct the fraction distributions of all tissues by minimizing a
regularized objective function of the form:

1

2




∥∥∥∥∥∥
A(

T∑

j=1

f jεij)− v(ωi)

∥∥∥∥∥∥

2

+ τΨ(F)


 . (5)

Using relative data, referred to a chosen frequencyω0, the
residual error becomes

1

2

∥∥∥∥∥
A(
∑

j f jεij)−A(
∑

j f jε0j)

A(
∑

j f jε0j)
−

v(ωi)− v(ω0)

v(ω0)

∥∥∥∥∥

2

. (6)

We use a Markov random field (MRF) regularization term of
the form

1

2

T∑

j=1

N∑

n=1

∑

l(n)

|fnj − fl(n)j |
2, (7)

wherel(n) runs over all neighbours of thenth voxel.
Finally, if all multifrequency measurements are considered

simultaneously, we obtain

Φ(F)=
1

2




M∑

i=1

∥∥∥∥∥
A(
∑

j f jεij)−A(
∑

j f jε0j)

A(
∑

j f jε0j)
−

v(ωi)− v(ω0)

v(ω0)

∥∥∥∥∥

2

+

+ τ

T∑

j=1

N∑

n=1

∑

l(n)

|fnj − fl(n)j |
2


 , (8)
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Fraction reconstruction algorithm outline
Initialize t = 0, f1 = 1 for the background tissue, and
[f2, . . . ,fT ] = 0 for all other tissues
set tol andmaxit
repeat

find Cauchy pointF̃ using gradient projection
solve (10) to finddt

find βt that minimizesΦ(f̃ j + βtdt
j ; j = 2, . . . , T )

computeF+ using (11)
setFt+1 using (12)
t = t+ 1

until
∣∣Φ(Ft+1)− Φ(Ft)

∣∣ ≤ tol or t = maxit
return F

The objective functionΦ(F) is differentiable and the gra-
dient is obtained via the chain rule (3).

The constraint
∑T

j=1 fnj = 1 ∀n is enforced by substituting

f1 = 1−
∑T

j=2 f j in the objective function. TheT−1 fraction
images, are reconstructed using

[f2, . . . ,fT ] = arg min
f

2
,...,fT

Φ(1−

T∑

j=2

f j ,f2, . . . ,fT ), (9)

where0 ≤ fnj ≤ 1, and remaining fraction is simplyf1 =

1−
∑T

j=2 f j .
The reconstruction of[f2, . . . ,fT ] was constrained to

the closed interval[0, 1] and performed using a two-step
algorithm.

Step 1: Gradient projection
Gradient projection is a method for optimizing an
objective function with bounded variables [14]. Initially
the minimization is set to follow the negative gradient
direction, but the search path is projected onto the constraint
whenever an upper or lower constraint is encountered. The
corners of the search path are found by computing the step
size values for which each variable reaches a constraint.
The objective function is approximated by the quadratic
form along each straight section of the search path, and the
minimum of the objective function is found by differentiating
with respect to the step size. Each section is considered in
sequence until a solution that satisfies the constraints is found.
The result of the gradient projection step is the Cauchy point
F̃ =

[
f̃1, f̃2, . . . , f̃T

]
, satisfying

∑T
j=1 f̃ j = 1.

Step 2: Damped Gauss-Newton using a Krylov solver
The components of the Cauchy point that coincide with
the constraints define the active sets for the second step.
These are fixed to the constraint value and the subproblem of
solving for all other components is considered. Initially the
constraints are ignored, one step of a damped Gauss-Newton
method is performed and then the solution is projected back
onto the constraints.

The search directiondt at iterationt is calculated by solving

H(f̃2, . . . , f̃T ) · d
t = −∇Φ(f̃2, . . . , f̃T ) (10)

Fig. 1: Schematic comparison between direct and indirect
fraction reconstruction methods.

for the components with non-active sets. The Hessian matrix
H is approximated using the Gauss-Newton form by disregard-
ing the second order derivative of the residual error. Giventhe
size of the problem, the approximated Hessian is never formu-
lated explicitly and equation (10) is solved using generalized
minimal residuals (GMRes) [15]. The minimization step size
βt is computed using the Brent line-search method [16], and
the Brent abscissae are found via a gold-section bracketing
loop [17]. The result of the damped Gauss-Newton step is

F
+ =

{
1−

∑T
j=2 (f̃ j + βt · dt

j) j = 1

f̃ j + βt · dt
j 2 ≤ j ≤ T

(11)

and the proposed solution is given by

f t+1
ni =





0 if f̃ni = 0 or f+
ni ≤ 0,

1 if f̃ni = 1 or f+
ni ≥ 1,

f+
ni otherwise.

(12)

The solution is accepted ifΦ(Ft+1) ≤ Φ(F̃) ≤ Φ(Ft). If only
Φ(F̃) ≤ Φ(Ft) then the Cauchy point is accepted.

C. Fraction image reconstruction: indirect method

An alternative method for estimating the tissue fractions
indirectly is by fitting the absolute conductivity images (Fig-
ure 1). First, the conductivity images at each frequency
{σi; i = 1, . . . ,M} are obtained by minimizing equation (4),

σi = argmin
σi

1

2

[
‖A(σi)− vi‖

2
+

+ τi

N∑

n=1

∑

l(n)

|σni − σl(n)i|
2


 , (13)

using a non-linear Gauss-Newton-Krylov algorithm [18].
The regularization parametersτi are optimized for each
frequency. Then, the indirect fraction imagêF =[
1−

∑T
j=2 f̂ j , f̂2, . . . , f̂T

]
is computed by minimizing

1

2




M∑

i=1

∥∥∥∥∥∥
σi −


1 · εi1 +

T∑

j=2

f̂ j · (εij − εi1)




∥∥∥∥∥∥

2

+

+ ξ

T∑

j=1

N∑

n=1

∑

l(n)

|f̂nj − f̂l(n)j |
2


 , (14)

whereξ is the regularization parameter. The minimization is
performed, as for the proposed direct method, by alternating
steps of gradient projection and damped Gauss-Newton.
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D. Image quantification

In evaluating experimental results, image quality was as-
sessed on the basis of an objective quantification method. We
considered the case of resolving a perturbation of tissuet2
from a homogeneous background of tissuet1 by reconstructing
an image of the fractionf2. The reconstructed perturbation
was identified as the largest connected cluster of voxels with
values larger than 50% of the maximum displacement from the
mean value of the image [6], [19]. We devised three measures
of image quality.

1) Image noise: inverse of the contrast-to-noise ratio (CNR)
between the real perturbationΣ and the background

√
1

NB−1

∑
n/∈Σ

(
fn2 − f̄B

2

)2
∣∣f̄P

2 − f̄B
2

∣∣ , (15)

where f̄P
2 and f̄B

2 are the mean intensities of the real
perturbation and background, andNB is number of
elements of the background.

2) Localization error: ratio between the norm of the x-y
displacement of the centre of mass of the reconstructed
perturbationΣ′ from the real position(x, y), and the
diameter of the meshd∥∥∑

n∈Σ′ fn2 · (xn, yn)− (x, y)
∥∥

d
, (16)

where(xn, yn) is the x-y position of the centre of the
nth tetrahedron.

3) Shape error: mean ratio of the difference between the
dimensions of the real and reconstructed perturbations,
respectively(lx, ly, lz) and (l′x, l

′
y, l

′
z), and the diameter

of the mesh

1

3

(
|lx − l′x|+

∣∣ly − l′y
∣∣

d
+

|lz − l′z|

h

)
, (17)

whereh is the height of the mesh. The real dimensions
of the perturbation were measured with a calliper, and
the size of the reconstructed perturbation was estimated
by taking the maximum coordinate difference between
elements coinciding with the perturbation.

III. R ESULTS AND DISCUSSION

A. Tissue impedance spectra

The spectral values of the test tissues were obtained em-
pirically from tissue samples. Resistance measurements were
acquired with a Hewlett-Packard 42847A (Hewlett-Packard,
CA, USA) impedance analyser for 48 frequencies in the range
20 Hz – 1 MHz using Ag-AgCl electrodes.

We used biological test objects with frequency dependent
conductivities to mimic the properties of live tissues [6],[8],
[9]. The background medium was a mixture of 0.1% concen-
tration NaCl solution and carrot cubes of approximately 4 mm
per side. Two samples were measured using Perspex tubes of
fixed diameter (1.6 cm) and variable length (4.6 and 7.5 cm). A
perturbation was obtained from a potato segment of diameter
approximately 4.6 cm. The resistivities of the full length (10.6
cm) and partial length (5.4 cm) were measured. The test object
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Fig. 2: Conductivity values of test tissues obtained from
sample measurements at 16 output frequencies of the UCLH
Mk 2.5 multifrequency EIT system in the range 640 Hz – 1.29
MHz.
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Fig. 3: Numerical validation model and results: (a) model of
position 1 (-4 cm 0 cm 0 cm), (b) model of position 2 (0 cm
+4 cm 0 cm), (c) perturbation fraction images of positions 1
and 2. In all images we display the raster of the central slice
(z = 0, thickness 2 cm) and, where relevant, profile plots at
y = 0 cm for position 1 andy = +4 cm for position 2. The
scale is the volume fraction value.

was immersed in saline for 45 minutes before starting the
recordings in order to reduce drift. The electrode resistance
was estimated and subtracted by plotting resistance against
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Σ 1% 3% 5% 10%

mean(Err
L2 ) 1.17% 1.88% 2.87% 3.09%

var(Err
L2 ) 4.4 · 10−6 7.2 · 10−5 2.6 · 10−4 2.3 · 10−4

TABLE I: Robustness to spectral errors: mean and standard
deviation over 20 repetitions of image errorErrL2 for several
choices of spectral varianceΣ.

length for each tissue and evaluating the offset of the line
passing through the measurement points. The conductivities
of the carrot-saline background and potato perturbation rose
monotonically from 0.1 S/m and 0.02 S/m at 20 Hz to 0.3
S/m and 0.4 S/m at 1 MHz.

These results were used to simulate realistic data and to
reconstruct fraction images from experimental EIT recordings
made with the UCLH Mk. 2.5 system. The conductivity values
for 16 amongst the output frequencies of the UCLH system
in the range 640 Hz – 1.29 M Hz were estimated from the
spline of the sample measurements (Figure 2).

B. Numerical validation

Numerical validation of the proposed fraction reconstruction
method was performed on synthetic data. Boundary voltages
were simulated using a cylindrical mesh of diameter 19 cm
and height 10 cm, with 62 784 elements and a ring of 32
electrodes around the centre. A current of peak amplitude 133
µA, injected through polar electrodes, was simulated. For each
injection pair we considered the difference between voltages
on all adjacent pairs of electrodes not involved in delivering
the current, for a total of 448 measurements per frequency.
The ground point was fixed at the centre of the bottom of the
mesh. The complete electrode model [20] was employed, and
the electrode impedance was set to 1 kΩ.

A cylindrical perturbation of diameter 4.6 cm and height 10
cm was placed in (-4 cm 0 cm 0 cm) (position 1) and (0 cm
+4 cm 0 cm) (position 2), where the origin is the centre of the
tank. The background and perturbation conductivities wereset
to the values for saline-carrot and potato obtained empirically
for 16 output frequencies of the UCLH Mk 2.5 system. All
measurements were referred to the lowest frequency of 640
Hz. Proportional 0.1% white Gaussian noise was added to the
absolute boundary voltages. The noise level was chosen under
consideration that the expected change across frequenciesin
boundary voltages is in the order of 1%, therefore a high
level of precision must be acheived in measuring the absolute
values with an EIT system. The regularization parameter was
set using the L-curve method [21]. Fraction images were
reconstructed using all multifrequency data by performingfour
iterations of the proposed nonlinear fraction reconstruction
method (Figure 3).

C. Robustness to spectral errors

The fraction model assumes exact knowledge of the
impedance spectra of all tissues in the domain. These val-
ues were evaluated by measuring the conductivity of tissue
samples with an impedance analyser, as described in section

III-A. It is inevitable that these measurements are affected by
noise and experimental error, and the tissue spectra employed
in the reconstruction scheme are incorrect. We performed a
simulation study to determine the robustness of our fraction
reconstruction method to errors in the assumed tissue spec-
tra εj = {εij ; i = 1, . . . ,M}. The same mesh, electrodes,
measurement protocol and perturbation were chosen as in the
previous section. A random error was added to the tissue
spectra of carrot (ε1) and potato (ε2), before producing a
conductivity model:

σ∗
ni =

{
εi1 +Rand(εi1, εi1 · Σ) on the background,

εi2 +Rand(εi2, εi2 · Σ) on the perturbation,
(18)

whereRand(εij , εij ·Σ) is a random number drawn from the
normal distribution with meanεij and varianceεij · Σ. In an
experimental setup, the valuesεij +Rand(εij , εij ·Σ) are the
real, unknown, conductivities of the tissues, whereas the mean
conductivitiesεij are the inexact measurements obtained from
the samples.

Boundary voltage data was simulated using the modelσ∗,
and fraction images were reconstructed using the inexact
measured spectra. The process was repeated 20 times for
each choice ofΣ = {1%, 3%, 5%, 10%}. The regularization
parameter wasτ = 10−3, and the number of iterations was 4
in all cases.

The results were evaluated by computing the ratio of the
L2-norm of the distance between the reconstructed image and
the true solution, and theL2-norm of the true solution. To
make the error measure independent of the number of tissues,
the mean was taken:

ErrL2 =
1

T

T∑

j=1

∥∥frecon
j − f true

j

∥∥
∥∥f true

j

∥∥ , (19)

where

f true
2 =

{
0 on the background,

1 on the perturbation,
(20)

andf true
1 = 1 − f true

2 . The mean and standard deviation of
the error over 20 repetitions was computed for each choice of
Σ (Table I).

We computed the mean and the standard deviation of the
reconstructed images (Figures 4a and 4b), and the mean image
quantification measures (Figure 4c). We observed that for
Σ = 1% the images were similar to the result obtained
using the exact spectra (Figure 3). We note that in the latter
case, in which the same spectra are used to generate the data
and reconstruct the image,ErrL2 = 1.06%. For Σ = 3%
and Σ = 5% the shape and position of the perturbation
were generally reconstructed with sufficient accuracy, but
a reduction in contrast was observed in most images. For
Σ = 10% the image quality was affected, and in some cases
the perturbation could not be identified. The mean relative
contrast between the tissues is

C% =
1

M

M∑

i=1

(εi2 − εi1)

εi1
≈ 34%, (21)
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Fig. 4: Robustness to spectral errors results: (a) mean and (b) standard deviation of the reconstructed fraction imagesfor each
choice of the spectral varianceΣ; (c) mean image quantification results over 20 repetitions for each choice ofΣ.
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Fig. 5: Phantom experiment setup and fraction images: (a) position 1 (−4 cm 0 cm 0 cm), (b) position 2 (0 cm+4 cm 0 cm)
(c) perturbation fraction images of positions 1 and 2.

therefore it is reasonable to expect that a10% error on the
spectra would make it difficult to distinguish between the
tissues.

D. Phantom study

A phantom study was designed to reproduce the experi-
mental setup rendered previously in simulation. The phantom
was built using the test tissues measured with the impedance
analyser, and a perspex cylindrical tank of diameter19 cm
and height 10 cm. The potato was placed in (−4 cm 0 cm
0 cm) (Figure 5a) and (0 cm+4 cm 0 cm) (Figure 5b)
and immersed in the saline-carrot mixture. A ring of thirty-
two silver electrodes with 1 cm diameter was placed around
the tank and a 33rd electrode was used to fix the ground at
the centre of the base. Measurements were recorded using
the UCLH Mark 2.5 MFEIT system at 16 frequencies in
the range 640 Hz – 1.29 MHz. A current of amplitude 133
µA was injected at polar electrode pairs and voltages were
acquired at all adjacent channels not involved in the current
injection. The data was averaged over 10 frames and referred
to the lowest frequency (640 Hz). Images were reconstructed

using the same mesh employed in validating the method. In
the following, unless otherwise specified, the regularization
parameter was selected using the L-curve method, and the
number of iterations for nonlinear methods was set to 4. The
electrode contact impedance was assumed to be 1 kΩ, which
is the upper limit of the real value, and constant across all
electrodes and frequencies.

Fraction images were reconstructed using the proposed
method from all multifrequency data (Figure 5c).

E. Comparison with indirect fraction estimation

Fraction images were obtained from the multifrequency
phantom data using the indirect method described previously.
Absolute conductivity values were recovered for each mea-
surement frequency (Figures 6a and 6b) and fraction images
were obtained from these (Figure 6c). The conductivity images
present an area of high conductivity area around the edge
of the tank, which is caused by inaccurate modelling of the
boundary geometry, electrode placement, shape and size, and
contact impedance. In the fraction images this artefact is
reduced because frequency invariant errors are subtractedfrom
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Fig. 6: Phantom absolute conductivity images for each measurement frequency: (a) position 1 and (b) position 2. The scale is
S/m. Multifrequency imaging results: (c) fractions obtained using indirect method for positions 1 and 2. Comparison of image
quantification results for absolute conductivity images at640 Hz (Cond-LF) and 1.2 MHz (Cond-HF), and fraction images
from indirect method (Frac-I) and direct method (Frac): (d)position 1, (e) position 2.

the data. The conductivity images obtained in the frequency
range 30 – 80 kHz present very low contrast. This is in
agreement with the tissue sample conductivity measurements
in that the spectra of potato and carrot-saline are very similar
in the same frequency range. It is evident by visual comparison
that the use of spectral constraints can result in a significant
improvement in image quality, when compared to absolute
conductivity imaging.

The fraction images obtained with the direct fraction re-
construction method were compared with the images obtained
using the indirect method, and the absolute conductivity
images (Figures 6d and 6e). The results suggest that the
proposed fraction reconstruction method is more robust than

absolute conductivity imaging and the indirect method. The
proposed fraction reconstruction algorithm employs the bound-
ary voltage data directly, and a single optimization problem is
solved. To image the fractions from the absolute conductivity,
first an optimization problem is solved for each frequency to
reconstruct the conductivity images, then the fitting parame-
ters are computed. The direct reconstruction algorithm uses
all multifrequency data to estimate the regularization prior,
whereas the indirect method requires that the regularization
is first optimized independently for each frequency and then
again for computing the fractions.
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Fig. 7: Phantom WFD conductivity images for each measurementfrequency: (a) position 1 and (b) position 2. Comparison of
image quantification results for WFD conductivity images at 640 Hz (Cond-LF), 128 kHz (Cond-MF) and 1.2 MHz (Cond-HF),
and fraction image (Frac): (c) position 1 and (d) position 2.

F. Comparison with weighted frequency-difference conductiv-
ity imaging

The weighted frequency-difference (WFD) algorithm uses
a weighted difference in boundary voltages between two
frequenciesvi − δiv0 and a linear method to reconstruct
a weighted conductivity differenceσ0 − δiσi, where δi =
〈v(ωi),v(ω0)〉
〈v(ω0),v(ω0)〉

. WFD conductivity images were reconstructed
from the tank data for each frequency and compared to fraction
images (Figures 7a and 7b). The lowest frequency (ω0 = 640
Hz) was used as a reference and the reconstruction was
performed using generalized tSVD and MRF regularization
[22]. The image quantification results (Figure 7c and 7d) are
comparable to fraction imaging in this case.

G. Spectral constraints method for nonlinear case

Application of the weighted frequency-difference algorithm
is limited by the following assumptions:

1) σ0 − δiσi ≈ 0 on a large background area and on the
boundary,

2) σ0 − δiσi 6= 0 on a small anomaly.

Furthermore, use of a linear reconstruction scheme requires the
added assumption that linear changes in conductivity result
in linear changes in boundary voltages. In the case of the
phantom experiment these assumptions are valid because the
object consists in a small, low-contrast perturbation immersed
in a large homogeneous background.

In order to investigate further application of WFD and our
fraction method we simulated two conductivity distributions
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Fig. 8: Simulation model, and fraction and WFD conductivity images: (a) model of position A, (b) model of position B, (c)
perturbation fraction images of position A and B, (d) WFD conductivity image of position A, (e) WFD conductivity image of
position B.

that violate the assumptions of WFD (Figure 8a and 8b). As
previously, the measured spectral values of the saline-carrot
and potato samples were used to simulate boundary voltage
measurements, and 0.1% white Gaussian noise was added the
data. The lowest frequency (640 Hz) was used as a reference.
Fraction and WFD conductivity images were reconstructed
(Figures 8c, 8d and 8e). The results show that our fraction
method can produce significantly better images than WFD in
the case that the assumptions of WFD are violated.

H. Multiple tissue case

The fraction reconstruction method was applied to a numer-
ical phantom with 4 tissues. The same mesh, electrode posi-
tions, measurement protocol and frequencies were used as in
the previous cases. The background was set to the conductivity
values of saline-carrot sampled previously. The conductivity
values of the potato sample were used to simulate a cylindrical
perturbation of radius2.2 cm and length10 cm in position
(0.87 cm 4.92 cm 0 cm). The conductivities of banana and
cucumber samples were measured with an impedance analyser
using the method and instrumentation described in section
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Fig. 9: Four-tissue case model and reconstruction: (a) conductivity values of carrot-saline, potato, banana and cucumber obtained
from sample measurements, (b) numerical phantom model, scale is cm (c) reconstructed fraction images and profile plots at
y = +4.92 cm (1), y = −1.71 cm (2) andy = −3.21 cm (3).
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Fig. 10: Approximation error evaluation model and results:(a) coarse mesh,16 268 elements (b) fine mesh,130 144 elements
(c) mean approximation error introduced by the fraction model (Errfrac), the FEM (Errdiscr) and both methods (Errtotal) in
estimating boundary voltages for 10 %, 50 % and 100 % mixed elements in a coarse mesh.

III-A (Figure 9a). These values were used to simulate two fur-
ther perturbations of the same size in(−4.7 cm -1.71 cm0 cm)
(banana) and(3.83 cm -3.21 cm0 cm) (cucumber). The bound-
ary voltages were computed, and0.1% proportional white
noise was added to the absolute values. Fraction images were
reconstructed for each tissue (Figure 9c) using the proposed
method. The regularization parameter was chosen by visual
inspection, and the number of iterations was set to 10. The
algorithm was successful in differentiating between the tis-

sues, and returning high constrast. TheL2-norm error of the
solution, defined by equation (20), isErrL2 = 2.16%, which
is approximately double the error found in the 2 tissue case
(Figure 3 and III-C).

I. Approximation error evaluation

A simulation study was performed to investigate the approx-
imation introduced by the fraction model in representing the
conductivity of an object. A sphere was simulated using a fine
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tetrahedral mesh of diameter 10 cm with130 144 tetrahedral
elements Figure 10a). A conductivity distributionσf was
drawn from the binomial distributionp(σf ) ˜ B(ε1, ε2), where
ε1 = 0.11 andε2 = 0.05 are approximately the conductivities
of saline-carrot mixture and potato at 10 kHz.

A conforming mesh with16 268 (=130 144/8) elements
(Figure 10b) was used to define a second conductivity distribu-
tion σc. The two meshes were chosen so that each tetrahedra
of the coarse mesh would contain 8 tetrahedra of the fine mesh,
and each surface triangle of the coarse mesh would contain 4
triangles of the fine mesh. The conductivity of each element
of the coarse mesh was obtained via linear combination of
the corresponding elements of the fine mesh using the fraction
model. Finally, the valuesσc were distributed on the fine mesh
to generate a third conductivity distributionσf∗

.
The boundary conditions were set by simulating two elec-

trodes in polar position. The electrode shape was chosen in
order to maintain the same electrode area in the coarse and fine
mesh. The radius of the circle circumscribing each electrode
was1 cm. We generated a current of peak amplitude+133µA
one electrode, and the other was used as ground. The electrode
contact impedance was set at 1 kΩ and the complete electrode
model was employed.

The boundary voltagesvc, vf were generated, andvf
∗

was
obtained from the conductivity distributions defined above.
The total modelling errorErrtotal =

∣∣vf − vc
∣∣ between the

representations ofσf and σc, and the discretization error
Errdiscr =

∣∣vf∗

− vc
∣∣ between the representations ofσf∗

and
σc were considered. In order to evaluate the error introduced
by the fraction model in estimatingvc, the percentile difference
between the total and discretization error was considered

Errfrac =
Errtotal − Errdiscr

vc
· 100. (22)

The random distributionσf was drawn and the fraction
error was calculated 100 times. The procedure was repeated
after reducing the proportion of mixed elements in the coarse
mesh from 100% to 50% and 10% (Figure 10c). In order to
acheive this, the values of the correct proportion of elements of
the fine mesh were assigned at random and the remaining were
considered in homogeneous groups of 8, each corresponding
to an element of the coarse mesh.

In this example the approximation error given by the frac-
tion model is significantly smaller than that introduced by the
coarsening of the mesh. Furthermore, the error is present only
in the representation of mixed elements and thus depends on
the proportion of mixed-to-homogeneous elements. If tissues
occupy a distinct area of the image and mixed elements are
limited to those lying across the boundaries, the approximation
error is small. If a large area is occupied by a mixture of
tissues, the approximation error can be reduced by modelling
the mixture rather than the individual tissues.

IV. CONCLUSION

We have formalized, validated and applied a nonlinear frac-
tion reconstruction method for performing multifrequencyEIT
using spectral constraints. We have investigated the robustness
of our method to errors in the assumed spectra and found

that, in the case examined, the method is resistant to a small
amount of uncertainty. We have shown, using phantom data,
that the proposed method can result in improved image quality
when compared to absolute and weighted frequency-difference
conductivity imaging. The direct use of multifrequency data
has proved more robust than fitting multifrequency conduc-
tivity images. We have shown using simulated data that the
proposed method is superior to weighted frequency-difference
imaging when the assumptions of the latter are violated. We
have applied our method to a numerical phantom with 4
tissues and shown that it is possible to distinguish between
multiple tissues and accurately reconstruct the fraction image
of each one. These results suggest that fraction imaging may
be suitable for producing one-off clinical diagnostic images
using EIT.

The advantages of using spectral constraints in multifre-
quency EIT are twofold. First, the choice to reconstruct the
fraction values, which are frequency independent, allows for
the direct and simultaneous use of all multifrequency data.
The dimensionality of the problem depends on the number of
elements and tissues, and not on the the number of frequencies.
Therefore it is preferable to use data acquired at all mea-
surement frequencies. As long as the number of frequencies
is larger than the number of tissues, implementation of the
fraction method increases the number of constraints to the
reconstruction and results in a reduction in the degrees of
freedom of the problem. Secondly, knowledge of the tissue
spectra allows for the use of difference data in the objective
function, thus resulting in the subtraction of modelling and
frequency independent instrumentation errors in a non-linear
reconstruction scheme. In conductivity imaging this is notpos-
sible because it would require simultaneous estimation of the
measurement and reference conductivities, thus increasing the
degrees of freedom of the problem. The fraction images could
be improved by modelling the change in contact impedance
over frequencies. This would result in a further reduction of
the edge artefact.

The fraction reconstruction method requires prior knowl-
edge of the tissues’ impedance spectra. These can be readily
obtained from the literature, or estimated empirically. Accurate
modelling of biological tissues is crucial for clinical appli-
cations. The numberT of tissue types could be inferred by
iteratively applying the algorithm with increasing valuesof T
until a criterion is reached (e.g., no sharp increase in model
likelihood). It would be preferable to model all possible or
expected distinct tissues, so that ift is the actual number
of tissues,T ≥ t. The reconstructed fraction values of the
tissues that are not present would then be zero. However,
a reduction in image quality is to be expected ifT >> t.
We aim in future studies to relax the assumptions of the
fraction model and allow for variability and heterogeneityin
the tissue spectra. This could be achieved by using statistical
methods to infer subject-specific deviations in the spectral
properties of the tissues from the boundary voltage data, under
certain constraints. Further studies are necessary to determine
how image quality varies with the number of tissues and
frequencies.
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