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Abstract—Multifrequency Electrical Impedance Tomography The challenge of multifrequency EIT lies in the high
(MFEIT) exploits the dependence of tissue impedance on fre- sensitivity of the solution to modelling and instrumerdati
quency to recover an image of conductivity. MFEIT could provide errors [4], [5]. Simple frequency-difference methods, ethi

emergency diagnosis of pathologies such as acute stroke, brain tt tt truct . f dat f dt
injury and breast cancer. We present a method for performing allempt o reconstruct an image iTom data rererred 10 a

MFEIT using spectral constraints. Boundary voltage data is |OW frequency using a linear method, have proved effective
employed directly to reconstruct the volume fraction distribution in the case of resolving a frequency dependent anomaly
of component tissues using a nonlinear method. Given that the from a homogeneous, frequency invariant background [6].
reconstructed parameter is frequency independent, this apprach g \yeighted frequency difference algorithm, which uses a
allows for .the simultaneous use of all multifrequency da’ga, iahted diff bet dat ired at two f .
thus reducing the degrees of freedom of the reconstruction weighted difference between data acquired at two ireqasncl
problem. Furthermore, this method allows for the use of fre- and a linear method, has been shown to successfully enhance
quency difference data in a nonlinear reconstruction algorithm. the contrast given by an anomaly in a frequency dependent
Results from empirical phantom measurements suggest that our background [7]-[9].
fraction reconstruction method points to a new direction for the Preliminary studies suggest that nonlinear reconstmctio
development of multifrequency EIT algorithms in the case that : - L
the spectral constraints are known, and may provide a unifying Methods using absolute data hold the potential for clini-
framework for static EIT imaging. cal Imaging [10], [ll] However, absolute Imaging fails to
suppress artefacts caused by the high sensitivity of EIT to
modelling errors.

Whereas multifrequency EIT is at an early stage of de-
velopment, an extensive literature has been produced on the

|. INTRODUCTION related subject of multispectral diffuse optical tomodmap
) (DQOT). In particular, DOT research has produced methods for
M ULTIFREQUENCY Electrical Impedance Tomographygirectly reconstructing chromophore concentrations gisire
(EIT), or EIT Spectroscopy (EITS), exploits the depenyayelength dependence of tissue properties [12].

dence of tissue impedance on frequency in order to recovefy this paper, a method is introduced for using frequency-
an image of conductivity. A small current is injected andjfference data in a non-linear reconstruction scheme Iay us
boundary voltage measurements are acquired using pealphgf spectral constraints. We propose to use all multifreqyen
electrodes. Measurements are recorded simultaneously, ofjata directly to reconstruct the volume fraction distribntof
rapid sequence, whilst varying the modulation frequendyef the tissues. The results of numerical validation and apfitio
current. Data is compared to a reference frequency (fremenos our method to phantom experimental data recorded with the
difference) or considered independently (absolute in@gin  ycLH Mark 2.5 MFEIT system [13] are presented. The ro-

Time-difference EIT, which uses single-frequency measurgystness of our direct multifrequency method is discussed a
ments referred to a baseline, provides the gold-standardctfmpared to an indirect method for estimating the fractions
EIT imaging, and the overwhelming majority of EIT clinicalfrom the absolute conductivity images. The question of how
images have been produced using time-difference data. HGygction imaging compares to weighted frequency-diffegen
ever, frequency-difference and absolute EIT could poadiati jmaging in tank experiments is addressed. The performance
allow for the imaging of an event without knowledge of &f fraction imaging is compared with weighted frequency-
prior condition. This is necessary for diagnostic imagiffg Qjifference on simulated data that violates the assumptidns

conditions such as acute stroke, brain injury and breastetanthe |atter method. Finally, the approximation introduced b
because patients are admitted into care after the onseeof #§yr fraction model is investigated and discussed.

pathology and a baseline recording of healthy tissue is not
available [1]-[3].

Index Terms—Electrical Impedance Tomography, Inverse
methods, Image reconstruction - iterative.
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case of simple geometries, otherwise it is necessary taipurs Each weighting valuef,,; of the linear combination is the
numerical methods such as the finite element method (FEMY@lume fraction, or concentration, of thih tissue in thesth
voxel. If the nth voxel is occupied only by thgth tissue,
then the conductivity is that of the tissugw;) = ¢€;;. In this
casef,; = 1 and f,,; = 0 VI # j. In the case that the voxel
The inverse problem consists in estimating the internat colies along a tissue boundary, or is otherwise occupied by a
ductivity distribution of an object for which the Neumaro+t mixture of tissues, the conductivity is approximated by the
Dirichlet map is known. Non linear methods for reconstmgti |inear combination of the conductivities of the components
an EIT imageo from boundary voltage data involve the weighted by their fraction values.
iterative minimization of an objective function of the form Under these assumptions the relationship between conduc-
tivity and boundary voltages can be rewritten in terms of the
H(A(o),v) + 7Y (o) @ matrix F = {fi,---.fjs--.. fr}, of dimensionsN x T.

where [ is the negative log-likelihood¥ is a regularizing The fraction values are independent of frequency and consta

B. Inverse Problem

function, andr is the regularization parameter. across all measurements. Using the chain rule we obtain, for
j=1,...,T,
[I. METHOD 0A(o;) _ 0A(o;) Doy 0A(o)

A. Fraction model of; do; Of; oo Y /

The fraction model is a representation of the conductivityhereo; = o(w;) andJ(o;) is the Jacobian of the forward
of an object. We employ the fraction model in conjunctiofmap at the frequency;.
with the FEM to approximate a conductivity distribution. It
is assumed that the object is composed of a limited numt@_r
of tissues and that a volume fraction, or concentrationejalu ] o _ ) o
can be determined for each component and element of thé\SSuming the noise is white Gaussian, the objective func-
mesh. The spatial distribution of the tissues is then deedri tion for conductivity imaging (1) becomes
by the corresponding fraction distributions. Furthermadhe
assumption that the tissues are homogeneous and have char-
acteristic spectral properties allows for the expressibthe

conductivity of the object in terms of the conductivity offor each freque_ncwi. L .
individual components. In analogy with conductivity imaging, we attempt to recon-

Let us consider a 3D domain on which a frequenc?/"ua the fraction distributions of all tissues by minimg a
dependent conductivity distributiom(x, w) is defined, where egularized objective function of the form:

Fraction image reconstruction

o = argmin L [[4(0) ~v(w)|” + ¥ ()], (@)

x denotes the spatial coordinates, andhe frequency. The T 2
conductivity is assumed to be static. A discretization & th 1

Z 1A €:) — v(w; U(F)| . 5
domain is performed, and the conductivity is approximated 2 (; Fi€u) —o(wi)| +rU(F) ©)

using the FEM to represent an element based, piecewise

constant distribution. As a result, the Conductivity Cansing relative data, referred to a chosen frequem@ythe
be represented by the mesh and a frequency dependesdidual error becomes

N x 1 vector that determines the value of each element 9
o = [oa(w);n = 1,...,N], where N is the number 1 [|ACQC; fe) —AQS; fi€)  wv(wi) — v(wo) ®)
of elements. Time-harmonic currents are injected at the2 AR, £ j€05) v(wp) ’
boundary atM frequenciesws,...,w;,...,wys and K real . o
are acquired for each frequency. the form N
1 2
o njy — n)jl » 7
The following assumptions are made: 2 ;;% [ Fng = Fuims| )
1) the domain is composed of a known numfeof tissues )
t1, ... tj, ...t with distinct conductivity, wherel(n) runs over all neighbours of theth voxel.
ment frequencies;; = o (w;), simultaneously, we obtain
3) the conductivity of thexth element is given by the linear
combination of the conductivities of the component 2
tissues P O(F) - - S|[ACS, £ — A, Fie0)  v(wi) — vlwo)
(F)=5 > - +
r 2 | = A(XC; £ j€os) v(wo)
on(wi) = > fnj - €ijs )
j=1

T N
+ Y D> Mai = fisl?| 8

where0 < fnj <1 and Z?:l fnj =1. j=1n=11(n)



Fraction reconstruction algorithm outline indirect

Initialize ¢ = 0, f; = 1 for the background tissue, and o

[fa,---, fr] = 0 for all other tissues

settol and maxit v / \ F
repeat direct

find Cauchy poinff* using gradient projection
solve (10) to findd’

find 3, that minimizes(b(fj + 6td§; j=2,...,7T)
computeF ™ using (11)

setF'*! using (12)

Fig. 1: Schematic comparison between direct and indirect
fraction reconstruction methods.

for the components with non-active sets. The Hessian matrix

t=t+1 : ! . :
until |<I>(Ft+1) _ @(Ft)\ < tol or t = mazit H is approximated using .the.Gauss—Newtpn form by disregard-
retun ing the second order derivative of the residual error. Given

size of the problem, the approximated Hessian is never formu
lated explicitly and equation (10) is solved using geneedli
minimal residuals (GMRes) [15]. The minimization step size
Bt is computed using the Brent line-search method [16], and
the Brent abscissae are found via a gold-section bracketing
loop [17]. The result of the damped Gauss-Newton step is

The objective function?(F) is differentiable and the gra-
dient is obtained via the chain rule (3).
The constrainEjT:1 fnj =1 Vnis enforced by substituting

1= 1-Y7, f;inthe objective function. The—1 fraction . 1= L, (F+8-d) j=1 a
images, are reconstructed using N\ F48d 9<;<T
d d th d solution is given b
[fza-n,fT]:al"gfmiI} 1= f;. fo o f1)s (9) and the propose sou|on|?g|ven y
it j=2 0 if f,,=00rf' <o,

where0 < f,,; < 1, and remaining fraction is simplf, = firt=3 1 iff=10rfh>1, (12)
1= f +. otherwise.

The reconstruction of(f,,..., f;y] was constrained to o - . .
the closed intervall0, 1] and performed using a two-step!he solution is accepted #(F'"") < &(F) < ®(F'). If only
algorithm. O(F) < <I>(Ft) then the Cauchy point is accepted.
Step 1: Gradient projection C. Fraction image reconstruction: indirect method

Gradient projection is a method for optimizing an An alt i thod f timating the ti fracti
objective function with bounded variables [14]. Initially. n afternative method for estimating the ussue iractions

the minimization is set to follow the negative gradien'tnOIireCtIy is by fitting the absolute conductivity imagesgF

direction, but the search path is projected onto the canstral"® 1). First, the conductivity images at each frequency

whenever an upper or lower constraint is encountered. T{]@'; i=1,...,M} are obtained by minimizing equation (4),
corners of the search path are found by computing the step

1 2
) . . . o; = argmin - |[|A(o;) — v;
size values for which each variable reaches a constraint. ¢ & oi 2 [” (:) ill”+

The objective function is approximated by the quadratic N
form along each straight section of the search path, and the T ZZ 0w — oiml?| . (13)
minimum of the objective function is found by differentiadi n=1i(n)

with respect to the step size. Each section is considered in ) )
sequence until a solution that satisfies the constraintsuisd, USINg @ non-linear Gauss-Newton-Krylov algorithm  [18].
The result of the gradient projection step is the Cauchytpoip€ regularization parameters; are optimized for each
F— {} ¥ ¥ } satisfyingZT =1 frequency. Then, the indirect fraction imag® =
LS s j=1J; =1 [1 — ZJ.T=2 FiiForos j‘T} is computed by minimizing

Step 2: Damped Gauss-Newton using a Krylov solver )

The components of the Cauchy point that coincide with | | M T .

the constraints define the active sets for the second step. 5 Z oi— (1€ +ij (€5 — €an) +
These are fixed to the constraint value and the subproblem of i=1 J=2

solving for all other components is considered. Initialhet TN

constraints are ignored, one step of a damped Gauss-Newton n gz Z Z fos — fz(n)j\2 . (14)

method is performed and then the solution is projected back
onto the constraints.

The search directiod’ at iterationt is calculated by solving Where¢ is the regularization parameter. The minimization is
} } performed, as for the proposed direct method, by altergatin

H(fy,...,fr)-d' = —V<I>(}27 . .j‘T) (10) steps of gradient projection and damped Gauss-Newton.

j=1n=11(n)



D. Image quantification 0.45]

—=&— Carrot

In evaluating experimental results, image quality was as- 0.4F| —o— Potato
sessed on the basis of an objective quantification method. We = o.sf L ——Saine
considered the case of resolving a perturbation of tigsue
from a homogeneous background of tissuby reconstructing
an image of the fractioryf’,. The reconstructed perturbation
was identified as the largest connected cluster of voxels wit
values larger than 50% of the maximum displacement from the
mean value of the image [6], [19]. We devised three measures
of image quality. ‘ ‘ ‘

1) Image noise: inverse of the contrast-to-noise ratio (ENR 10 Frgg vency (H2) 10 10

between the real perturbation and the background

Conductivity (S/m)

Fig. 2: Conductivity values of test tissues obtained from

\/ﬁ Zn@ (fr2 — fQB)Q sample measurements at 16 output frequencies of the UCLH
= 35 ; (15) Mk 2.5 multifrequency EIT system in the range 640 Hz — 1.29
i MHz.

where ff and fF are the mean intensities of the real
perturbation and background, amd? is number of
elements of the background.

2) Localization error: ratio between the norm of the x-y
displacement of the centre of mass of the reconstructed
perturbationX’ from the real position(x,y), and the

diameter of the mesH * y
||Znezf fn2 - (zdnayn) - (iE, y)” : (16) :\ ‘ *

where (z,,,y,) is the x-y position of the centre of the
nth tetrahedron.

3) Shape error: mean ratio of the difference between the @) (b)
dimensions of the real and reconstructed perturbations,
respectively(l,, l,, 1) and(l},l},l’), and the diameter

zr 'y Yz

of the mesh m
AR R A

3 < d + 5 , 7 Ho.8

r10.7

whereh is the height of the mesh. The real dimensions Hos
of the perturbation were measured with a calliper, and 05

Position 1 Position 2

the size of the reconstructed perturbation was estimated
by taking the maximum coordinate difference between 1
elements coinciding with the perturbation.

0.5

IIl. RESULTS AND DISCUSSION

0
A. Tissue impedance spectra 05 05 100 -5 0 5 10

x (cm) X (cm)

The spectral values of the test tissues were obtained em- ©)
pirically from tissue samples. Resistance measurements we.

: : ) ) ig. 3: Numerical validation model and results: (a) model of
acquired with a Hewlett-Packard 42847A (Hewlett-Packard, sition 1 (-4 cm 0 cm 0 cm), (b) model of position 2 (0 cm

CA, USA) impedance analyser for 48 frequencies in the rangg1 cm 0 cm), (c) perturbation fraction images of positions 1

20 Hz — 1 MHz using Ag-AgCl electrodes. 42 1nalli display th ter of th iral sli
We used biological test objects with frequency depende?lrt] - 1N all Images we dispiay the raster ot the central slice

conductivities to mimic the properties of live tissues [(d], =0 thlcknessuz cm) and, where relevant, -p.rof|le plots at
[9]. The background medium was a mixture of 0.1% conceH-_ 0 cm for position 1 andy = +4 cm for position 2. The
tration NaCl solution and carrot cubes of approximately 4 mﬁ]cale is the volume fraction value.

per side. Two samples were measured using Perspex tubes of

fixed diameter (1.6 cm) and variable length (4.6 and 7.5 cm). A

perturbation was obtained from a potato segment of diameteas immersed in saline for 45 minutes before starting the
approximately 4.6 cm. The resistivities of the full lengfl®(6 recordings in order to reduce drift. The electrode resgan
cm) and partial length (5.4 cm) were measured. The test bbje@s estimated and subtracted by plotting resistance dgains



x ‘ 1% 3% 5% 10% [lI-A. It is inevitable that these measurements are affddiy
mean(Errp») 1.17% 1.88% 2.87% 3.09% noise and experimental error, and the tissue spectra ergbloy
var(Erry») | 44-1076  7.2.10-5 2.6-10-* 2.3.10-4 in the reconstruction scheme are incorrect. We performed a
simulation study to determine the robustness of our fractio
TABLE I: Robustness to spectral errors: mean and standaedonstruction method to errors in the assumed tissue spec-
dev!at|on over 20 repetitions of image ertiorr; for several tra ¢; = {¢;;; i=1,...,M}. The same mesh, electrodes,
choices of spectral variance. measurement protocol and perturbation were chosen as in the
previous section. A random error was added to the tissue

spectra of carrote)) and potato €;), before producing a
length for each tissue and evaluating the offset of the lir®nductivity model:

passing through the measurement points. The conducsivitie
of the carrot-saline background and potato perturbatiee ro , { €;1 + Rand(e;1, €1 - %) on the background

monotonically from 0.1 S/m and 0.02 S/m at 20 Hz to 0.3 i — €2 + Rand(e;a, €55 - ¥)  on the perturbation

S/m and 0.4 S/m at 1 MHz. (18)
These results were used to simulate realistic data andv&ﬁereRand(eij,eij -¥) is a random number drawn from the

reconstruct fraction images from experimental EIT reawydi normal distribution with mean;; and variance;; - ¥. In an

made with the UCLH Mk. 2.5 system. The conductivity valuegxperimental setup, the valueg + Rand(e,j, ¢;; - %) are the

for 16 amongst the output frequencies of the UCLH systepaal, unknown, conductivities of the tissues, whereas tearm

in the range 640 Hz — 1.29 M Hz were estimated from thesnductivitiese;; are the inexact measurements obtained from

spline of the sample measurements (Figure 2). the samples.
Boundary voltage data was simulated using the maedel
B. Numerical validation and fraction images were reconstructed using the inexact

Numerical validation of the proposed fraction reconsinrct measured spectra. The process was repeated 20 times for

method was performed on synthetic data. Boundary voltagg®Ch choice ob = {1%, 3%, 5%, 10%}. The regularization
were simulated using a cylindrical mesh of diameter 19 chframeter was = 107, and the number of iterations was 4
and height 10 cm, with 62 784 elements and a ring of 38 all cases. _ _
electrodes around the centre. A current of peak amplitude 132The results were evaluated by computing the ratio of the
uA, injected through polar electrodes, was simulated. Foheal 10rm of the distance beztween the reconstructed image and
injection pair we considered the difference between vetsagtN€ trué solution, and thé&“-norm of the true solution. To

on all adjacent pairs of electrodes not involved in delivgri make the error measure independent of the number of tissues,

the current, for a total of 448 measurements per frequente mean was taken:

The ground point was fixed at the centre of the bottom of the 1 Z Hfr;econ _ t'meH
mesh. The complete electrode model [20] was employed, and Errpe = T Z L ) (19)
the electrode impedance was set tof1 k j=1 Hfj H
A cylindrical perturbation of diameter 4.6 cm and height 19/here
cm was placed in (-4 cm 0 cm 0 cm) (position 1) and (0 cm 0
» A e on the background
+4 c¢cm 0 cm) (position 2), where the origin is the centre of the g = ) (20)
tank. The background and perturbation conductivities veete 1 on the perturbation

to the values for saline-carrot and potato obtained engdiyic true true _
for 16 output frequencies of the UCLH Mk 2.5 system. AIFmd gr 1ror oielr ;ofr é e‘t_ggﬁsm?;nciﬁ? St:gdfzideggxliﬂ?cgfof
measurements were referred to the lowest frequency of 6‘%6( v pett W pu :

€

Hz. Proportional 0.1% white Gaussian noise was added to Table 1).

absolute boundary voltages. The noise level was choserr undeWe computed the mean and the standard deviation of the

consideration that the expected change across frequeimiegecon_sf[rucf[ed Images (Flgur_e s 4a and 4b), and the mean image
antification measures (Figure 4c). We observed that for

boundary voltages is in the order of 1%, therefore a hi . o :
gt = 1% the images were similar to the result obtained

level of precision must be acheived in measuring the absolut . th ¢ ra (Fi 3). Wi te that in the latt
values with an EIT system. The regularization parameter wqgNg e exact spectra (Figure 3). We note that in the latter

set using the L-curve method [21]. Fraction images wef@se in which the same spectra are used to generate the data
reconstructed using all multifrequency data by perforniougy and reconstruct the imag&rr;. = 1.06%. For X = 3%

iterations of the proposed nonlinear fraction reconsioact and 3 = 5% the shape and position .Of the perturbation
method (Figure 3). were generally reconstructed with sufficient accuracy, but

a reduction in contrast was observed in most images. For

3 = 10% the image quality was affected, and in some cases

C. Robustness to spectral errors the perturbation could not be identified. The mean relative
The fraction model assumes exact knowledge of tlo®ntrast between the tissues is

impedance spectra of all tissues in the domain. These val- M

ues were evaluated by measuring the conductivity of tissue % — % Z (€i2 — €i1)

1=1

) ) Y ) ~ 34%, (21)
samples with an impedance analyser, as described in section

€1
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@

>=1% >=3% >=5% >=10%
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! 0
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0.05
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Fig. 4. Robustness to spectral errors results: (a) meankgnstdndard deviation of the reconstructed fraction imdgegach
choice of the spectral varianée (c) mean image quantification results over 20 repetitiamsefich choice of.
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Fig. 5: Phantom experiment setup and fraction images: (gitipo 1 (—4 cm 0 cm 0 cm), (b) position 2 (0 cm4 cm 0 cm)
(c) perturbation fraction images of positions 1 and 2.

therefore it is reasonable to expect that@% error on the using the same mesh employed in validating the method. In
spectra would make it difficult to distinguish between thtéhe following, unless otherwise specified, the regulairat
tissues. parameter was selected using the L-curve method, and the
number of iterations for nonlinear methods was set to 4. The
electrode contact impedance was assumed to b@, wkich
is the upper limit of the real value, and constant across all
A phantom study was designed to reproduce the expestectrodes and frequencies.
mental setup rendered previously in simulation. The plmanto Fraction images were reconstructed using the proposed
was built using the test tissues measured with the impedangethod from all multifrequency data (Figure 5c).
analyser, and a perspex cylindrical tank of diamet@rcm
and height 10 cm. The potato was placed #d(cm 0 cm
0 cm) (Figure 5a) and (0 cr-4 cm 0 cm) (Figure 5b
and immersed in the saline-carrot mixture. A ring of thirty- Fraction images were obtained from the multifrequency
two silver electrodes with 1 cm diameter was placed aroupthantom data using the indirect method described prewiousl
the tank and a 33rd electrode was used to fix the groundAdisolute conductivity values were recovered for each mea-
the centre of the base. Measurements were recorded usngement frequency (Figures 6a and 6b) and fraction images
the UCLH Mark 2.5 MFEIT system at 16 frequencies invere obtained from these (Figure 6¢). The conductivity iesag
the range 640 Hz — 1.29 MHz. A current of amplitude 13present an area of high conductivity area around the edge
1A was injected at polar electrode pairs and voltages weoé the tank, which is caused by inaccurate modelling of the
acquired at all adjacent channels not involved in the ctirrdmoundary geometry, electrode placement, shape and side, an
injection. The data was averaged over 10 frames and referoamhtact impedance. In the fraction images this artefact is
to the lowest frequency (640 Hz). Images were reconstructestiuced because frequency invariant errors are subtrotad

D. Phantom study

) E. Comparison with indirect fraction estimation
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Fig. 6: Phantom absolute conductivity images for each nreasent frequency: (a) position 1 and (b) position 2. Thees¢zl
S/m. Multifrequency imaging results: (c) fractions obtainesng indirect method for positions 1 and 2. Comparison ofgena
quantification results for absolute conductivity image$4® Hz (Cond-LF) and 1.2 MHz (Cond-HF), and fraction images
from indirect method (Frac-1) and direct method (Frac): gdsition 1, (e) position 2.

the data. The conductivity images obtained in the frequenapsolute conductivity imaging and the indirect method. The
range 30 — 80 kHz present very low contrast. This is iproposed fraction reconstruction algorithm employs thenie
agreement with the tissue sample conductivity measuresmeaty voltage data directly, and a single optimization proble
in that the spectra of potato and carrot-saline are verylaimisolved. To image the fractions from the absolute condugtivi
in the same frequency range. It is evident by visual comparisfirst an optimization problem is solved for each frequency to
that the use of spectral constraints can result in a significaeconstruct the conductivity images, then the fitting paam
improvement in image quality, when compared to absoluters are computed. The direct reconstruction algorithns use
conductivity imaging. all multifrequency data to estimate the regularizatioropri
whereas the indirect method requires that the regulaoizati

The fra}ction images obtained with Fhe dirgct fraction "8s first optimized independently for each frequency and then
construction method were compared with the images obtalnggam for computing the fractions.

using the indirect method, and the absolute conductivity
images (Figures 6d and 6e). The results suggest that the
proposed fraction reconstruction method is more robust tha
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Fig. 7: Phantom WFD conductivity images for each measurerneqtiency: (a) position 1 and (b) position 2. Comparison of

image quantification results for WFD conductivity images 4

and fraction image (Frac): (c) position 1 and (d) position 2.

F. Comparison with weighted frequency-difference coriduct
ity imaging

61z (Cond-LF), 128 kHz (Cond-MF) and 1.2 MHz (Cond-HF),

G. Spectral constraints method for nonlinear case

Application of the weighted frequency-difference algiomit
is limited by the following assumptions:

The weighted frequency-difference (WFD) algorithm uses 1) o0 -
a weighted difference in boundary voltages between two
frequenciesv; — d;v9 and a linear method to reconstruct

0;0; ~ 0 on a large background area and on the

boundary,
2) og —6;0; #0 on a small anomaly.

a weighted conductivity differencerq — 0,0;, where§;
bl
v wo v wo

Furthermore, use of a linear reconstruction scheme regjthiee

WFD conductivity images were reconstructe@dded assumption that linear changes in conductivity tresul

from the tank data for each frequency and compared to fractim linear changes in boundary voltages. In the case of the

images (Figures 7a and 7b). The lowest frequengy=£ 640

phantom experiment these assumptions are valid because the

Hz) was used as a reference and the reconstruction vdect consists in a small, low-contrast perturbation irsed
performed using generalized tSVD and MRF regularizatidn a large homogeneous background.
[22]. The image quantification results (Figure 7c and 7d) areln order to investigate further application of WFD and our

comparable to fraction imaging in this case.

fraction method we simulated two conductivity distribunso
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Fig. 8: Simulation model, and fraction and WFD conductivityaiges: (a) model of position A, (b) model of position B, (c)
perturbation fraction images of position A and B, (d) WFD coctility image of position A, (e) WFD conductivity image of
position B.

(d)

that violate the assumptions of WFD (Figure 8a and 8b). A$. Multiple tissue case

previously, the measured spectral values of the salinecar The fraction reconstruction method was applied to a numer-
and potato samples were used to simulate boundary volta PP

(?ﬁelephantom with 4 tissues. The same mesh, electrode posi-

measurements, and 0.1% white Gaussian noise was added[ ons, measurement protocol and frequencies were used as in
data. The lowest frequency (640 Hz) was used as a reference. ™’ P d

Fraction and WFD conductivity images were reconstruct € previous cases. The background was set to the condyctivi

(Figures 8c, 8d and 8e). The results show that our fractigﬁlueS of saline-carrot sampled previously. The conditgtiv

method can produce significantly better images than WFD Yﬁlues of the potato sample were used to simulate a cylisdric

: : perturbation of radiu.2cm and lengthl0cm in position
the case that the assumptions of WFD are violated. (0.87cm 4.92cm 0cm). The conductivities of banana and

cucumber samples were measured with an impedance analyser
using the method and instrumentation described in section
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Fig. 9: Four-tissue case model and reconstruction: (a) wctivity values of carrot-saline, potato, banana and cummobtained
from sample measurements, (b) numerical phantom modde &am (c) reconstructed fraction images and profile plots a
y=+4.92 cm (1),y = —1.71 cm (2) andy = —3.21 cm (3).
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Fig. 10: Approximation error evaluation model and resul#:coarse mesh,6 268 elements (b) fine meshj30 144 elements
(c) mean approximation error introduced by the fraction eddfirry,.), the FEM Errgise;) and both methodskryog,)) in
estimating boundary voltages for 10 %, 50 % and 100 % mixechehes in a coarse mesh.

lI-A (Figure 9a). These values were used to simulate twe fusues, and returning high constrast. Th&norm error of the
ther perturbations of the same size(ind.7cm -1.71cm0cm)  solution, defined by equation (20), lar > = 2.16%, which
(banana) and3.83 cm -3.21 cnD cm) (cucumber). The bound- is approximately double the error found in the 2 tissue case
ary voltages were computed, arid1% proportional white (Figure 3 and III-C).

noise was added to the absolute values. Fraction images were

reconstructed for each tissue (Figure 9c) using the prcubos'e
method. The regularization parameter was chosen by visual
inspection, and the number of iterations was set to 10. TheA Simulation study was performed to investigate the approx-

algorithm was successful in differentiating between ttee tiimation introduced by the fraction model in representing th
conductivity of an object. A sphere was simulated using a fine

rApproximation error evaluation
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tetrahedral mesh of diameter 10 cm witB0 144 tetrahedral that, in the case examined, the method is resistant to a small
elements Figure 10a). A conductivity distributian/ was amount of uncertainty. We have shown, using phantom data,
drawn from the binomial distributiop(a/) ~ B(e1, €2), where  that the proposed method can result in improved image gualit
€1 = 0.11 ande; = 0.05 are approximately the conductivitieswhen compared to absolute and weighted frequency-difberen
of saline-carrot mixture and potato at 10 kHz. conductivity imaging. The direct use of multifrequency aat

A conforming mesh with16268 (=130144/8) elements has proved more robust than fitting multifrequency conduc-
(Figure 10b) was used to define a second conductivity distrittivity images. We have shown using simulated data that the
tion o¢. The two meshes were chosen so that each tetrahedraposed method is superior to weighted frequency-difieze
of the coarse mesh would contain 8 tetrahedra of the fine meshaging when the assumptions of the latter are violated. We
and each surface triangle of the coarse mesh would contaihale applied our method to a numerical phantom with 4
triangles of the fine mesh. The conductivity of each elemetissues and shown that it is possible to distinguish between
of the coarse mesh was obtained via linear combination miultiple tissues and accurately reconstruct the fractoage
the corresponding elements of the fine mesh using the fractiof each one. These results suggest that fraction imaging may
model. Finally, the values© were distributed on the fine meshbe suitable for producing one-off clinical diagnostic ireag
to generate a third conductivity distributiar’ . using EIT.

The boundary conditions were set by simulating two elec- . . . .

: " . The advantages of using spectral constraints in multifre-

trodes in polar position. The electrode shape was chosen in

S . uency EIT are twofold. First, the choice to reconstruct the
order to maintain the same electrode area in the coarse and jln _. : .
action values, which are frequency independent, allogvs f

VT;?T-C;heV\;:d'gie‘:;t?;;'éﬁ'r?ef]'{%?ngﬂb;:? ﬁtaCh gle:trod]e direct and simultaneous use of all multifrequency data.
: g P plitudlessy. Tlae dimensionality of the problem depends on the number of

one electrode, and the other was used as ground. The electr: . )
: elements and tissues, and not on the the number of freqeencie
contact impedance was set atQ knd the complete electrode o X
Therefore it is preferable to use data acquired at all mea-

model was employed. . )
. . surement frequencies. As long as the number of frequencies
The boundary voltages®, v/ were generated, and” was . . .
is larger than the number of tissues, implementation of the

obtained from the conductivity distributions defined abov‘?raction method increases the number of constraints to the

The total modelling errofrrio. = v/ — v¢| between the . ; o
. ¢ K . o reconstruction and results in a reduction in the degrees of
representations ot/ and o¢, and the discretization error :
freedom of the problem. Secondly, knowledge of the tissue

I DA i ) . . L
Ertdiser ’v v ‘ between the representationscof and sectra allows for the use of difference data in the objectiv

c H .
o were can|dered. 'In ort;ier tp evaluate the error IntrOduC?unction, thus resulting in the subtraction of modellingdan
by the fraction model in estimating, the percentile difference frequency independent instrumentation errors in a neakin

between the total and discretization error was considered . R : L
reconstruction scheme. In conductivity imaging this is pas-
BT, = Errioral = BtTdiser 00 (22) sible because it would require simultaneous estimatioref t
ve measurement and reference conductivities, thus incrgase
The random distributionrs/ was drawn and the fraction degrees of freedom of the problem. The fraction images could
error was calculated 100 times. The procedure was repeagedimproved by modelling the change in contact impedance
after reducing the proportion of mixed elements in the aarsver frequencies. This would result in a further reductién o
mesh from 100% to 50% and 10% (Figure 10c). In order the edge artefact.
ache_ive this, the values_of the correct proportion ofele_:m_eh The fraction reconstruction method requires prior knowl-
the f|_ne mes_h were assigned at random and the remaining ng&gae of the tissues’ impedance spectra. These can be readily
considered in homogeneous graups of 8, each correspan ined from the literature, or estimated empiricallyciate
to an element of the coarse mesh.

. L ) modelling of biological tissues is crucial for clinical dpp
In this example the approximation error given by the fra(i:'ations. The numbel’ of tissue types could be inferred by
tion model is significantly smaller than that introduced bg t

. ) iteratively applying the algorithm with increasing valugfsT
coarsening of the mesh. Furthermore, the error is preséynt o y apping v g

) . _ ntil a criterion is reached (e.g., no sharp increase in fode
in the representation of mixed elements and thus depends (e.9 b

th i f mixed-to-h | s If 6 Ii%lihood). It would be preferable to model all possible or
€ proportion of mixed-to-homogeneous elements. It BSSU,, o a4 gistinct tissues, so thattifis the actual number

occupy a distinct area of the image and mixed elements 3 tissues, " > t. The reconstructed fraction values of the

I|m|teq to those lying across the .boundangs, the apprqmna tissues that are not present would then be zero. However,
error is small. If a large area is occupied by a mixture oat

i 2 a reduction in image quality is to be expected7if >> ¢.
issues, the approximation error can be reduced by mOge”'{Ne aim in future studies to relax the assumptions of the
the mixture rather than the individual tissues.

fraction model and allow for variability and heterogendity
the tissue spectra. This could be achieved by using statisti
IV. CONCLUSION methods to infer subject-specific deviations in the spkctra
We have formalized, validated and applied a nonlinear fraproperties of the tissues from the boundary voltage da@emun
tion reconstruction method for performing multifrequertyl’  certain constraints. Further studies are necessary tontiet
using spectral constraints. We have investigated the tobsis how image quality varies with the number of tissues and
of our method to errors in the assumed spectra and foulmdquencies.
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