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“I can only extend my sympathy to the psychologist of the future, for it seems
as if he must first be a mathematician, then a statistician, ... and if he is not dead of
old age by then, a psychologist.”

(Dunlap, 1938)

There is now, in the literature, a vast number of reports of experiments
in which a functional asymmetry has been found. This result is so secure
that it can hardly be disputed. But in most of these reports there is the
problem that, having found one’s asymmetry, what is one to do with it? A
typical approach is to ask questions such as whether the asymmetry relates
to handedness, familial sinistrality or sex? And in most cases these hypo-
theses will be tested by means of an analysis of variance.

In the present paper I wish to suggest that the use of the analysis of
variance for studying laterality is inappropriate, and may lead to erron-
eous conclusions. Instead, far more explicit models must be fitted, and
their relative merits examined by means of maximum likelihood techni-
ques. In particular, without such explicit statistical models it is not pos-
sible to make such statements as, “Left-handers are less lateralised for a
task than are right-handers”; and indeed such simple statements contain
such a powerful ambiguity that they are dangerously misleading.

The nature of the problem may be shown simply by considering the
results of a hypothetical experiment. Twenty left-handers (L) and twenty
right-handers (R) carry out a simple dichotic listening experiment, and for
each subject an asymmetry score is computed.

Figure 1 shows simulated data from such an experiment the data being
generated randomly, subject to contraints to be described. Figure la shows
the raw data from such an “experiment”. The mean asymmetry scores for
the R and L groups are .85 and .21, and the standard deviations are .77 and
1.29 (figure 1b). A t-test (had equal variances been assumed) suggests that
the difference in the means is significant (t = 1.917; d.f. = 38; p = 0.063,
two tailed), and an F-test suggests that the difference in the variances is
also significant (F = 2.85; df. = 19, 19; p = 0.027, two tailed). The
conventional conclusions from such an experiment would be that 1) left-
handers are less lateralised than right-handers and ii) left-handers are
more variable in their lateralisation than right-handers. Neither of these
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conclusions is in fact appropriate for the data of Figure 1, since they were
actually drawn randomly from the compound distributions shown in
Figure 1c; the distributions, for both R and L, are each made up of normal
distributions with the same absolute mean (+1 or —1) and standard
deviation (0.5) in each case, the only difference being that for the R group
0.1, and for the L group 0.3, of the population come from the smaller,
minor distribution. The groups truly differ only in their balance of direc-
tion of lateralisation, not their degree of lateralisation within sub-groups,
but the analysis of variance method used has confounded these two items
to produce results which are totally misleading, and are open to a very
different theoretical interpretation. It is also worth noting that by juggling
with the parameters of the distributions we could have produced a situ-

Fig. 1 — a - Results of a simulated experiment, the top line indicating asymmeiry scores
for a group of right-handers, and the bottom line scores for left-handers, each point repre-
senting a single subject. b - Fitted normal distribution for each set of subjects. ¢ - Compound
distributions from which the data points were actually drawn.
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ation in which despite there being no difference at all in the means for the
R and L groups there would truly have been differences in both direction,
and degree of laterality in the distributions. Hence one may obtain both
false positive and false negative results by using the analysis of variance in
laterality experiments.

To be fair, it is not the analysis of variance per se which is responsible
for this confounding of direction and degree, but its inappropriate appli-
cation. Analysis of variance is not a neutral statistical technique into
which one may put any data for a general screening for effects, but it is
instead the fitting of a particular theoretical model, the theoretical model
being implicit within the method but being rarely stated explicitly — and
this model has several assumptions. The major assumptions of impor-
tance are that the between subject error distributions are simple normal
distributions with the same variance for all sub-groups, and that all
experimental effects act as additive constants. The error assumption is
erroneous in the case of laterality.

It might be objected at this stage, for the example quoted above, that
the bimodality of the distribution would have been noted, and a different
statistical approach used. Indeed it might have been; but only if the
variance within either component of the distribution was relatively small
(e.g. a standard dewviation of, say, 0.1). But in most laterality experiments
the variance is much greater than this and hence the data from the
minority distribution will tend to be hidden in the tail of the majority
distribution, which will tend anyway to have some cases which are on the
opposite side of the zero line. The problem will be compounded if one has
a complex experimental design with several balance and design variables
in addition to the experimental factors of interest. And of course the
problem will not be noticed at all if the data are simply ‘plugged in’ to one
of the large statistical packages on computers without a close examination
of the raw data, the means alone being examined at the end of the
analysis.

One solution to the problem might be to use the absolute asymmetry
score as the dependent variable in an analysis of variance, and to include
direction of asymmetry as an independent variable in the analysis. This
has several problems. Firstly, the design will usually be unbalanced since
there will be more + ve individuals than —ve individuals, and hence a
classical experimental analysis of variance could not be used. Secondly,
and more seriously, the dependent variable, the absolute asymmetry
score, will be truncated, since it will be unable to be less than zero, and
hence as the variance increases relative to the mean, observations will
‘cross over’ the zero line, and be coded as being of the other sub-type. A
third problem is that even if the other objections do not apply, the analysis
of variance model will still assume that the variance within all sub-groups
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is identical; and yet one of the specific problems of interest in laterality is
whether left-handers are more variable in their laterality than are right-
handers. An analysis of variance approach could only ask whether they
are, on average, more or less lateralised.

A further possible solution would be not to use asymmetry scores per
se but instead to use the raw scores from each ear or eye and to include eye
or ear (right or left) in the analysis as another independent variable. This
however removes all the benefits of having an asymmetry score with
pre-determined characteristics and replaces it, of necessity, with a simple
difference score, with all of its known disadvantages. Furthermore the
method szill assumes that all error scores are unimodally normally dis-
tributed, and provides no means for analysing differences in variance
between sub-groups.

Finally it is worth noting that none of the above problems would be
solved by using non-parametric statistics (which depend merely upon the
ordinal relations of the numbers) and indeed many of them would be
rendered insoluble since many hypotheses are, of their very nature, dis-
tributional in type.

A simple model of population data

Consider a group of pure + ve individuals. Let their asymmetry scores
have a mean of p, and be distributed normally with a standard deviation
o,. (I will assume that all such distributions are normal for the present
exposition — there is no reason, in principle, why other distributions, say
skewed normal, or exponential, should not be incorporated if it were felt
to be theoretically necessary).

Let a proportion 7 of the population be of type —. Let the other (1)
be of type +. Let the —ve individuals have a distribution with mean p_and
standard deviation o . Considering just the total data from an experiment
(independently of any sub-groupings due to handedness, etc.) we now
have a model with five parameters which we can fit to our observed data.
The simplest hypothesis, outlined earlier, may be called Model 1, and says
that + ve and —ve types are entirely symmetric except for direction, that is
p, = —p_ando, = o . This we may regard as a base line from which to
examine more complex models. If the individuals of type — are truly less
lateralised than those of type + then we would find increased support for
a model in which, unlike Model I, p, #—p_. As an alternative it may be
that individuals of type — are more variable in their laterality than those of
type + i.e.0_ >0 ,. And of course it may be that type — is both less

lateralised and more variable than the + type; thatis, p, #—p_ando >

[o]
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Let there be a total of n independent observations, one per subject,
which we may represent as x;,, wherei = 1...n. For a particular observation
x; we may calculate the relative likelihood, L,, that the observation is
derived from a normal distribution with mean u, and SD of o ,.

L.(x) = N(x, p.,0.)

1
o\2m

where N (x, p,0) = e [-(x-p)*/207]

|
And similarly the likelihood, L, that x; is from a distribution with mean u_
and SD o_is :

L(x) = N(x, p.o.) 5

If the types + and — are represented in the relative proportions (1 — )
and 7, then the overall likelihood of a particular observation x;, given a set
of parameters p,, p_,o0.,, 0., and m, is:

L(x) = (1 = m) - N(xpy,0,) + 7N(x;, 1 ,0) 3
By multiplying the likelihoods of all the observations, x;, we may deter-
mine, L, the likelihood of a particular set of model parameters given the
whole set of data points:

I-’l‘ (xn 1 = 19 Il) = H [L (xi)]

i=1ln

.. 4
In general it will be more convenient to derive the support rather than the
likelihood, where S (x;) represents the support for a particular model,
given a particular observation, x;,

S (x) = log. [L (x)] .

and hence S;, the support for a particular set of parameters given all of. .t.he
data points is:
Sr (%, i=1, n)= X S(x;)= 2 loge{(l"'”) N(X;, s 0,)+m- N[x, —([J._),O_]}

i=Ln i=1ln

.. 6
For any particular set of parameters we may thus derive a value of S; for
their fit to a particular data set. The problem s to find the values of the five
parameters which maximise the support; that is, to find the maximum
likelihood estimates of p,,0,, p,0 _, and #. This problem seems to be
peculiarly intractable analytically, having first been studied by Pearson
(1894) and subsequently by Cohen (1967), Bhattacharya (1967) and Has-
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selblad (1966), and no analytic solution to the general case seems possible
at present except in the trivial case when 7 = 0. A very cumbersome
analytic solution is available in the two group case; for the three-group
case (i.e. a compound distribution composed of three normal distribu-
tions) or for the more complex cases to be described later, no analytic
solutions are as yet available. Fortunately this is not a major set-back
since the ready availability of modern computers means that one may use
numerical methods of ‘hill-climbing’ to solve the problem. The present
author has successfully used the subroutine EO4JBF of the Numerical
Algorithms Group (NAG) library (1981) to estimate solutions to such
equations. The programme uses a quasi-Newtonian method whereby
evaluations of the function at the present estimates of the parameters and
at small steps from those estimates are used to estimate the first and
second derivatives at that point, and hence to calculate a new maximum
for the function and then new estimates of the parameters. The program
proceeds iteratively, inserting the new estimates of the parameters and
repeating the process.

Given the ability to find estimates of the parameters in equation 6 we
may now use this ability in order to find improved methods of analysing
such problems. We can fit a series of models to our population data:

(a) Model 0: a unimodal normal distribution

Let 7 = 0, and estimate p, and 6, from the data. Let the maximum
support be S,.
(b) Model I: a symmetric bimodal normal distribution

Letwm # 0, p, = -p, ando,, = o_, and the maximum support be
Sy
(c) Model 11: A bimodal distribution with different means but equal vari-
ances

Letw # 0, p, # -p, ando, = o_, and the maximum support be
Sl[-
(d) Model I11: A bimodal distribution with different variances but equal
means

Letw # 0, p, =-p,0, # o_, and the maximum support be Sy,.
(e) Model IV: A bimodal distribution with unequal means and unequal
variances

Letw # O, p, #-p,0, #o_, and the maximum support be Sy, (see
Figure 2).

We may now ask whether, given a particular set of data, there is
sufficient evidence (or support) to reject the hypothesis that the data are
derived from a unimodal normal distribution (i.e. Model 0). Since support
is additive we may calculate S, — S,, which is a measure of the support for
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. Fig. 2 — Possible compound distributions which might be of importance in laterality. a -
biphasic compound distribution; b - quadriphasic compound distribution (see McManus,
1979); ¢ - triphasic compound distribution, the group with zero mean being regarded as
“ambilateral” or “bilateral”; d - biphasic compound distribution as proposed by Annett

(1976).

the data being drawn from a distribution which is compound rather than
simple. However we cannot simply compare support values directly since
for different models we are using different numbers of free parameters. In
an extreme case, if we had n data points and n parameters, each of which
represented the value of one data point, we would obtain a “perfect fit”,
and a support of zero (i.e. a likelihood of one). The conventional way of
dealing with this problem (Silvey, 1975) is to consider twice the support
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difference as being approximately distributed as chi-squared with k
degrees of freedom, where k is the difference in the number of free
parameters between the two models being considered. Thus in this case.
Model 0 has two parameters and Model IV has five parameters: hence
twice the support difference may be considered to be distributed as stet?
with 3 df. If this chi-squared value is sufficiently large by conventional
standards, we may say that Model IV is a significantly better fit than
Model 0. It should of course always be a better fit (or, at least, as good since
the extra parameters are nested inside the earlier parameters); the ques-
tion is whether it is significantly better. If two models have the same
number of parameters we may consider their support differences directly,
where if d is the difference in support between the two models then e gives
the relative likelihood of one model with respect to the other. Edwards
(1972) recommends that in general a support difference of 2 (i.e. relative
likelihood of 7.4) should be a conventional criterion for regarding two
models as different in their fit.

By comparing the support values for models 0 to IV we may decide
whether it is necessary to postulate two separate distributions, and if so,
whether they need be asymmetric for variance and/or means.

In some experiments the observations will themselves have a known
error variance, and we may fit models which take account of such factors.
Consider the case in which a subject detects 7 out of ¢ stimuli presented to
the right ear, and / out of ¢ stimuli presented to the left ear. We may
calculate the Z-transform of the tetrachoric correlation coefficient and
use this as a measure of the degree of asymmetry. This value will have an
error-variance which is a known function of r and /. Alternatively let a
subject make ¢ preference judgements of which r are for an object on the
right side and / for an object on the left side. The asymmetry coefficient
2r/t — 1 will be binomially distributed and have a known error variance,
which will be a function of r and ¢. In such cases we may fit an extended
series of models in which 2 has two components, 2, due to sampling
error,and 2. due to differences in asymmetry between subjects, where

2= 2 pets T o We may thus determine whether it is necessary to
postulate true differences between subjects, as opposed to just differences
due to sampling errors. That is, can the population be regarded as
binomially distributed, or is some other distribution, such as the Lexian,
necessary to describe it.

Thus far I have described a method for examining the overall distri-
bution of results from a population, and deciding whether that distribu-
tion is best regarded as simple or compound, and if the latter, with what
parameters. We may now extend the problem to consider the case where
we have two sub-groups, each of which can be regarded in the same way as
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the overall population. Specifically, let us consider a group of left-handers
and a group of right-handers, and ask whether right- and left-handers
differ in their lateralisation. We may divide the question into several
components; do they have different means; do they have different var-
iances; and do they have different proportions of types + and —?

Let pg ., ., . and p,_ represent the means of right- and left-handers
of types + and —. And similarly, let oy, , ox_, 0., and o, represent their
standard deviations. Let there be ng right-handers, and n, left-handers,
totalling N. Let x; be the score of the ith individual, where if 1 <<i<ny then
the individual is right-handed, and if ng,,<<i<N the individual is left-
handed. For a single right-handed individual the support for a particular
set of parameters pg., tr_, Ogr., ogr. and g is:

SR (xi) = loge [(l - '”R) - N (xb Ky °+) + 7R- N(xi’ e 70—)]

where 7y is the proportion of right-handers of type —. And similarly for
left-handers:

SL (xl) = loge [(I_WL) ) N(xi’ By °+) + 7rL']V (X,, . ,0_)]

where 7 is the proportion of left-handers who are of type —. And hence
the total support for a set of parameters is:

S;x,i=1,N)= 2 S (x)+ 3 St (x)
i=1, ng j = nr41, N

.9

Estimates of the maximum-likelihood values of the parameters may be
obtained by similar numerical methods to those described earlier. We may
now find the support for different Models.

By setting Il = II;, = O, pg, = p., and oy, = o, we are fitting
Model 0 described earlier, there being a unimodal normal distribution,
with no difference between right- and left-handers.

If we set g = 7 = O,0p, = o, and pg, # p ., we are fitting an
analysis of variance model (in this case, the equivalent of an unpaired
t-test), and if we allow ox, # o, we are fitting the model for the
equivalent of a t-test in which the distributions have unequal variances.
The improvement in fit of these models over model 0, may be tested for
significance by comparing their supports.

By fitting a model in which 7y # o, # 0, pr, =-pg. = ., =-p,_and
or+ = og. = oL, = o, we are fitting the equivalent of Model I for
population data, in which two groups differ only in their proportion of
type minus. And similarly we may allow the means and the variances to
differ between groups and types, producing the equivalent of Models II
and I11. For a fully saturated model, 7y % o, o, % —pp. 7 i, #* —p_and
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or+ * ogp. ¥ o, ¥ o,. Each of these models may be tested in the
conventional manner to determine whether their fit is better than Model
0, or the standard ANOVA model.

By settingmy = 71, # 0, ppy = Wy # ~pp. = —p,and og, = 0y, # 0p_
= o, we are fitting Model IV described earlier.

Having gone thus far in fitting models in which right- and left-handers
can be differentiated into + and — sub-types (see Figure 2a), it is apparent
that our models can, in principle at least, go one step further and have
multiple sub-types. Elsewhere I have proposed a genetic model of cerebral
dominance (McManus, 1979) which argues that it is possible that there
may be four types of speech dominance labelled as + +, +—, =+, and
——, as assessed by dichotic listening tests; that is, there are individuals
with a Strong Right-Ear Advantage (SREA), a Weak Right-Ear Advan-
tage (WREA) and Weak Left-Ear Advantage (WLEA) and a Strong
Left-Ear Advantage (SLEA) (see Figure 2b). Within right-handers a
family history of sinistrality would change the relative proportions of
SREA and WREA and SLEA and WLEA. And itis simple, in principle, to
test whether such a model is better supported by the data than is a bimodal
normal distribution, or a unimodal normal distribution (although in
practice it may be difficult to obtain a sufficient amount of data to test the
hypothesis convincingly). Alternatively we may propose a further model
in which there are three sub-types +, — and 0, where the 0 group may be
described as “bilateral” and have, overall, no lateralisation (see Figure
2c). Or there could be just two sub-types + and 0, as proposed by Annett
(1976) (Figure 2d).

Factorial experiments

Consider a more general case in which we have a single asymmetry
score from a number of subjects, the subjects being divided into sub-
groups on the basis of a number of factors. These factors may, or may not
be orthogonal, and hence the experiment need not necessarily be ‘bal-
anced’ in the sense used in the analysis of variance. Let k be the number of
various combinations of factors, and assume, for the sake of demonstra-
tion, that there are at least several subjects in each sub-group. Thus if we
are considering an experiment in which we are looking at the effects of
handedness, sex, and familial sinistrality on laterality, each of which has
two levels, then there willbe 2 X 2 X 2 sub-groups, and thusk = 8. In the
most extreme, fully saturated, case, all the sub-groups will be different
from one another, each having its own p,, ¢, 6., 0., and 7. We must
therefore fit Sk parameters to our data (see Figure 3). However very many
of these parameters will frequently be identical, and we may identify
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Factorial designs

+

Fig. 3 — Parameters estimated (a) by a classic analysis of variance, and (b) by a version of
the model proposed in this paper (which assumes equal variance in all sub-distributions), there
being four sub-groups for each of which there may be different means (both for +ve and -ve
sub-types) between groups, and different proportions of type —ve between sub-groups.

separate effects of the particular parameters. As a global test of any effect
of handedness, sex or familial sinistrality we can find S;, the support for
the complete model with Sk free parameters. We may also find S, the
support for a model with five parameters in which all k sub-groups are
identical (that is, Model IV, given earlier). S; — S, then estimates the
improved support obtained by allowing differences between sub-groups.
Since support is additive we may partition this support difference in a
similar manner to that in which we normally partition variance. A first
step would be to fit amodel, A, in which for the jth sub-group i, = —-p_ =
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t+,and o;, =0, = o, and for which 7; is allowed to be different within
each sub-group, and to find the support, S,, for such a model. If S, — Sy is
large enough then differences in relative proportions of + and — sub-
types are important in differentiating between groups. If S; — S, is small
enough as well, then all differences between sub-groups can be attributed
entirely to differences in the proportions of types + and —, rather than to
differences in degree or variability of laterality. And, if that is also the
case, we may ask whether the differences in proportions are due to, say,
just differences between handedness groups, or due to just sex differences,
or due to an interaction between the two factors.

It is worth noting that when for allj, =, = 0, and ¢;, = o,,, thatis all
individuals are of type +, and the variance of each sub-group is identical,
then the analysis reduces to a simple analysis of variance.

Test-retest reliability

Thus far this paper has been concerned only with the randomised
blocks design of experiment in which each subject contributes a single
number to the data set; that is all experimentally controlled factors are
between-subject variables. Frequently, however, one has several observa-
tions from an individual subject; that is, the design is of the split-plot
form, with one or more within-subject variables. The present method of
analysis may be generalised to such data although, as will become appar-
ent, it is rather complex with more than two observations per subject.
Before considering the full split-plot design, let us consider the concep-
tually simpler case in which we wish to assess the split-half or test-retest
reliability of a measure of asymmetry. Each subject thus contributes two
separate scores. A standard approach to the problem would be to take all
of the two sets of data points, which we may call x, and y;, wherei = 1, n
and y, may be regarded as the ‘second’ of the two observations, and simply
to calculate either a Pearsonian or a Spearman correlation of x; with y;.
However in terms of our previous analysis, it must be clear that the
interpretation of this single number is difficult. Does it mean that the
degree of asymmetry is measured reliably in both + and — sub-types, or
that direction of laterality is reliable, etc.? If there is evidence that x; or y;
are drawn from compound distributions then the surface obtained by
plotting x; against y; will not be, as a simple Pearsonian analysis would
assume, a simple bivariate normal distribution, but a compound bivariate
distribution.

Figure 4 shows computer-generated plots of such probability density
surfaces. Figure 4a represents a simple bivariate normal distribution with
zero correlation. Figure 4b shows a compound distribution (which we may
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Fig. 4 — Computer-drawn perspective projections of the probability surfaces of various
models. Column 1 shows a single bivariate normal distribution, Column 2 a compound
distribution composed of two bivariate normal distributions (in proportions 5:1 ) and Column 3
a compound distribution composed of four bivariate normal distributions (in proportions
5:2:2:1), the proportions being identical in all rows of the dﬁgure. All means are an absolute
distance of one unit from the axes. In rows I and 2 the standard deviations of each distribution
(or sub-distribution) are 0.5, in rows 3 and 4 they are .75, and in rows 5 and 6 they are 1.0. For
rows 1, 3 and 5 the correlation within each bivariate normal sub-distribution is zero, while in
rows 2, 4 and 6 the correlation is 0.5. Some compound distributions have been scaled by a
constant multiplier on the vertical (Z) axis to make their appearances more compatible. The
solid cross-lines represent the axes in the x and y dimensions.
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loosely label ‘bimodal’) in which each ‘mode’ has zero correlation. Clearly
in such a case a simple Pearsonian correlation would shown an artefac-
tually significant correlation. The real question of interest is whether the
degree of laterality is reliably measured, and thus whether Figure 4e is a
better fit of the data than Figure 4b. As the variances of each distribution
increase this assessment becomes increasingly difficult by eye, as will be
seen by comparing appropriate rows of Figure 4.

If we assume, in the first instance, that all individuals of a particular
sub-type will be of the same sub-type on both test and re-test then the
surface of x; against y; will contain a mode in the +,+ quadrant, and
another mode in the —— quadrant. Model IV for a single dependent
variable has five separate parameters, u.,, 4, o,, o_, and 7. The bivariate
surface for test-retest data will have seven parameters, u., .6 +,0_, 7, P,
and p_, where p, and p._ are the test- retest correlations within a sub-type
for each of the sub-types. (See Figure 5).

If we consider the + ve sub-type, then the likelihood, L, of a pair of
observations, x; and y;, given a particular set of parameters, is:

L+ (xn yl) = B (xia Yio Bss0 45 Bas 04> P+)

g2

o) 20 o) ) =)’
where B (x, y, p1,61, #2502, p) = exp - o,? g,0, 2
2(1-p%)
7o 102\/(’1"P2) B

.10
And for the same pair of observations, the likelihood, L-, that the data
come from sub-type —, is:
L— (xi’ yx) = B (xn Y, b, 0, M, 0, P-) 1
And hence the likelihood, L, that the observation pair comes fro.r'r'l a
bivariate distribution with the above parameters is:
Lxpy)=(Q-m L, xy)+7-L(xVy) i
And thus the overall support, Sy, for the particular seven paramei;rs,
given all of the data pairs, is:
ST(xn yi, 1 = 1, n) = E logc [L(xn yl)]

i=1n

..13
We may thence derive the maximum likelihood estimates of u,, -, o,
o, P+, p_, and 7 by the numerical method described earlier. It is also, of
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Fig. 5 — Parameters which may be estimated for a simple test-retest experiment for the
assessment of reliability of a measure.

course, possible to produce simpler models than the full model described
in equation 13, and by comparison of these simplified models with the full
model it is possible to decide which is the most appropriate model of the
data. By analogy with Model I described earlier we may fit a model to
test-retest data in which p,, = -p,0, =o_ 7 # 0,and p, = p_. If this
model is sufficiently well-supported in comparison with the general mod-
el, then we may also fit a model which is identical except that p, = p_ = 0;
that is there is no test-retest reliability of degree of handedness within
either sub-type, + or —. If the former model does not receive sufficient
extra support over the latter model then we may conclude that there is no
test-retest correlation of degree of laterality, within either the + ve or the
-ve sub-type. Itis worth noting that even though this might be the case it is
still quite likely that a simple Pearsonian correlation of x with y would be
significant since that measure is confounded by direction of laterality,
which is probably reliable (and indeed has been assumed to be so in the
present discussion; it may be explicitly tested for by the method to be
described in the next section).
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A more complex test-retest model may be fitted in which we examine
the possibility, ignored thus far, that individuals of type + and — become
more lateralised or more variably lateralised between the first and second
tests. Let g4, g1+, M1y 01, and 7, be the relevant parameters for the first
test, and g4, g 245 M2oro 2-» aNd 7 be the parameters for the second test (7
being constant since the individuals’ sub-type is assumed to be fixed), then
by analogy with equations 10 and 11:

L+ (xi’ yn) =B (X,-, Yis Bi+s 0145 M2+>0 245 p+) 14

L (Xb yl) =B (X,, Yi lios g1os Mas 025 P-) 15

and hence we may use equations 12 and 13 to derive S, the overall support

for the model, and we may then derive the maximum likelihood estimates
for the relevant parameters.

By comparing the support derived from equations 14 and 15, with that
derived from equations 10 and 11, we may decide whether there is ade-
quate evidence for differences in lateralisation between the test and the
re-test.

In principle the above method could be extended to deal not only with
population data but also to factorial experiments, but discussion of this
will be deferred until the full split-plot analysis has been described.

Split-Plot designs

Consider an experiment in which a number of subjects are tested for
their degree of lateralisation on both a verbal and a visuo-spatial task: that
is, task type is a within subject variable. We could analyse the data from
such an experiment by using the more complex form of the test-retest
model, in which we allowed the possibility that the tasks (tests) might
differ in their means and variances for both the + ve and —ve sub-types.
However this model fails to account for the possibility (which can rea-
sonably be excluded a priori in the test-retest case) that some individuals
might be of the + ve sub-type on one task and of the ~ve sub-type on the
other task. (By + and — I here mean “dominant” and “non-dominant”, as
applied to the population overall, such that the + type would be left-
hemisphere dominant for the verbal task, and right-hemisphere dominant
for the visuo-spatial task).

In stating the problem in this form it is immediately apparent that we
must also allow for a further possibility; that the overall proportion of the
— sub-type might be different for the two tasks.

Let uslabel the tasks as A and B. Let g, ., fta_, Mo+ s 5 0a+s0 A gBs» aNd
o, be the appropriate means and standard deviations of the four possible
sub-types. Let 7, and 3, be the proportions of sub-type — for the A and B
tasks. Further let #,; be the proportion of the population who are of



The Interpretation of laterality 203

sub-type — on both tasks. Using this nomenclature it is apparent that if 7,
= @y = m,p then there is a perfect correlation between the tasks in their
direction of lateralisation, and if 7,, = 7, - 7, then there is zero corre-
lation between the two tasks in their direction of lateralisation. It is
trivially necessary that if #, # m, then there must be at least some
individuals of either sub-type —/ + or sub-type + /—. In general it will be
true that 7, + 73 = 7y = 7y . If w4y < 7, - 7 then there is cross-
laterality; that is, the majority of individuals are oppositely lateralised for
the two tasks; and in general this will merely mean that the conventional
description of + and — has been reversed, since the “minority” form will
be in the majority.

The value of =, relative to =, and m, is therefore a measure of
consistency in direction of asymmetry. As before, in the test-retest case, we
may also have consistency in degree of laterality, which in the split-plot
case is better described as a correlation of degree of lateralisation in the
two tasks. There are four possible sub-types, +/+, +/—,—~/+ and ~/—.
For each sub-type there may be a separate correlation between the two
tasks, and we may label these correlations as p, ., p._, p_, and p_. (See
Figure 4c, f, i, 1, m and q for computer plots of typical distributions). In
general it will usually be assumed in the first instance that all of these
correlations are equal although that assumption is one capable of empir-
ical test. For groups —/ 4+ and + /-, the correlation will, of course, be
—p, , if symmetry is to be retained. It is possible to imagine cases in which
individuals of sub-type + / + and —~/— would show a strong correlation in
their degree of lateralisation, but sub-types + /- and —/ + would show no
such correlation. The four correlations are therefore independent of one
another. We may also extend the parameters described earlier to account
for the possibility that all of the four sub-type combinations differ in their
means and variances on each of the tests for both + and — sub-types. For
the + / + sub-type combination we must therefore specify five paramet-
€IS, Pas+> Mps+> oA+ +s op++ and p,,; and similarly for the other three
sub-type combinations. As well as these twenty parameters, we must also
specify m,, 7y, 7,5 in order to completely specify the model; a total of
twenty-three parameters (see Figure 6). If we wished to ignore the pos-
sibility of interactions between the tests in their degree of lateralisations
we could reduce these parameters to 15, since pa,, = fay = —fas.,
etc.

Consider a pair of observations, x;, y, from a single subject. For the full
model, with 23 parameters, we may derive the likelihood, L, , that this
individual is from the sub-type combination +/+ with the particular
parameters:

L++ (xi’ yi) = B (xi’ Yio Bas+> Oat+s BB++>0 B4+ P++) 16
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Within-subject design
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Fig. 6 — Possible parameters which may be fitted for a saturated model in which each
subject carries out two separate tasks and obtains two separate laterality scores.

and similarly for L, ,L-,, and L__. We may then derive L, the likelihood of
the total set of parameters given the single pair of observations x; and
Y. '
L(X, ¥)) = map - L (X, y) + (m — 7ap) - L, (X, )
+ (ma—map) Lo (X y) + (1 =7y — 7y + 7)) - Loy (x5, ))

.17
And hence S;, the support for the particular set of parameters is:
Si(x, y;1 = 1,n) = 2 log. (Lix;, ;)]
i=1n
.18

Equations 16... 18 may be solved by means of the hill-climbing tech-
nique described earlier, in order to obtain the maximum likelihood esti-
mates of the 23 parameters. And, as for the earlier models, so it is possible
to find the support for reduced versions of the model with reduced
numbers of free parameters in order to determine whether there is an
adequate increase in support for the more complex models over the
simpler ones.
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It should by now be obvious that the split-plot model may be further
expanded to fit more complex experimental designs. In equations 16... 18
only two separate tasks have been considered, but in principle more
complex models involving three or more tasks may be analysed by using
the multivariate normal distribution instead of the bivariate normal dis-
tribution, and increasing the number of sub-type combinations and para-
meters appropriately. In practice the number of parameters rises expon-
entially with the number of separate tasks, and the equations rapidly
become impossibly complex unless the models are constrained fairly
tightly. A second possibility for expansion of the split-plot model is to
consider the analysis of experiments in which there are both within-
subject variables and also between-subject variables. Consider an experi-
ment in which subjects are divided on the basis of handedness, sex, and
familial sinistrality, and that all of the eight possible sub-groups are
represented. For each sub-group we may fit a model similar to that in
equations 16... 18, and it is possible that the parameters for each sub-
group are different from those for all other sub-groups. In such a case
there would therefore be a total of 8 X 23 = 184 free parameters to be
fitted in the complete model. Clearly such models are also unwieldly
unless some constraints are put upon the parameters.

Example 1

As an illustration of the method, the randomly generated data des-
cribed earlier will be analysed. For those who might wish to re-work this
demonstration the values for the “right-handed” group are
—1.235,-.876, 1.379, 1.116, .829, .486, .650, 1.241, 1.491, 1.824, .858, .627,
1.152, 1.568, 1.133, .734, .253, .985, 1.574 and 1.207, whilst those for the
“left-handed” group are —1.666, —1.354, —1.077, —1.700, —2.343, —1.006,
—.565, 1.207, 1.352, 1.760, .077, .867, 1.158, 1.046, .874, 1.669, .619, 1.138,
.770 and 1.052. The numbers were drawn from the distributions already
described, using the uniform random-number generator of a Commodore
PET 2001 microcomputer, and the normal distributions being derived
from this by the algorithm described by Knuth (1969).

The simplest model which may be fitted to these data is that in which
both groups are drawn from the same normal distribution (Model A,
Table I). If we now fit a model in which the two groups have different
means, but identical variances (Model B) then we obtain an improved
support, the differences in support being equivalent to a chi? value of 3.867
(p = .0492), a value which is similar in significance to the value of t of
1.917 (p = .0628) described earlier (and this is, indeed, an analogous test).
If we fit a symmetric bimodal distribution (Model C) (type I described
earlier) then there is a much improved fit over the Classic ANOVA model



v6e =1 660 =Yz

I.C. McManus

69 = Topg = *10 1z suonsodosd
6L1 =Yogpp = *¥° Ay < TO+10 pye spoueLIEA
6ITT="Tzir =" (10 M- )N u + (Y0¥ Ndp 4 CUOHE 0Ty ‘sueaw
SSOT="¥ 190 1="¥ 0o  989°0p (*1O T IMNN(lL-P=K (AN - =K Tl T ¥ il
[EULION

OLIPWWAS A
1s¢ =12 001" =¥z 1gp =0 suonrodoad
pec 1 =" gpo ="M (o< W-)N T+ (O )N+ Ty ¥y 0T pue sueowr
0S0T="4z901="¥ [  6seTp (o *MN(Tz-)=K (0 TINCIL-D=K <+ Sy +¥d quasoppq
[PWION

JLNPWWAS q
suonyodoid
65¢ =Tu U]
(0 )N (0 H-)NYu N

oor=uysy=ozil'l="7 v  6£8¢y +(oMN(L)=A +(oMNCz-=K  TeMuz‘e  ompurAg a
(o“M-)N & (o“-)N & [RULION

8T =4 0Sp' = oTIl'I=1 ¢ €6L'SY +@MNE-T) =4 +(0 MN(@E-D=A4 srow  OUPWWAS 0
6701 =2 VAONV

8e61" =" gpg =31 ¢ 806'LS (o M)N =4 (o UN =K 0 Tl Al o1sse) :
[euIoN

0801=0775=" T  T¥86S (oN =K (oMN =4 o JBuIs \

EBM__%”MQ Hohmﬁﬁwmo mh.wwww 1oddng 71 dnoin ¥ dnoin sioowerey  uonduossq [PPON

pooyTRY e ‘N
suononbzy
14T74VL

206



The Interpretation of laterality 207

Gordon, 1980

Hebrew

REA ./

Fig. 7— The data of Gordon (1980; his Figure 2) replotted. Each point represents a single
subject (n = 120). The abscissa and ordinate are plotted on the same non-linear scale as that of
Gordon, and the ordinate has been stretched slightly so that the 45° line represents equal scores
on the two tests. The ellipses represent 1 and 2 support units from the proposed modes, the
parameters being those of model E.

(Model B), the support difference being 12.12, being equivalent to a
likelihood ratio of 182608.5 in favour of Model C. If we fit a symmetric
bimodal distribution in which the proportion of type minus is different in
the two sub-groups (Model D) then this is better supported than Model C,
suggesting that the two groups differ in their proportion of type minus
(chi2 = 3.907, p = .0481). Model D fits the data very much better than the
Classic ANOVA model chi? = 28.137, p << 0.001).

More sophisticated versions of the bimodal model, in which the means
and proportions (Model E), or means, variances and proportions (Model
F) differ between groups do not fit the data better than Model D chi} =
2.96 and chi? = 6.306 respectively).

The analysis therefore shows clearly that the distributions are com-
pound, suggests that the proportions of type minus differ between the
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groups, but finds no evidence for the sub-groups differing in their means
and variances.

Example 2

The second example concerns repeated measures on a number of
subjects. Gordon (1980) reported data of some considerable theoretical
interest on the lateralisation of bilinguals. A large number of right-handed
Israelis who were bilingual for English and Hebrew were tested on a
dichotic listening task, the words being presented in each of the languages,
and laterality indices being scored separately for the two languages.

'Figure 7, redrawn from Figure 2 of Gordon (1980), shows the individual
laterality scores of 120 subjects in both Hebrew and English. (The axes are
linearly rated to the axes in Gordon, 1980, as drawn; however Gordon,
1980, himself had plotted these values non-linearly — see his text for
details). Gordon himself concludes from an examination of the results
that “An even stronger indication of the lateral dominance of the two
languages is the extremely high correlation between the Hebrew (index of
laterality) and the English (index of laterality) (r = .78 for all subjects
counted together). Thus, a high lateralisation in one language was coupled
with a high lateralisation in the other language. Or conversely, a small or
reversed (left ear) lateralisation in one language was usually accompanied
by a similar reversal in the second language”. (p 259).

Scrutiny of the data of Figure 7 suggest that there are a number of
further questions that we may ask about the results apart from the cor-
relation. There appears to be clear visual evidence for a bimodal distri-
bution (i.e. some individuals appear to show atypical lateralisation for
both two languages).

Furthermore it appears that the correlation within each of the modes is
relatively low and may perhaps not be different from zero. Finally we may
ask whether the degree of lateralisation of the modes is the same in the two
languages. .

Table II summarises the results of the fitting of a series of models.
Models are fitted in which there are one, two or four modes, and for which
the correlation within a mode is zero or non-zero. Models are also fitted in
which the means and standard deviations within modes are allowed to
differ for the two languages. The model assumed by Gordon is model B
with r # 0. It may be seen that model D and model F, with r #* 0, are
significantly better fits (chi} = 48.0, p < 0.001; chi = 66.406, p < 0.001
respectively). Furthermore model F with r # 0 is a significantly better fit
than model D withr # 0(chi} = 20.706, p < 0.001). Model F withr # Ois
also significantly better at fitting the data than model F withr # 0(chi} =
16.256, p < 0.001). Model E with r # 0 is however not a significant worse
fit than model F withr # 0 (chi} = 4.512, n. s.); there is therefore no need
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to make the assumption of different means and variances between lan-
guages.

We may summarise the analysis as follows: there is clear evidence of a
quadrimodal distribution, with a small proportion of individuals (7.2%)
showing opposite directions of lateralisation for the two languages. With-
in modes, the degree and variability of lateralisation of the two languages
is the same, and there is a smallish correlation (0.35) between the degrees of
lateralisation in the two languages.

In so far as these conclusions differ from those of Gordon (1980), the
utility of the method is demonstrated. The conclusions also have sub-
stantial implication for the neuropsychology of bilingualism.

It should of course be clear that a considerable number of further
models could still be fitted in which some or all of the remaining equality
constraints are relaxed in order to see if a further improvement in fit may
be obtained. Since however the purposes of the example have been suf-
ficiently served, this will not be carried out here.

Discussion

“The Analysis of Variance” is perhaps poorly named insofar as it is
strictly “An analysis of variance”, and is only one of a whole set of such
analyses, one which, by making a number of assumptions, can be fitted
without too much conceptual difficulty to agricultural experiments (its
original purpose), and which can very often be successfully applied to
psychology experiments. But that it is a model must not be forgotten; thus
Lovie (1979) quotes the almost despairing comment of Draper and Smith
(1966): “The question, “‘What model are you considering?’ is often met
with, ‘I am not considering one — I am using Analysis of Variance’.”

The implicit models of psychology and of agriculture are not the same,
and in some cases the analysis of variance must be regarded as potentially
misleading. One such case is probably that of laterality; whether it is
indeed such a case must be empirically determined by the analysis of
actual data.

In the models outlined above I have suggested that direction and
degree of laterality must be carefully distinguished, and that in general the
basic model for asymmetry is one in which a minority of individuals are
not less lateralised than the majority but are oppositely lateralised, such
that the mean degree of laterality seems to be less. There are obvious
biological precedents for such a theoretical position. Thus, in the majority
of the population the heart is on the left-hand side. In a population of
individuals with bronchiecstasis a lesser proportion of individuals will
have their heart on the left-hand side, due to the occurrence of Karta-
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gener’s Syndrome, an association of situs inversus totalis and chronic
bronchiectasis. But we would not describe the bronchiectatics as being less
lateralised, in the sense that on average their hearts were nearer to the
midline than in a control group, but rather we would describe the bron-
chiectatic population as having a higher proportion of an atypical sub-
type who are exact mirror-images of the normal individuals. The mean
absolute distance of the heart from the midline in the two populations
would therefore be identical. Such a model is in the first instance, surely
the most reasonable for functional lateralisation in the brain, so that the
simplest explanation of differences in mean lateralisation coefficient of
different groups is different proportions of a minority sub-group, rather
than difference in degree of lateralisation of those individuals. Differ-
ences in means and variances might occur as well, but the hypothesis
cannot reasonably be tested in the absence of testing for differences in
direction of lateralisation.

Since the analysis of variance was developed for analysing agricultural
data it is worth considering an agricultural example in which, as in the case
of laterality, ANOVA would give mis-leading results. Consider a chemical
which applied to a plant made some individual plants grow away from
light instead of towards it. Let the degree of negative phototropism of a
plant be recorded as a negative quantity. In such a case the mean degree of
phototropism would confound direction of phototropism and amount of
phototropism, and an analysis of variance would be unable to distinguish
between the chemical altering the degree of phototropism or its direc-
tion.

The Analysis of Variance in its classic form is a model for experi-
mental observations, as also are the models that I have outlined above. It
is possible that the analysis of variance is indeed an adequate model of
laterality data. This possibility must however be explicitly tested for by
fitting firstly the bimodal models described above, and then fitting the
standard analysis of variance model (equivalent to fitting a bimodal
model with all proportions of the sub-type set to zero and all variances set
to be equal) and determining whether the support difference between the
two is small enough to conclude that the simpler, classical model may be
used.

Whether models of the present form or of the Classic ANOVA type are
a better fit to laterality data, particularly those from dichotic listening and
tachistoscopic experiments is an empirical question. Whichever model is
indeed correct, we will still be presented with theoretical difficulties. If the
present models are indeed better then we are unable to interpret the vast
majority of experiments that have already been carried out, and their data
will need re-analysis. Alternatively, if the classic ANOVA is an appro-
priate model for, say, differences between right- and left-handers on a
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dichotic task, then we have to explain how it can be that right- and
left-handers show differences in direction of lateralisation when we inter-
pret the results of unilateral lesions producing aphasia, but show only
differences of degree in dichotic tasks; the implication would be that the
methods are assessing different underlying functional asymmetries.

The vast number of free parameters in say, a split-plot design with
factorial between-subject variables might deter many researchers from
wishing to use such models. It is not intended that in most cases such
complex models should necessarily be fitted. And on theoretical grounds
it seems unlikely (and perhaps essential if we are to ever comprehend the
phenomena) that a/l the parameters will truly be different and indepen-
dent of all the others. We may assume, in the first instance at least, models
which are relatively simple, for otherwise we will never progress at all. But
all models are merely models, and hence first approximations to the actual
situation. Nevertheless we must not fit overly simplistic models which do
not take account of the biological nature and the physical peculiarities of
asymmetries. Researchers are therefore welcome to fit much reduced
versions of the models given earlier. The crucial thing is that it is explicitly
stated that many simplifying assumptions have been made in fitting such
models, and that it is recognised that these assumptions may be tested
empirically by fitting more complex models.

In psychology theoretical speculation often pushes far ahead of the
empirical support for such speculations. Good examples of this are the
recent spates of literature in which it is suggested that the degree of
lateralisation is different in males and females, or in left- and right-
handers, or that the inter-relations of lateralisation for verbal and visuo-
spatial tasks are different in males and females, or in good and poor
readers. In all of the above examples a conventional analysis of variance is
the theoretical model used to analyse the data. When a group of indivi-
duals is described as being “more variable in their laterality” or “less well
lateralised” than another group, do we mean that within sub-types the
mean or the variance is different, or that the proportion of the sub-types is
different between the groups? The present method of analysis allows
specific answers to such questions.

The method does however raise some technical problems. The calcu-
lations for the maximum likelihood values are not quick, even with a
modern computer, the values converging very slowly using the quasi-
Newtonian method, and the time taken being exponentially related to the
number of free parameters. Furthermore it is possible, unless fairly strict
control is exercised over the hill-climbing program, to arrive at local
maxima, rather than the true maximum value. More serious as a problem
is that only raw data from previous experiments may be re-analysed in this
fashion. In particular the summary of a set of data provided by a con-
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ventional analysis of variance table is not sufficient to allow re-analysis of
the data in the present manner, since the present method represents a
generalisation of the analysis of variance, and hence information is ne-
cessarily lost by presenting it in the form of an analysis of variance. It is
also worth noting that the presentation of any form of summary table
based upon the present method would not be a satisfactory solution to the
fitting of future, perhaps more complex, models, since the present models
are, inevitably, sub-sets of yet more complex and possible models. The
only solution, if a re-interpretation of data is to be possible, is for all
papers to contain, preferably as an appendix in a small type-face, the raw
data on which the analysis is based. Alternatively data from experiments
should be deposited in an archive of machine-readable data of the form
that has already been developed by the Social Science Research Council
(see McManus, 1976). Only in these ways can the results of experiments be
prevented from being fossilised or petrified in the form of the theoretical
models then extant.

ABSTRACT

It is suggested that many analyses of laterality are fundamentally confused in
that they fail to distinguish between differences in degree of laterality and dif-
ferences in direction of laterality, and that direction and degree of laterality have
different biological and psychological interpretations. Conventional statistical
tests, such as analysis of variance or non-parametric procedures, are unable to
differentiate the two measures, and necessarily produce uninterpretable results.
A maximum likelihood method is described which can discriminate between
direction and degree, and its applications to factorial, test-retest, and repeated
measure designs is explained. Two worked examples are also given, one based on
hypothetical data, the other on actual data.
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