

Machine Learning in Medical Imaging

Machine Learning for computational sciences

UCL eResearch Symposium. 20 June 2019

David Atkinson

Centre for Medical Imaging, UCL Division of Medicine.

Alan Turing Institute Fellow

The Alan Turing Institute

Medical Imaging in Healthcare

Magnetic Resonance Imaging

Acquisition

- Sequence of RF, gradients
 - many parameters
- K-space data received
- Time consuming
- Prone to artefacts

SUCCE State of Transport of Tra

Image reconstruction

- Fourier Transform
 - (fully sampled)
- Iterative reconstructions
 - (under sampled)

Machine Learning Strengths

- Convolutional Neural Networks
 - Suited to images (computer vision, self-driving cars...).
- NNs as universal function approximators.
 - Reconstruction is a 'function'.
- Learn from data
 - Avoid 'hand-crafted' algorithms.
- Reinforcement Learning
 - potential for 'move 37' leaps in sequence design.
- Inference is Fast

AUTOMAP
MR reconstruction

FC1 2*n*²

- Trained on cats and dogs.
- Little domain knowledge.
- Learnt FT!
- Large hard to scale
- FAST

Iterative Reconstruction as a Network

- Unroll iterations as a network.
- Uses domain knowledge
- Uses CNNs with feed forward links as appropriate
- Better explainability?
- Feels 'hand-crafted' again ...

Qin IEEE TMI 38 p280 (2018)

Potential Discovery Tool

Pulse sequences have very many parameters and permutations.

Design trade-offs based in-part on experience and intuition.

Physics is known (Maxwell's and Bloch equations).

Design a 'game score' and use reinforcement learning to find a faster/better strategy?

Discussion Themes

How to use AI to enhance, rather than replace, computational models

- Selectively replace: "data" parts of models, e.g. regularization parameters, de-noising steps, hand-crafted filters.
 - Iterative unrolling example.
- Train against human quality scores to learn to quantify image artefacts?

Balancing 1st principles approaches vs using machine learning

- AUTOMAP "wasteful", but fast and generalizable?
- 'move 37' uses 1st principles (game rules / physics) but might teach us new strategies.

How to promote the application of novel theoretical mathematical models to research challenges

Flip 'Kaggle' challenges to encourage 1st principles approaches?

Thanks