CHAPTER T: A GENETIC MODE", OF HAN. ZDNESS

"the determinant for the distribution of
right and left in the animal kingdom is
what we generally call chance"

Ludwig (1932) cited in Fritsch (1968, p 103)




T:1 The requirements of a model of handedness

Any model of handedness has to meet certain minimal

requirements.

i) It must account for the data in the literature showing
a familial trend in handedness. Left-handers represent
about 10% of the children of two right-handed parents;
20-25% of the children of one right and one left-handed
parent; and about 40% of the children of two left-handed

parents. (see Table 7.1 for further details). k

i

}
ii) It must explain the relatively high proportion of
monozygotic twin pairs which are discordant for handednéss
(that is, in which one is right-handed and the other is

left-handed).

iii) It should account economically for the phenomenon of
cerebral speech dominance, which is partially correlated
with handedness; thus using dichotic listening tests,
unilateral ECT or the sodium amytal test, about 10% of
right-handers and about 35% of left-handers show rightfﬁﬁuﬂﬂ?
speech dominance., It should also account for the dis-
crepancy between the incidence of crossed speech dominance
in right-handers as assessed by dichotic tests (about 10%)
and that assessed from clinical studies of aphasia (about

1-3% at maximum),




iv) The model should be compatible with the known inheri-
tance of other biological asymmetries e.g. situs (the
laterality of the viscera), and possibly also hand-

clasping and arm~folding (see Chapter 9 for an account).

v) The model must be biologically convincing. Morgan
(1976) has pointed out that a gere tic model may be fitted

to any data as long as sufficient allellic pairs of varying

penetrance at different loci are postulated. X-

| | |
In this and the following chapter I wish to present a
two-allele, single-locus model, with complete penetrance
in the homozygotes, and 'additivity' of the heterozygote;
this model I will suggest, can satisfy all of the above

requirements. | ‘
| |
; . |
Before starting to fit a model to the handedness data
|

it is necessary to clg_rify several points. :
‘ J
‘:

It is not possible to fit a genetic model unless Rhe
phenotypes are clearly known. Earlier, in Chapter 2,
I have discussed the phenotypic description of hand edness
at some length and have concluded that there are, at least

for genetic purposes, exactly two types of handedness, right

and left, and that the best criterion for determining to which

of the two categories an individual belongs, is the hand
used for writing. In adopting such a position I am in

complete disagreement with the position of Annett (e.g.
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1976, "Hand preferences vary not discretely but contin-
uwously"); this inevitably conditions the nature of our
respective genetic models, since, of necessity, hypothesised

genotypes are closely dependent upon supposed phenotypes.

I am probably in disagreement with a large number of
authors in that I feel that pathological left-handedness
(and of course, by symmetry, pathological right-handedness),
are either very rare, or possibly even non-existent.
Certainly I do not feel that left-handedness can be regarded
as secondary to birth trauma or birth stress (as does
for instance Bakan, 1978), and in Chapter 3 I have given
extensive empirical evidence for this position. But
neither do I feel that pathological left-handedness occurs
in any other form; my evidence for this position has been

presented in the previous chapter.

I take such an apparently iconoclastic position on
these issues since I feel that thus the solution to the
problem of the‘origin of left-handedness is rendered less

obscure.,

T:2 The biological background

In discussing the biology of asymmetry we must clearly
distinguish fluctuating asymmetry from directional asymmetry.
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7:2.1 Fluctuating asymmetr;

Biological and physical systems inevitably contain
noise; Molecules buffer against one another in quantal
jumps according to the stochastic laws of thermodynamics.
The resulf is that any system which starts off being
synmetric will ultimately show some degree of asymmetry
simply as the result of chance accumulation of noise. (Note
that this is independent of any fundamental sub-atomic
asymmetry). These asymmetries will show a symmetric

distribution about a mean of zero.

During early embryonic development small numbers of
cells are involved and thus the relativerole of chance
variations becomes much larger. As a result of what
Waddington (1957) has called 'canalisation' such asy-
mmetries are liable to become fixed, and may result in the
relatively large asymmetries of adulthood (larger, that
is, than might be expected on a purely chance basis). The
net result of such chance or fluctuating asymmetries is
that 50% of a population will tend to have one side
tdominant' (of whatever organ, tissue, or function is
being considered), and the rest of the individuals will have
the opposite side 'dominant'; this is equivalent there-
fore to a chemist's racemic mixture of stereo-isomers.
Fluctuating asymmetry may be demonstrated experimentally,
and is usually investigated in the teeth or dermato-

glyphics, both systems becoming fixed early in embryonic
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life. Events increasing the level of 'biological noise!
during early fetal development, such as heat (Siegel

et al, 1977), audiogenic stress (Siegel and Smookler,

1973), and behavioural stress (Siegel and Doyle, 1975),
result in greater degrees of fluctuating asymmetry (measured

as increased variance, the mean remaining zero).

An important point about fluctuating asymmetry is that
none of its variance can ever be genetically controlled
(hence the name: the asymmetry fluctuates randomly from

generation to generation).

7:2.2 Directional asymmetry

Fluctuating asymmetry is undoubtedly (and inevitably)
a common event during ontogeny. Nevertheless on its own

it cannot account for any of the asymmetries which are of

interest to the psychologist or biologist, that is,
asymmetries in which the mean of the distribution of (L-R)
is not zero (or in the case of unilateral conditions, n(L)

is not equal to n(R)); such conditions are said to show

directional asymmetry.

Directional asymmetry is biologically very different
from fluctuating asymmetry. That it is of greater
importance is suggested by the fact t hat in its extreme
forms we do not even question its occurrence. Why the

heart is on the left is neither a simple not a trivial
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question. If the heart were on the left in 50% of cases
then the answer might be simple - that fluctuating
asymmetry followed by canalisation inevitably produced it
that way. To use a physical metaphor, to maintain an
asymmetry we must search for a stabilising force, for
otherwise the system would inevitably return to symmetry;
or rather, a directional asymmetry will return to a

fluctuating asymmetry.

Whilst directional asymmetry can (and one might argue,
must) have some form of genetic control, there is an |
important limitation upon such control. Morgan (1976)
has argued that it is, in principle, unlikely that a gene
carries direct information about chirality; that is, paired
elleles have not been shown, in any convincing case, to
produce enantiomorphic phenotypes in their carriers. Thus,
if one homozygote of an allelic pair produces one
particular directional asymmetry, then the other homo-
zygote cannot produce the mirror-image directional asymmetry.
(An apparent exception to this rule is discussed in detail
in Chapter 9). The present model relies heavily upon
Morgan's principle for its origins, although not, of course,

for its justification as a satisfactory fit to the data.

The need for a new model of the genetic control of
handedness is two-fold. First I will argue that no previous
model adequately fits the available data. Second, I will

suggest that all previous models (with the single exception



1.7

of Annett, 1978) have not satisfied Morgan's principle,
since they have alleles which are symme tric in their
effects. As a result I will argue that any adequate
model of the inheritance of asymmetry must itself be
inherently asymmetric. This principle may be satisfied -
in the ~ase of handedness by allowing ane homozygote from
an 2li:lic pair to produce a directional asymmetry, and the
other homogygote to 'produce' a fluctuating asymme try;
that is, the latter genotype has no control over the
asymmetry and hence it is, in effect, a null gene.

The inter-relation of directional and fluctuating asym-

metry may be seen in a series of morphological examples.,

In most vertebrates the heart and stomach are on the
left and the liver is on the right. This situation (situs
gsolitus), (SS), is occasionally mirror-reversed to give

situs inversus, (SI). Spemann and Falkenberg (1919) found

that tying a fine thread around the mid-line of a developing
newt embryo prdduced conjoined twins. The left-hand

member of the pair almost always showed SS, whilst the
right-hand member showed SI in about half of the cases.

A similar situation exists if the embryo is completely

split in two (Ruud and Spemann, 1923). Analogous findings
have been reported in conjoined trout (Lynn, 1946) and
conjoined human twins (Newman, 1940). 1In other animals

SI has been shown to be produced teratogenically (She-
henfelt, 1974), by cold (Newman, 1925)m or by irradiation
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(Wilson et al, 1953), but i1 no case does the incidence

rise above 50%

The iv mutation in the mouse, when homozygous,
produces SI in exactly 50% of cases (Layton, 1976). Never-
theless the iv gene shbws complete penetrance. When two iv
homozygotes are mated then the progeny show 50% of SI,
irrespective of the particular phenotype of the parents.

A similar situation exists in another mouse mutation (Tihen
et al, 1948) producing SI, and also in the platyfish
Xiphorus maculatus (Baker-Cohen, 1961). In man, Kart-
agener's syndrome, of chronic sinusitis, bronchiectasis

and situs inversus, is inherited as an autosomal

recessive, with the limitation that only 50% of homo-
zygotes show the SI component of the syndrome (Afzelius,
1976). Amongst human monozygotic twins showing situs
inversus, 46% of 13 reported pairs are concordant, the

rest discordant \Lowe and McKeown, 1953); the expected

values are 33.3% concordant and 66,6% discordant.

Directional and fluctuating asymmetry can also be seen
in the arrangement of the optic chiasma in the flatfish,

the Heterosomata (see Chapter 9 for further discussion).

A behavioural example of fluctuating asymmetry is
that of Collins (1970), who looked at the pawedness of
mice which had been inbred for 28 generations (and hence

we may assume were almost certainly homozygous at all loei).



7.9
Of these animals 50% were left-pawed and 50% were right-
pawed, with no evidence of any inheritance over a further

three generations (Collins, 1970).

7:3 The data to be explained

7:3.1 Familiel data

The literature contains seven studies of the incidence
of left-handedness in the brogeny of Rx R, Rx L and
L x L matings (Ramaley, 1913; Chamberlain, 1928; Rife,
1940; Hubbard, 1971; Annett, 1973; Ferranato, 1974;
and Annett, 1978). In using these data sets certain modif-
ications have been made. The data of Chamberlain (1928)
have been used as quoted by Annett (1973), not withstanding
the trivial inconsistencies demons*rated by Levy, 19794,
In using the Chamberlain data I have considered only those
.individuals obtained by random sampling since the incidence
of left-handedness is higher amongst those families obtained
by special appeal (Chi-squared = 3.43, 1 4f, p<0.10),
and thus one suspects a response bias. Similar considerations
for the data of Annett (1973) mean that only the randomly
obtained data have been included. For the data of Hubbard
‘1971) it has been assumed that all of those progeny with
 one left-handed parent have only one left-handed parent; on
the basis of random assortative -mating one would have
expected only four individuals to have come from L x L

matings. Whilst I would also have liked to use the data of
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Falek (1959), this was not possible due to the sample
not beingz complete, and there being no indication of
the overall incidence of left-handedness in the propositus

generation.

Aé well as the above published studies, I have also
been fortunate in being able to use the results of two
unpublished studies. Dr. C.G.N. Mascie-Taylor, of the
Department of Physical Anthropology, University of
Cambridge, allowed me to use data from a survey carried
out by him in 1977 in a Cambridge suburb; other aspects
of this study have been reported elsewhere (Mascie-
Taylor, 1979a, b; Mascie-Taylor and Gibson 1978, 1979).
The data were obtained from a comprehensive study of a
population, there being almost no failures to respond,
handedness being directly assessed by the researcher, and
sampling was truly random. Second, Drs. Chaurasia and
Goswami, of the School of Biological Sciences, Bhopal
University, India, have allowed me to quote data they
obtained from a questionnaire distributed to a large

number of their students.

I have also used 5 distinct sets of data obtained
from two large-scale surveys of my own. The data of
survey 1 were obtained by questionnaire given to under-
graduates at the University of Cambridge in May 1977;
the students were asked to provide information on their

own handedness and on the handedness of their siblings,
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parents and grand-parents (it was stressed to them that it
was preferable to not reply to a question rather than to
guess at an answer). Left-handedness was classified on
the basis of writing hand, with the single exception

that those right-handed writers who originally wrote with
their left-hand, but had been forced to write with their
right hand,were classified as left-handed. Two sets of
family data were obtained from this study; first, the
students' and students' siblings handedness as a function
of parental handedness (ICM-1 propositus generation);

and second, the parents' handedness as a function of the
grand-parental handedness (CM-1 parental generation). The
response rate to the questionnaire was difficult to assess
accurately but was of the order of 50%. The second study,
survev 2, was carried out in June 1977, and the questionnaire
was given to all Cambridge graduates who were collecting
their degrees in person. The questionnaires were distri-
buted on the eve of the graduation ceremony. Information
was thus obtained nof only from the students, but also

. from other members of the students' family, so that fairly
accurate information could be obtained on the handedness
of parents, parents' siblings, the grand-parents, and the
great-grand-parents, as well as on the students' siblings.
Once more it was emphasised that questions should be
answered only if the answer was fairly certain, guessing being
discouraged. Handedness was classified as in the previous
study. From this study three separate sets of family data

could be obtained; students and students's siblings as a




function of parental handedress (ICM-2 propositus generation);
parental and parental siblings' handedness as a function

of grand-parental handedness (ICM-2 parental generation);

and grand-parental handedness as a function of great-
grand-parental handedness (CM-2 grand-parental generation).
The response rate of this study was of the order of 20%.
Other aspects of these questionnaires have been discussed

in some detail in Chapter 2.

The data from all these studies are collected together
in table 7.1 The data from L x I matings are relatively
restricted, and, except in the case of Chamberlain (1928),
I have lumped together data from separate studies with
broadly similar overall incidences of left-handedness in

the progehy.

Figure 7.1 shows the data of Table 7.1 plotted
graphically, with the proportions of left-handed progeny
of the three mating types shown as a function of the
overall incidence of left~handedness amongst the progeny.
Note that when this is done it is clear that there is a
fairly clear relationship between the data from all of the

studies.

That there are differences in incidence of left-
handedness in the progeny of various studies is clear from
Figure 7.1. These differences are far too large to be

simply a function of sampling errors. The differences are
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far too large to be simply z function of sampling errors.
The differences are compounded in their complexity, by
differences in incidence of left-handedness in the parental
generations of different studies, even when the effect of

progeny variation is partialled out.

These differences in incidence represent a major
problem for any model of left-handedness. One can hardly
make the usual assumption of classical genetics, that all
differences in incidence are due to differences in allele
frequencies, since it is clear that by using different
definitions of left-handedness, the same study may be used
to produce different progeny incidences of left-handedness..
Clearly in such a case it would be absurd to argue that the
allele frequencies had also changed. There are two
approaches to the problem. We may follow Nagylaki and
Levy (1972) and Levy (1978) who argue that data are invalid
for genetic analysis unless the parental incidence of
sinistrality is equal to the progeny incidence of sinis-
trality. That brocess of exclusion left them with only a
single set of data, that of Rife (1940). They still however,
make the assumption that Rife's criterion is the correct
one; if one cared to dispute Rife's definition of handedness
one would be left with absolutely no data at all with which
to test a model. This position seems somewhat unsatis-
factory. The alternative position, adopted by Annett (1978),
seems far more realistic, In the first instance one assumes

that all studies have the same allelic proportions, and hence



have the same proportions of the true phenotypes (i.e. in
her case, RS+ and RS-). Differences in apparent
proportions of sinistrality are then due to differences in
criterion or threshold of left-handedness. As she points
out (Annett, 1978), this has a close similarity to the
methodology of signal detection theory where, despite
differences in response.bias (Beta), one is trying to find
a true sensitivity (d'). In the following analysis I
shall follow Annett in attempting to make corrections for
differences in incidence of left-handedness, and thus will
attempt to fit all of the available data, warts and all.
My actual calculations for these corrections will however

be somewhat different to those of Annett.

Appendix A7:3 discusses the possibility of assortative
mating for handedness, and concludes that it is of little

Oor no consequence,

7:3.2 Twin data

There are eighteen different sets of twin data in the

literature; these are summarised in Table 7.2.
Several claims have been made about handedness in twins:-
i. that monozygotic (MZ) twins show binomial proportions

of R-R, R-L and I-L pairs (and hence that handedness

cannot be under genetic control).
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ii. +that MZ twins have a higher incidence of sinistrality than

do dizygotic (DZ) twins.

iii, that twins in general have a higher incidence of

sinistrality than do singletons.

In Chapter 4 I have critically reviewed evidence for
these statements and find none of them adequately supported
by the data. This is important, since on the basis of (ii)
and (iii) in particular, Nagylaki and Levy (1973) have
argued that twins are not suitable for fitting to genetic
models, since twins show increased pathological le ft-
handedness, and also, in MZ twins, "ectodermal mirror-imaging".
Since there is no evidence for ii and iii, genetic models
should be able to cope woth data from twins as well as
that from singletons. In particular, as Corballis and
Beale (1976) have pointed out, the model of Levy and Nag-
ylaki cannot cope with the MZ twin data at all.

As with data from the singletons, so in the case of
twins it is necessary to account for differences in incidence
of sinistrality between studies. Once more I shall assume,
along with Annett, that the differences are due to variation
in threshold or criterion of left-handedness, and that in
all studies the underlying allele frequencies are the same
in each case. Unlike Annett I shall assume that the pheno-

types in twins are also the same as in singletons.



T4 Previous models of handedness

It is instructive to compare previous models of handed-
negs; for convenience the essential genetics of each are

summarised in Table 7.3.

Ramaley (1913), not long after the re-discovery of Men-
del's laws, proposed that there were two alleles which we
may label L and R. L was recessive and there was comple te
penetrance. Thus all LL individuals were left-handed, whilet
all RR and RL individuals were right-handed. As Ramalay
himself recognised this model fails since it predicts that
all of the children of two left-handers should themselves
be left-handed; even a single exception, such as he
reported, and as were later reported by Jordan (1914),
disproves the hypothesis. Rife (1950) proposed a modified
form of the Ramaley model. Not only were LL genotypes
left-handed, but so also were a proportion of the hetero-
zygotes. This model thus allows that neither right nor
left-handers breed perfectly true, since the left-handers’
genepool now contains R alleles, and vice-versa. Trankell
(1955) produced a model which was also a variant of Ramaley's
model, In Trankell's model it is the LL genotypes rather
than the heterozygotes which show partial penetrance, and
hence allow L x L matings not to breed true. Whilst both
are improvements upon Ramaley's model, neither that of
Trankell nor that of Rife will adequately fit all of the

requirements, although as will be seen below, the Trankell
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model can be made to fit quite closely.

Annett (1964) proposed yet another variant upon the
Ramaley theme. Annett complicated the problem by arguing
not that penetrances in the Ramaley model were wrong, but
that the phenotypic classification was itself in error. Thus
she proposed that the heterozygotes produced a separate
and distinct phenotype known as 'mixed' handedness. This
model clearly fails since both R x R and L x L (as opposed
to M x M etc.) matings should breed true, and yet the
data of Annett (1972) clearly shows that this is not the .

number of
case. The logic of increasing thquhenotypes is also some-
what worrying since it inevitably means that all previous

data sets in the literature are inadequate for testing

the model.

Levy and Nagylaki (1972) proposed a yet more complex
rodel. They argued thet it was necessary to postulate four
alleles, two at each of two loci, the two loci segregatingv
independently. There are thus nine genotypes. They also
postulated yet another increase in the number of phenotypes,
arguing that as well as individuals whose writing hand was
the right or the left, each group could be sub-divided into
two further groups according to whether cerebral control of
the hand was ipsilateral or contralateral. The possibility
of ipsilateral hand control, whilst intriguing, seems not
to be supported by either anatomical or clinical evidence.

That not all pyramidal fibres decussate in the medulla is



7.18

well accepted; and it seers probable that in a few cases
no decussation takes place at dl1l at the medullary pyramid.
But this does not demonstrate that control of the hand is
ipsilateral, since the fibres might well decussate at
other levels. The critical observation, which receives

no adequate support from the literature, is whether
individuals occur in whom after a cerebral lesion there is

ipsilateral loss of motor control

The most serious criticism however of the Levy and
Nagylaki model is that it simply fails to fit the data
adequately. Hudson (1975) has pointed out the model's
failure to account for the data of Annett (1972) or
Chamberlain (1928). More seriously still, as Corballis
and Beale (1976) have pointed out, the model can in no way
account for the twin data, since it makes no allowance for

monozygotic discordance of handedness.

The most recent model of handedness is that of Annett
(1978). This model was first postulated in 1972, but only
in 1978 were the actual genetic mechanisms stated. The
model is completely different to any of the others described.
Its most important aspects are that it is compatible with
Morgan's principle, and that it can account for different
manifest incidences of left-handedness in different studies.
It also makes predictions about clinical data on aphasia
and speech dominance (Annett, 1975, 1976), although these

predictions are rather less powerful when it is realised that
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in the later paper thege daca are themselves used to define

the parameters of the model.

Annett's model proposes that there are two pheno-
types, RS+ and RS-. RS- individuals are normally distributed
with mean 0.0 and variance of 1., RS+ individuals have a
normal distribution, but are shifted to the right and have
o mean of z, with a variance of 1. A threshold, x, differ-
entiates right-handers from left-handers. Annett (1978)
shows that the model is capable of dealing with all the
family data, and indeed my calculations show that this is
go for all of the 14 studies of Table 7.1 (see Figures 7.2
and 7.13). The great defect of the model is that in order
to account for the twin data, Annett has to postulate that

the RS+ distribution has a different mean to that in the
singleton model. In other words, tbhs model proposes that
the inheritance of handedness is different in singletons

and in twins, This is a serious objection, and certainly

from my calculations there is no possible single pair of

values of z and the proportion of RS- individuals, which
will adequately fit all of the data of table 7.1 and of
table 7.2,n0 values being acceptable at better than the one
in a million probability level, Annett's error, I would
argue, is not in the form of the mod el - that is correct,
and I would argue that in some sense the model I wish to
propose is a special case of the Annett model - but in her
description of the phenotypes. By allowing handedness to

be a continuous rather than a discrete variable, her model becomes
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distorted, and hence fails. And of course the repeated
fitting of yet more family data alone, as in Annett (1979),
will never convince one of the overall adequacy of the

model.

In summary, most of the previous models of handedness
have failed as they do not satisfy Morgan's principle.
The sole exception is the model of Annett (1978), which
I would suggest fails due to its insistence upon an unrealistic -

phenotypic conception of handedness.

7:5 The Model

As stated earlier, the present model is explicitly
based upon the information described in 'The Biological
Background' (section 7:2 above). It is proposed that there
are two alleles, D and C. Allele D (for Dextral), produces
100% right-handers when it is homozygous. Allele C (for
Chance), 'produces', in its homozygous form, pure fluctuating
asymmetry (i.e. there is no control over the phenotypes of
the progeny). Thus exactly 50% of the CC genotype are right-
handede, and 50% are left-handed. Note that in this case,
50% is not an arbitrary figure (45% or 23%, for example,
could not be fitted to the same argusment), but is a precise
statement of a particular genetic manifestation. Also it
must be emphasised that although only 50% of CC individuals
are left-handed, this does not mean that the CC genotype

is only partially penetrant. 1t shows 100% penetrance
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for its real phenotyoes, which is fluctuating asymmeiry,
and hence, as a secondary consequence, produces only 50% of

left-handers.

Thus far the model can be defined a priori from a
knowledge of the biology of asymmetry. The next step
is less predictable. The problem is that the proportion
of left-handers to be expected from the heterozygote, DC,
is undefined. 1f C is recessive (i.e. the heterozygote mani-
fests as the commoner of the two homozygotes) then one
would expect 100% rigait-handers from the DC genotype.
Conversely if C is dominant (i.e. the heterozygote acts
as the less common of the two homozygotes) then one
would expect 50% of left—hgnders from the heterozygote.
But of course there could also be an infinity of inter-
mediate positions in which the heterozygote produces a
proportion, x, of left-handers, where x is between O and
0.5. In particular I wish to call the position exactly
intermediate between the two extremes, 'additive'. The
additive DC genotype thus produces 25% left-handers and 75%
right-handers. Whatever the particular value of p(leCb, the
use of values other than O or 100 may be seen as examples

of the 'random phenotype concept' (Birnbaum, 1972).

The models to be discussed are thus a restricted set of

those to be called model I in Chapter 9.
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Genotype p(left-hander) p(right-hander)
DD 0.0 1.0
DC x/2 1.0 - x/2
cc 0.5 0.5

The parameter x controls the degree of dominance of the
heterozygote. Thus if x = 1, then C is recessive, if x = 0

then C is dominant, and if x = 0.5, then C is 'additive'.

Thus far it is a relatively simple matter to choose
a particular value of x (thereby defining the genetics
entirely), and to predict the proportions of left~-handers
which would result from particular parental pairs, or in
particular twin-typss (for details of the calculations see
the Appendix). The major problem is to fit the models
when the apparent incidence of left-handedness is different
in different studies, and one has no idea which, if
indeed any, of the values is actually correct. To solve
this problem it is necessary to define two incidences of
handedness. Let p(Lm) be the manifest proportion of left-
handers in a particular population; thus pcgm) can vary
between populations, or even within a population if the

criterion for left-handedness should be changed.

By contrast, let p(Lt) be the true incidence of left-
handedness, which I would propose, at least in the first

instance, is constant in all the different populations

being studied. Clearly, whilst p(Lm) can be directly estimated
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from the data, the value of p(Lt) may only be hypothethised.
In reality, the process of calculation is to hypothesise
particular values of x and p(Lt), and then to find the fit of
that particular model. The calculation then proceeds
combinatorially, for all possible values of x and p(Lt)
in the desired range, finding all of those which fit
adequately.
l

ren a particular pair of values of x and p(Lt) one'
obtains predictions which are the same for all datasets.
Clearly these must be modified for each particular dataset,
from a knowledge of p(Lm). To do this requires assumptions
about the processes involved in altering the value of |
p(Lt) to that of p(Lm). There are two major ways in which
p(Lm) may not equal p(Lt). '

i. A different criterion of left-handedness may be

used ('criterion shift').

ii. There may be a response bias, whereby left~handers tend
not to respond to questionnaires (as perhaps may
have been true at the turn of the century) or they
tend to over-respond to questionnaires (as may well be
true now). Amd of course separate corrections must be
made for both the parental and propositus generations,

p(Lt) for parents, being assumed to be equal to
p(Lt) for the progeny. ‘
I
|
|
!

i
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Scrutiny of the origins of the data presented in Table
7.1 suggests that in all parental cases, and almost all of
the progeny cases, criterion shifts cannot be eliminated.
But similarly in most surveys, response biasses cannot be
eliminated either. Exceptions are my own surveys, in which
I am forced to argue that the correct criterion of left-
handedness has been used, and the study of Mascie-Taylor, who
I would also argue has used the correct criterion, and in
which study there was probably no response bias since there
was almost one hundred percent ascertainment; it is
noteworthy that in that study the parental and progeny in-
cidences are equal, and the incidence of sinistrality is very
close to that which I will later hypothesise. In Appendix
7:2 I give details of the calculations using both methods,
and suggest that in most cases they give sufficiently similar
results to mean that they are, for most practicable purposes,
indiscriminable. I have therefore, for simplicity, assumed
that all differences in incidence of p(Lm) are due to cri-

terion shifts alone.

Clearly in apvlying the corrections for a criterion
shift one is assuming that two separate processes are

occurring simultaneously:-

a. some true right-handers are manifesting as left-
handers, and
b. some true left-handers are manifesting as right-

handers.
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Without further {ata it is not possible to discriminate between
these two processes. In order to be able to carry out

the calculations I have therefore assumed that if the

manifest incidence of left-handedness is less than the

true incidence, then this is entirely due to true left-

handers manifesting as right-handers (i.e. there are no

true right-handers manifesting as left-handers); and

vice~versa for p(Lt) < p(Lm).

Making trese assumptions it is possible to fit the
data of Tables 7.1 and 7.2 to a whole series of models,
and to find which are compatible with the data. The details

of all calculations are given in Appendix 7.2

T:6 Fitting the model

Fitting the model of handedness requires estimation of
two parameters, x, the degree of dominance (i.e. p(L]DC)), and
p(Lt), the true indidence of left-handedness. This fitting
has been c arried out by predicting the expected results for
particular values of p(Lt), and x, and then testing the
goodness of fit by means of a Chi-squared test. This is
carried out for all possible values of x in the range
0(0.05)1.0, and p(Lt) in the range 0.05(0.005)0.25; values
of p(Lt) have been used outside of this range, but they
do not give interesting results (there being no fit at all),
and they will not be considered here. Details of the method

of goodness of fit testing are given in Appendix T7:1.
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Before fitting a new model it is necessary to confirm
that none of the old models awe capable of fitting the
data whan the new corrections are made for differences in
the incidence of handedness. Figure 7.3 shows the goodness
of fit of the Rife model, that is a model in'which p(ILRR) =
0.0, p(L}IL)=1.0, and p(L|RL) = x, where x is in the range
of 0.0 to 1.0. A special case of this model, when p(LJRL) =
0.0, is the Ramaley model. Figure 7.3 shows that particular
values of x, and the true incidence of left-handedness
will adequately fit either the twin data, or the family
data, but that there is no overlap at all of the distributions,
and indeed all Chi-squared values for the combined data are
massively significant, the lowest being, for p(Lt) = 0.25,
and p(L|RL) = 0.4, equal to 194.5, with 66 degrees of

freedom (liberal estimate of df, see appendix T7:1).

Figure 7.4 shows the rather different result for the
Trankell model, in which ;kL]RR) = 0.0, p(L|RL) = 0.0, and
p(L}LL) can vary in the range from 0.0 to 1.0. As with
the Rife model, when p(L|LL) = 1.0, this is also the
Ramaley model. Once more there are adequate fits for
both the twin data and the family data considered on their
own; this time there are also adequate fits for the
combined data, the best fit being with p(Lt) = 0.075 and
p(L(LL) = 0.30 (Figure 7.5). Despite, therefore, the
original reservations about the theoretical inappropriateness
of the Trankell model, it is capable of fitting the

available data adequately; this point will be returned to
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later in a more general discussion of my own model, and of

the models in general.
We may now fit the data to the new model.

Figures 7.6a, 7.6b and 7.6c show the goodness of fit
of various forms of the model to the data from R x R, R x L
and L x L matings. It can be seen that the R x R data
discriminates 1ittl# between models, the R x L data
discriminates well, and that the L x L data also discriminates
moderately well (although iss S8 inevitably hampered by
small sample sizes). The goodness of fit of the combined
family data is shown in Figure 7.6d. A whole range of |
models will fit this data, from dominant through to
recessive, with different values of p(Lt) for particular

models.

Figures 7.6e and 7.6f show the goodness of fit of
the data from MZ and DZ twins. Whilst DZ twins appear to
discriminate very little between models, they clearly
exclude the a_priori probable models, i.e. the recessive
and dominant. The MZ twins show a far greater selectivity.
Combining the results of the family studies, and the M2
and DZ twins, we obtain the distribution of Figure 7.7.
It can be seen that there is now a relatively small aréa
which can account for all of the data. The minimum
Chi-squared value of 70.6 is found at values of p(Lt) of
0.080. and degree of dominance 0.25 (that is the hetero-
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zygote produces 12.5% left-handers). However there are
several other pairs of values which produce almost
equally good fits. In particular I would like to
emphasise those models in which the degree of dominance
is 0.5 (that is, that the heterozygote produces 25%
left-handers, exactly mid-way between the two homozygotes).
I will call this model additive, after the usage adopted
in polygenic models, although the analogy is not exact,
since in polygenic systems it is the individual pheno-
type which is mid-way between extremes, whereas in the
present case it is the population phenotype wkich is mid-
way between the homozygotes. One advantage of the
additive model is that as will be shown in Chapter 9, -
models to be fitted to hand-clasping and arm=folding data
also have to have similar 'additive' genes, and that at

least one such pair is necessary.

Considering the additive models, the miniumm Chi-
squared value is 79.4, at a p(Lt) of 9.0%: however, at
p(Lt) of 9.5% the Chi-squared value is only 79.5. For
"reasons which will® becomeapparent later, I have chosen to

concentrate upon this latter value.

Tables 7.1 and 7.2 show, as well as the raw data for
families and twins, the predictions of these two particular
versions of the model (i.e. p(Lt) and degree of dominance
of 8.0% and 9,5%, and 0.25 and 0.5 respectively). Scrutiny

of this table shows several features. First, the two models
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often show only minimal differences in their predictions,
thus making discrimination very difficult. Second, the
overall Chi-squared values are heavily dependent upon
Just a very few datasets. 1In particular the data of

Hubbard (1971), and my own study (ICM-2-grandparents) account

for much of the Chi-squared in the family data. The Hubbard |
study was difficult to fit as R x L and L x I data had ;
been lumped together; my own grand-parental study had a ‘
high a_priori probability of being in error since it was
assessing the handedness of the propositus' grand-parents
as a Tfunction of the propositus' great-grand-parents.
Amongst the twin studies, the data of Loehlin and Nichols
(1976) scems to fit badly for both MZ and DZ twins. This

study was the only twin study to be conducted by means of
a postal questionnaire, and thus might be less reliable

than the others.

When these aberrant values are excludéd, one obtains
Chi-squared values of 51.21, with 60 df for the 'a' model,
and 46.58, with 60 df for the 'b' model, both values being
highly acceptable in statistical terms. These values are
also acceptable if one uses a more conservative estimate

of the number of degrees of freedbm, i.e. 48.

The fit of this slightly reduced data set (i.e. with
only 12 sets of family data, and 17 MZ and 16 DZ twin data
sets), isshown in Figures 7.8 and 7.9 for my own model,

Figure 7.10 for the Rife model, Figures 7.11 and 7.12 for the
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Trarkell model, and Figure 7.13 for the Annettfmodel.
Clearly all of these models might be expected to show

some improved fitting to the more homogeneous data sets.

My own model now shows a better fit over a slightly
wider range. The Rife model also shows a slightly better
fit, but there is still not even a hint of a combined twin

and family fit. The Trankell model shows a somevhat
improved fit for both family and twin data. The Annett
model, like the Rife model, shows better family and twin
fits, but still there is no combined fit even at the

one in a million level.

In summary, by making assumptions about the nature of
the differences in incidence of handedness in different
studies, and by usins -~ genetic model in which fluctuating
asymmetry plays a large part, it is possible to fit all
of the existing data using a2 single model, and a single

prediction of the incidence of p(Ly).

7:7 Discussion

It is still however necessary to consider the fact that
the Trankell model seems to fit the data. We may consider
both my own model and also the Trankell model (and indeed
many ot her models as well), as mathematical (although not
biological) variants of a general model in which p(LlDD) may
vary between 0,0 and 1.0, and p(LlDC) and p(L|CC) may also
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vary between 0.0 and 1.0. As well as this, of course the
value of p(Lt) may also vary to fit the model; the

result is a vast array of possibilities. If we allow
there to be 21 discrete value of each of the conditional
probabilities, and there to be 41 discrete values of
p(Lt), then a total of 379701 models can be formed; of
course a large number of these models are not possible on
logical or mathematical grounds. Nevertheless it should
be clear that there is a high probability that models with
apparently very different theoretical bases, may well have
remarkatly similar predictions for the range of situations
we are considering here,(although this of course is not to
say that they must always be the same). It is also necessary
to remember +hed, as Morgan has pointed out, that if one
has enough free parameters in a model then of course

it may be made to fit almost any data; in this respect my
own model, and that of Tranke 1, are both superior to the
'general' model in that they both specify clearly in
advance two of the four parameters. I would however, like
to suggest that there are other reasons for taking more
notice of these two models, and indeed in particular of
my own one model. At the very beginning of this paper I
stressed that there were two further requirements of a
model; it must be biologically convincing; and it must
give some account of the data from studies of cerebral
speech dominance. I would like to argue that the Trankell
model is not biologically convincing, since there are

good a priori reasons for favouring a model which contains
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fluctuating asymmetry.

That my own model is precise in its predictions may be
shown by a set of tables. Table 7.4 shows the expected
proportions of the three genotypes in individuals of
particular handedness and of particular parental types,
for a model in which p(Lt) = 9.5%, the inheritance is
additive, and it is assumed that manifest incidence is
equal to true incidence. The figures are given to 8
gsignificant places to assist any further calculations |
from the table. Table 7.5 shows the expected proportions of
MZ twin pairs by parental handedness, and Table 7.6 shows
the probability of MZ twins being of a particular genotype,
given their own twin pair-type, and the parental handedness.

These data will be used further in the next chapter.,

If the present model of handedness is correct then
it allows a re-interpretation of the several sets of data
in the literature associating left-handedness with mental
deficiency (see chapter 6:6.4). These data sets have
often been interpreted as evidence that left-handers in
general are of lower intelligence, as if the handedness
were somehow the cause of the mental deficiency. An
alternative view is that a prior severe brain insult,
e.g. due to trauma, metabolic or chromosomal abnormality,
may have caused the low intelligence, and also have caused
a massive amount of 'biological noise!' which has over-

ridden any pre-existing directional asymmetry, to produce




T.32

fluctuating asymmetry, and hence left-handedness in up

to 50% of cases, If true then one might also predict that
any other developmental abnormality of the brain might

also produce a local increase in biological noise, and hence
fluctuating asymmetry, and 'phenocopy left-handerst.

One possible example of this is in congenital partial

or total agenesis of the corpus collosum. The condition is
associated with normal intelligence, and is often detected
only at routine post-mortem, or as an incidental finding on
ventriculiography or computerised tomography. Nevertheless

a revieu of the few cases in the literature for whom the
handedness is given, shows that of the 19 cases, 9 (47.5%)
were described as left-handed (Bossy, 1972; Dennis, 1976;
Ettlinger et al, 1972; Ferris and Dorsen, 1975; Field et al,
Gardnereteﬂ./1gzgéwsky and Reeves, 1975). Although this is

a small sample, it is tempting to conclude thc the incidence
of left-handedness in callosal agenesis is indeed raised,

as might be predicted from the theory.

As yet no account has been given of why the heterozy-
gote in my own model should be exactly intermediate
between the two homozygotes in its expression. Three

possible mechanisms can be suggested:-

i. If the D allele produces a buffering substance, and
the C allele a disrupting substance, then genotype DD will
produce only buffer, and genotype CC will produce only

disruptor, thereby resulting in either directional or

19
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fluctuating asymmetry respectively. The heterozygote, DC,
would produce both substances, and the particular effect
of this would be dependent upon the dose-response curves
of the two substances, and might possibly result in an

effect midway between the two homozygotes.

ii. ‘The additivity of the alleles might be produced by the
phenomenon of allelic restriction (Melnick and Shields,
1976), which is equivalent to autosomal lyohisation.

This could only be so if the gene produced its effect

at an esrly enough stage in embryogenesis (i.e. that its
action was only expressed in a single cell). This could
produce a heterozygote expression midway between the

two homozygotes.

iii. The manifestiation of the genes in the ti;C sexes
might be different. The classic example of this is the
gene for hornless in sheep, which acts as a dominant

in males and a recessive in females (Wood, 1905). The
manifest incidence of left-handers is often higher in
males than females, and there is a possibility also for a
tendency for children of left-handed mothers to show a
greater incidence of left-handedness than the children of
left-handed fathers (Annett, 1973). (Whether such effects
are differences in true handedness, or only in manifest
handedness is not at all clear at present). The effect
of a male-dominant/female-recessive gene is formally
equivalent to an additive model when the two sexes are

combined.
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APPENDIX A7:1: TESTING THE STATISTICAL SIGNIFICANCE

OF FIT

Whilst it is a relatively simple task to calculate
Chi-squared values for the goodness of fit of particular
models, it is necessary to test the significance of such
fits. To do this requires knowledge of the necessary
number of degrees of freedom. For the twin data this
seems fairly simple, one degree of freedom being used to
test the fit of the theory to a 3 x 1 matrix (i.e. n(R-R),
n(R-L) znd n(L-L)). One degree of freedom is used since
there are a total of three cells in the matrix, thus setting
an upper bound of three degrees of freedom. But one of
these degrees of freedom is consumed since it is necessary.
to know the total sample size (i.e. N), and a further
degree of freedom is used since one needs to know the
overall incidence of left-handedness (i.e. p(Lm)). This
leaves a single degree of freazdom; and here my calcu-
lations agree with those of Annett (1978), who also uses

one degree of freedom for fitting twin data.

Fitting the 3 x 2 matrix of family data is not so
simple. Classically one would argue that a 3 x 2 table has
(3-1) x (2-1) = 2 degrees of freedom; and indeed it would
do so if one were testing simple homogeneity of the table
with respect to its edge totals. Certainly this argument
gives us a conservative lower bound for the degrees of

freedom of two. However the table is not strictly a 3 x 2
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but is instead 3 tables each of size 2 £ 1. It would be
quite possible to carry out a survey in which firstly one
randomly ascertained the manifest incidences of left-
handedness in the separate generations, and then looked for,
say, just children of one right and one left-handed parent.
One could then predict the expected percentage of left-
handed progeny and see how this compared with the observed
value, using a Chi-squared with one degree of freedom to
test the result. This indeed is what,. in effect, I have
done in the R x R, etc, sections of Figures 7.2 - T7.13.
Since there are three separate tables it seems illogical to
have only two degrees of freedom for the combined table.
Consider the hypothetical study above in which I ascertained
the progeny of only R x L matings. From this I obtain a
value of Chi-squared, say X fR-L), with one df. I later
look at the same population again and examine j'st R X R
matings, and then obtain a Chi-squared value of X(R-R),
valso with one degree of freedom. The combined result thus
has two degrees of freedom. If now I finally ascertain the
I x L matings, I obtain a third value of Chi-squared,
X(L-L). If I were now to have to test the combined result
of all three studies with only two degrees of freedom, I
would be in an awkward position. Let the probability of’
obtaining the result from the first two combined studies
(with a Chi-squared value of X(1,2)), be p(1,2).
Then by adding the third study, I produce X(1,2,3), where
X(1,2,3) = X(1,2) + X(L-L). And X(1,2,3) has a probability

p(1,2,3). But since X(L-L) can only be equal to or greater
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vhan zero, and in all probability, X(IL-L) will be greater
than zero, it is necessarily true that p(1,2,3)> p(1,2).
Thus in obtaining further data I am merely disadvantaging
the theory, since by using X(1,2,3) there is necessarily a
éreater probability of rejecting the theory than by using
X(1,2). This seems an absurdity, an absurdity which is
readily removed by testing X(1,2,3) with three degrees of

freedomn.,

I would therefore argue, on logical rather than statis-
tical grounds, that one must use three degrees of freedom
for fitting the sort of data I have described. 1In so
stating I am disagreeing implicitlvy with Annett (1978), who
uses two degrees of freedgom, but does not justify her
actions in so doing. Ultimately the best way of resolving
this disnute is probably by some form of Monte Carlo simu-
lation, and finding whether two or three degrees of freedom
fits the observed values better. In the graphs shown earliex
in this paper I have given in general the results for a 'con-
servative! test (i.e. with 2 dfs), but have also indicated
the 5% limits for a more liberal test with three degrees of

freedom,

A further statistical problem concerns low expected
values in the Chi-squared calculations. Most textbooks stat
that expected values must be greater than 5; a few state
that 3 is an acceptable lower limit. Most calculations are

however looking for significant heterogeneity, where as in 1
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present study I am prrimarily concerned with the goocdness

of fit of predictions; to data. Since low expected values can
only produce spuriousily high values of Chi-squared (and

thus produce falsely sygmifinant results), I have used

a minimum acceptable expected valwe of 1.5; in so doing

I may have only rejected some miodels erroneously, I am
unlikely to have accepted amy by mistake. The utility of
such an approach is that ‘it allows one to fit data from
relatively small stwdies without having to combine other-

wise disparate studies,
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APJENDIX A7:2 THE CALCULATIONS

Consider a system with two alleles at a single locus,
and hence three possible genotypes, G(1), G(2) and G(3).
There are two possible phenotypes from these three genptypes,
P(1) and P(2). Each genotype produces a particular proportion
of phenotype P(1) (the proportions beimg symbolised by x(1),
x(2) and x(3) respectively), and hence proportions 1-x(1),
1-x(2) and 1-x(3) of phenotype P(2) respectively. These

values may be represented in tabular form:-

Genotype Proportions of each phenotype from each
Genotype  froquency genotype (i.e. p(PAlGB)
’ %
G" f1 X1 ( 1-}(1 )
G, £, X, (1-x2)

Let the frequencies of the genotypes be f1, f2 and f3, where
f1, f2 and:f3 are linked by the Hardy-Weinberg equilibrium.
If we assume that G2 is the heterozygote, then the frequency

of one of the alleles, A1 is clearly:-

A1 = if1

and hence the frequency of the other allele, A2, is:
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I.ence the three genotype frequencies can be represented:-

2

f1 = A1

f2 = 20A1 0A2
2

f3 = A2

Let L be the incidence of P1 in the population. Then it

is clearly the case that:-—

L = p(P1) = § RS o

n=1,3

For a particular model, defined by Xy X, and x3, then
since L is known (from the data to be fitted or predicted),
and since f2 and f3 are expressible in terms of f1, then

f1 can be determined,

The conditional probabilities Q(GIP)

In order to calculate the expected offspring from
particular parental pairs, it is necéssary to know, for an
individual, the probability that he is a particular genotype,
given that he is a particular phenotype.

In general it may be shown that:~

p(e,|2) = p(6y).p(B,]G)) | ‘.2
p(P,
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waere p(Pm‘Gn) is the probability of phenotype m given that
the genotype is type n, and p(Gn) is equivalent to f,» the
frequency of genotype Gn.

Calculation of family tables, that is p(P|Q x R)

In order to calculate the probability of an individual
being a particular phenotype, given the particglar pheno-
types of his parents, it is necessary to have a function
which generates the Mendelian bre:ding ratios. Let
M(Ga‘Gb x G,) give the probability that for a mating
between genotypes Gb and Gcthat the progeny will be of genotype
Ga‘ Thus if G1 and G3 are the homozygotes, and G, the

2
heterozygotes, then from simple Mendelian principles,

M(G,Gy x 6) = 0.5
M(G1IG1 X Gg) = 0.25
M(G5[6y x 6y) = 0.25

Consider two parents of known genotype. In general:-

p(2 |6 x ) =Z. p(Bi6,).Me 6, x @) .

x=1,3

But the problem is more typically to calculate the probability
of the progeny's phenotype given the parents phenotypes

not genotypes. For such a situation one may extend the
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above equation 3, so that w2 may calculate:-

p(B,|P, x By) = _S_ E p(6y|P) (6, ] Ry) (B |0, = @)

y=1,3 2z=1,3
veod

Monozygotic twins

The problem is to calculate p(Pa & Pb), that is the
proportion of twin-pairs in whom twin 1 is of phenotype a, and
twin 2 is of phenotype b. Note that using this notation
then to find the proportion of discordant twin-pairs we

must remember that:-
p(discordant) = p(P1 & P2) + p(P2 & 1>1) -

Consider a pair of twins of genotype Gm. Then for these

twins:-
p(B, & Py|G) = p(E, |6,).p(Ry|Gp) -

(assuming that chance processes occur independently in the

two twins).

For the progeny of parents of genotypes Gj and Gk’

then:-

p(Pa&PblijGk)= E MG, |oyxe,) . (R, 6) . p( | 6, )
n=1,3 —i
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Hence for the progeny of psrents of known phenotypes:-

p(Pa&Pb[ijPk) =Z Z p(Pa&Pb.lexGn).p(Gm]Pa).p(Gn\Pb) ...8
m=1,3 n=1,3

And thus for the total population of MZ twins:-

p(P&P,) = :>:; g p(Pa&Pb.leka).p(Pj).p(Pk) vee9

j=1 vJ k=1,3

This equation (9) can however be much simplified.
In the total population the genotype frequencies of M2
twins must be the same as in the remaining singleton
population. For the calculation of the overall proportions
of concordant and discordant pairs irrespective of
parental phenotypes, the parental calculations are strictly

irrelevant, and:=-

p(P, & P) = E : p(2,|6,).p(Py[0,) .p(C,)
n=1,3 ees10

Dizygotic twins

Using the same notation as for monozygotic twins,
but remembering that dizygotic twins do not have the
same genotype, but do have the same parents, we may
calculate the proportions of concordant and discordant
pairs. In making the calculations we must remember that

due to the DZ twins having shared parents, p(Ga & Gb) is not
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the same as p(Ga).p(Gb) (an easy error to make).
Consider parents of genotypes Gm and Gn' Then:-

p(Pa&Pb[Gmen) =

E m(leGmen).M(Gy GmXGn)°p(Pa\Gx)°p(Pb‘Gy) eeoll
x=1,3 y=1,3

And thus for parents of known phenotypes:-

p(R,82,| B xP,) = > 20 p(P,&P, |0, x0.) .0 | B,) on(6y| py)

x=1,3 y=1,3
00012
Consequently for the whole population, irrespective of
parental phenotype:-
p(P &P, ) = jg:j EE:: p(P_&P \P xP ).p(P_ ).p(P ) 0eel?
a b m=1,3 n=1,3 a “"bl™m ' n m n
An example

Lest the above equations seem impossib%s complex
(which they only are as a result of being completely general),
a very simple worked example should help to clarify the

arguments.,

Consider a genetic model in which there are two alleles,
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D and C, which produce phenotypes as follows:-

Genotype Phenotypes
Genotype frequency Left Right
DD a? 0.0 1.0
DC 2dc 0.25 0.75
cc c? 0.5 0.5

The above table is thus analogous to that presented earlier

in the first part of this appendix.

Let L represent the overall incidence of left-handedness.

Then from equation 1:-
2 2
L = (0).d° + (0.25).2dc + (0.5).c
Since d = 1 - ¢, then:-

L = (0s5).c.(1=c) + (O.5).c2

= 0.5 - O.Sc2 + 0.502 = 0.5¢c

The numerical advantage of this particular model is that
1, is a linear function of c¢; however for all other models
1 is a quadratic functiom of C, which complicates the

equations.



We may now re-write

From equation 2 we may now

p(CC) = 4L
(1-21)2

p(DD)
p(DC)

2

4L(1-2L)
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thie genotype frequencies:-

calculate the conditional

probabilities of a particular genotype given that the

person is of a particular phenotype. Thus:-

And thus for the rest of the table:-

Genotype

DD

DC

CcC

p(DC|L)

p(Genotype
Left-hande

1 - 2L

2L

L(1=-2L

1 - 2L -

b

p(Genotypel
Right-handéd)

In order to calculate the family breeding tables we need

to know the Mendelian genetics of the three genotypes;

that is, for all combinations of a, b and ¢, we must know
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the value of p«}a G x Gc). Simple genetical theory gives us:

G(c)
DD DC ce

p(DD)=1.0 p(DD)=0.5 p(DD;=o.o

Db p(DC)=0.0 p(DC)=0.5 p(DC)=1.0
(DD)=0.5 (DD)=0.25 DD)=0.0

p(CC)=0.0 p(CC)=0.25 p(CC)=0.5

p(DD)=0.0 p(DD)=0.0 p(DD)=0.0

ce p§DC)=1.o §ch=0.5 p(Dc;_ .0
p(CC)=0.0 p(cC)=0.5 p(CcC)=1.0

If we wish to calculate p(LIL x L), then firstly using

equation %:-

p(L|DD x DD)=0.0
p(L[DD x DC)=p(L|DC x DD)=0.125
p(L|DD x CC)=p(L|CC x DD)=0.25
p(L[DC x DC)=0,23
p(L|DC x cC)=p(L]|CC x DC)=0.375
p(L[cC x €C)=0.5

These values may then be entered into equation 4, giving:-

(1-21)2 2
p(LIL x L) 152L + 2% + 1;2L + &%

+ 2(1-2L).2L.(0.375)

14+2L, 1+c
)

7 =

And similarly:-
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p(L{R x R) = ¢

1+ c(2-c
p(L]R x L) = —NZ"T)-

(¢ is used instead of L as the equations are simpler).

Notice how, despite.the complexities of equations % and
4, for particular cases there are solutions which are
relatively simple. Nevertheless the general equations
are rather more complex sinze a). Thev are applicable to ,
any two-allele genetic model, and b), they are particularly
suitable for use in a computer, and most persons wishing

to carry out such calculations would probably use a computer.

In the particular model being discussed the equations
for monozygotic twins also reduce to fairly simple results.

From equation 10 it can be shown that:-

p(L&L) = ¢2.(0.5)2 + 2dc.(0.29° + a2.(0.0)2

=S 2dc

=2 16
2

_c de

=3 * B

Similarly, it can be shown that:-

o(R&R) = d° = 9%9 +

[Vl o)

g2

p(R&L or L&R) = 5+

-
Q



7.48

If the reader has progressed thus far in replicating the
above equations then he will surely understand the
(relatively simple) principles involved, and thus there
will be no need to produce an exact solution for the numer-

ically more complex case of the dizygotic twins,

Corrections for actual incidence of left-handedness not

equa ng true cidence

The measured incidence of left-handedness in most
of the studies being used as a data-base is different,
both within studies between parents and children, and also
between studies within a particular generation. These dif-
ferences might possibly represent real differences in allele
frequency, and that would be the classic genetic approach
to such discrepancies (and indeed %= the approach which I
have used elsewhere in fitting the hand-clasping data and
arm-folding data, where there is good reason to believe
that response biasses and criterion shifts are of little |
significance). However, in the case of handedness there is
reason to be doubtful and I will assume that the true
incidence of left-handedness is in fact constant, and that
differences in apparent or manifest incidence are due
instead to alterations in the criterion of left-handedness,
or to differences in response rates of right and left-
handers to questionnaires, etc. Annett (1978,1979) has shown
how by varying the criterion of left-handedness widely

differing incidences of 'left-handedness' can be obtained.
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I would of course disPute.that many of these scales are truly
measuring left-handedness, and would argue that the

criterion put forward elsewhere, of writing hand alone,

is probably the best criterion. Nevertheless there are

still such shifts in other data and instead of simply
discarding unacceptable data (the approach of Levy and
Nagylaki, 1972), I will instead attempt to correct for

these biasses,

The main types of error, which I will call criterion
shifting and response bias, do not, regrettably, have
identical corrections. And for criterion shifting it is not
strictly possible, on logical and arithmetic grounds, to

say that there is even a single correction.

Despite all such problems I will nevertheless attempt
to fit the data bearing in mind that some small discrepancies

may still be present and be essentially irremovable.

A further complication to be borne in mind is that the
corrections need not be the same type, nor in the same
direction, nor of the same magnitude, in parents and

children.
Notation

Let the true handedness, H, be notated as Ht and the

manifest handedness as Hm’ where H can be either R or L




7.50
specifically, or 'H', meanir.g either phenotype.
Corrections for simple criterion shift when p(L )< p(L,.)

This is very simple. For any individuwal who is tr ly

left-handed there is a finite probability, q, that he will

manifest as a right-hander, hence:-

p(L) = a.p(Ly) where q = p(L ) ceold

P(Lts

More importantly, since the correction is indepeddent of
propositus genotype, or of parental phenotype or geno-
type, then for any given population subset:-

p(Lm subset) = q.p(Lt suhset)

and particularly:-

p(Lm Habe) = q.p(Lt Habe) where H_ and H, are both true

handedness eee 15

For monozygotic twins a similar correction may be made:-

2
p(Lm & Lm) = q.p(Lt & Lt)

p(R_ &R ) =(1-0)2.p(L, & L,) + 2q.(1-0).p(L; & L) + p(Ry & Ry)

p(Ry & L) =1. - p(I; & L) -p(R, &R)
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Corrections for criterion shifting when o(L(m)) Dp(L($))

This is basically similar to the previous case,
although it is not immediately obvious that it is valid
to use the same equation with g » 1.0. The situation is
that there is now a finite probability, r, that a true
right-hander will manifest as a left-hander, all true
left-handers being presumed to manifest as left-handers.

Hence:-

p(Rm) = r.p(Rt) Where r = P(R ) 00016

Using the same argument as before:-
p(leHa X Hb) = r.p(Ry[H_ x Hb)
And thus:-
p(Lm]Ha x H) =1 -r.(1 - p(I[H, x B)) e

If equation 17 is identical to equation 15 (i.e. if it is
valid to use q_>'1 in equation 15), then we would expect

that:-

p(Lm]HA x Hy) = 1 - r(1 - p(Ly|H, x Hy)) = q.p(L|H, x 7
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Expanding the second part o3 equation 18, and substituting

= P(L(t)|H(A)xH(B)) and M=p(L(m) [H(A)xH(B)), then:-
1 - r(1-T) = q.T ...183
From equation 14 we know that M = qT, and from equation 16

that r-p(R(m))/p(R(t)), and these may be substituted

into equation 18a, to produce:-

1T = (1-9T).(1-T)
1-T

q.T

which is an identity. Hence equation 14 is valid both
for ¢ {1 and q) 1,

Corrections for differences in parental left-handedness

incidence

Thus far, corrections have only been made for p(L )
not being equal to p(L ) in the progeny. Parents however
may also have incidences of left-handedness which are
different to those of the true incidence, and corrections
must also be made for this as well. The corrections are

best seen by setting out a 3 x 3 matrix.

Consider firstly the case in which p(Lm par)4> p(Lt):-
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t m
1 ¢+
i R, R &R | R xR, | Ry xLy | Ry xTy
l Lt & Rm Ry X Lt Lt x L, Lt X Lt
L L
*t +‘l’h Lt & Lm Rt X Lt Lt x Lt Lt X Lt

From this diagram, in which true left-handers are divided

Frequencyq

p(Ry)
(1-8).p(L,

Sop(Lt)

into two types, manifest left-handers (Lt & Lm), and mani-

fest right handers (Lt & Rm), it is simple to write down

correction equations: Let s=p(Lm)/p(Lt). Then:~-

p(Lthmem)=‘%(Rt)z.p(LtlRtht)+2.p(Rt)(1—s).p(Lt).p(Lththt)

+(1-8)2.p(1,) 2. p(Ly| Lyxy) |/ (1-8.0(T,)?)

...19

.p(Lt‘Rmem)= E(Rt).s.p(Lt).p(Lththt)+s.p(Lt)2.(1-s).p(Lt|LTthﬂ

(1-5.p(L,)) e5.p(Ly)

p(Lt‘Lm X Lm) = p(Lt L, x Lt)

0es20

...21

Alternatively consider the case in which p(Lm-par)>p(I‘t)

I+ is now assumed that this is entirely due to true right-
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handers manifesting as left--handers. Let u = p(Rm)/p(Rt). l

Constructing a similar table to the previous one, thus:-

Rt & Rm Rt & Lm Lt & L Frequenc;

=]
oF

R, &R | R, xR | R, xR R, xR u.p(Rt)

5

R, &L | R, xR | Ry x Ry | Ry x Ly (1-u).p(R.
1; L &L | Ry xL | Ry x Iy | L, x Iy p(Lt)

P

And once more reading off directly from the table, we may

see that:-

p(Lt\Rm X Rm) = p(Ltht X Rt) eee22

p(Lt\Rmem) = p(Lt‘Rtht) + (1-u).p(Rt).p(Lt\Rtht)
p(Ly)

eee23

P(LtleXLm) = §(1-u)-p(Rt)-p(Lt[Rtht)+2up(Rt).(1—u).p(Lt).p(LtlRth
(
(

+ p(Lt).p(LtlthL )

(1 - uOP(Rt)) .0.24
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Scrutiny of equations 22 to 24 will reveal, unlike the
case of the progeny, described earlier, that the correction
for p(Lm)/p(Lt) being greater than 1 cannot be the same as
that when the value is less than 1. Consider equations 19
and 22. Equation 19 is a function of s; equation 22 is in-
dependent of s. But if in equation 19, s were greater than
1, p(Lt\ R(m) x R(m)) must still be a function of s.

Hence equations 19 and 22 cannot be alternative views of
the ssme equations, and hence two separate sets of corrections

must therefore be used for the situations in which s » t and

8 <_1.

Of course if the exact proportions were known for the two
processes represented by the values s and u, then an exact
correction could be made for the occurrence of both
processes. But in general such information will not be

available,

Since both parents and children will probably have
p(Lm) differrnt from p(Lt), the procedure used in the
calculations was firstly to correct for the parents, using
equations 19 to 24 and then to correct for the children

(using equation 15).

Corrections for response bias amongst propositus

Consider a population of right and left-handed

propositi. Left-handers do not respond as often as right-
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handers, only a proportion, k, of the true left-handers
responding, whilst all of the right-handers respond. (The
argument is the same if only x of the right-handers respond,
and only kx of the left-handers respond; the corrections

are needed whenever k is not equal to 1).

We may represent the situation thus:-

L R

, t 4
non-responders responders responders

prop'n (1-k) .p(Ly) k.p(Ly) p(R,)

The ratio of p(Lm) to p(Lt) may be represented by j, where:-—
j= p(Lm)/P(Lt)° It may readily be shown that:-

k
3= Ep(Ty) + p(Ry) see2

Consider progeny of a particular parental phenotype, H x I.

Then:=

k.p(Ly|H x I)
k.p(LtlH xI)+ p(Rt[H X 1) eee26

p(LmlH x I)

It is tempting to hope that this equation, 26, might be
identical to equation 15, so that expressing equation 26 in

terms of j would result in an equation of the form:-
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p(I |H x I) = z.p(Lt Hx I) eee27

Consideration however shows that this cannot be so. Let
there exist an equation of the following form for R x R

matings (derived fromequation 27).
p(Lm‘R X R) = z.p(Lth X R)

But also, from equation 26:-

k.p(Lt’R x R)
P(LmlR x R) = k.p(Lt\R X R) + p(RtIR X R)

And hence:=—

k.p(Ly|R x R)
Z'P(Lt\R x R) = KD(L[R X B) + B(R,|R x K)

k
z = K.p(L]R X R) + p(R

N R x R)

Thus z is a function of p(Lt}RxR). If therefore z were valid
for finding.p(Lm\RxL) and p(LmILxL), these would also
involve functions of p(Ltl RxRy but this clearly contra-
dicts the form of equation 27, and hence we may presume

that no such equation can possibly exist.

Hence we may infer that corrections for criterion shift

and corrections for response bias are not the same. How
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different they are in practice is a question best examined

by actual examples.

Consider a population in which p(Lt) = 0.10, and
p(Lm), due to a response bias, is 0.08. Then j = 0.8,
and thus k = 0.7826. Let p(Lt R x R) be 0.08. Then
using the correction as in equation 26, p(Lm R xR), =
0.0637, whereas using a correction as in equation 15,

p(Lm R x R) = 0.0640.

Similarly for a value of p(Lt‘L x L) of 0.35, the
respective values of p(Lm lL x L)are 0.2964 and 0.2800.

Thus in general the predictions only really differ when
p(L#! \H x I) is quite a lot greater than p(Lt), but
this only occurs, of course, for L x I matings, which are
themselves relatively rare. The implication is that for
most purposes the correction of equation 15 will be ade-

quate.

As with the discussion earlier for a criterion shift, so
it is not immediately clear that equation 26 is valid both
for p(Lm) > p(L;), and for p(L) < p(L,). We may represent
the situation in which there is a relative proportion of

right-~handers who do not respond, as

Ly Re

Proportion responders responders non-responders
p(Ly) £.p(R,) (1-£).p(Ry)
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We may then find:-

p(L,) 1
€= p(Ty) T p@y) + f.p(Ry) ---28
and hence:-
p(L, |H x 1) |
P(LmlH x I) = p(Lt[ﬁ‘i TV + f'P(EZTﬁ-;7f7 «.¢29

We may thus combine equations 26 and 29, since both equal

p(L )| E x 1).

. p(IleI _ kp(LIHXI)

p(L IH x I) + T, p(“]H x 1) k. p(Lt,H xI) + p(R;rH x 1)

1)

Inserting values for f and k from equations 25 and 28
respectively, it may be shown that the equation eventually
reduces to the form, j = e. Hence equation 26 is valid

whether p(Lm) is greater than or less than p(Lt).

To show the magnitude of such corrections, consider the
situation in which p(Lt) = 0.10, and p(Lm) = 0.20. Then
J = 2.0 and thus k = 2.250. If p(Lt R x R) = 0.08, then
p(Lm‘ R x R) = 0.1636 by the response bias method, or
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0.1800 by the criterion shift method. Onee again the
differences are relatively small, and I would like to

propose that they can probably be ignored.

Corrections for response bias smongst parents

These are not strictly relevant since in most studies,
a) the propositi respond, not the parents, b) it is
unlikely that students with left-handed parents show a
different response rase to those without, and c¢) the
parental incidence of sinistrality in most studies is
fairly low, and suggests that criterion shifts are

probably of greater import.

In general the effects of differing parental incidences
(of whatever sort) are relatively small in comparison with the
effects due to propositus biasses, and thus differences in
mode of parental correction are unlikely to reduce large
effects. They will not be considered in further detail

here,
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APPENDIX A7:3: ASSORTATIVE MATING FOR HANDEDNESS

Assortative mating is the situation in which like
preferentially mates with like (positive assortative mating),
or like preferentially mates with non~like (negative
assortative mating). Chance expectations for non-assortative
mating may be obtained from population phenotype frequencies
and from the binomial or multinomial distribution. If
assortative mating is present then account must be taken
of that fact in the calculation of expected frequences in
progeny, etc. (see Cavalli-Sforza and Bodmer, 1971, p58,
pp537~550 for a review).

Table 7.76 shows the proportions of R-R, R-L and L-L
matings in various studies from the literature. These
data sets are shown graphically in Figure 7.14. Table
7.7 also shows the Chi-squared value for the goodness
of fit of a binomial distribution (note that in some of
these cases the expected values are less than one, and
thus care should be taken in interpreting these values).
0f the thirteen data sets, six shows less R-L pairings
than would be expected, and seven show more than would be
expected. Four of the sets showing positive assortative
mating are significartly different from chance expectations
with p< 0.05, whilst only one of the sets showing negative
assortative matings is significant at the 0.04 level. Of the
significant cases of positive assortative mating, one is the

Hicks and Kinsbourne (1976) study, which, as will be shown
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in Chapter 10, shows several strange features, and should
perhaps not be treated too seriously. Of the remaining
studies, there seems little doubt that overall the data is
heterogeneous, differing from a binomial distribution;

but the fact that these differences are not in a consistent
direction suggests that some factors other than assortative
mating may be the cause. A response bias may easily produce a
surplus of 'unusual' or 'interesting' families, such as

those with two left-handed varents.

In summary, therz is a significant heterogeneity amongst
the parental mating rairs but this difference from predicted
proportions is relatively small, and may well not be the
result of true assortative mating. For the purposes of
model fitting, it may ssfely be ignored until it is demon-

strated more convincingly.
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Table 7.1

Shows the data from fourteen studies of the incidence of
left-handedness in families of different parental types.
Column 1 gives the name of the study; columns 2 and 3
indicate the overall incidence of left-handedness in the
propositi and in the parents; columns 4 and 5 and 6 show the
proportion of left-handers, and the actual numbers of right
and left-handers in the progeny of R x R matings, the top
figure indicating the actual values, and the figures in
brakkets indicating the predictions of the model, the

first figure in the brakkets being for a model in which
p(L,) = 0.08 and p(L]|DC) = 0.125, and the second figure
being for a model in which p(Lt) = 0.095, and p(LIDC) =
0.25; column 7 gives the value of the Chi-squared good-
ness of fit statistiec for the two models, for just the

R x R data; columns 8 - 11 give similar information

for R x L matings, and columns 12 - 15 for L x L matings;
the final column gives the total Chi-squared values

for the goodness of fit.




p(L)
Study propositi
ICM-2 grandparents 3.22
Chamberlain (1928) 4.77
ICM~1 parents 6.66
Mascie-Taylor (1977) 8.30
Annett (1978) ou 8.50
ICK~2 szrents 8.53
Rife (1940) 8.76
Ferronato (1974) 9.75
Annett (1972) 10.63
Chaurasia & Goswami 14,07
ICM-2 propositi 14,39
Hubbard (1971) 14.58
Ramaley (1913) 15.56
ICM~1 propositi 15.69
Combined LxL data I 8.73
Combined LxI, data II 14.84

p(L)
parents

3.31
3.56
6.10
9.30
5.47
4.55
5.24
9.86
4.40
10.40
9.82

6.30

8.03
9.66

6.36

8.84

p(L)

2.15
(2.98,2.99)

4.26
(4.39,4.40)

2,91
(5.74,5.76)

6.82
(6.49,6.81)

7.27
(7.45,7.48)

7.68
(7.66,7.68)

7.57
(7.73,7.75)

6.66
(7.57,8.00)

9.73
(9.67,9.69)

11.96

n (R) n (L) Chi?
455 10

(451.1,451.1)  (13.9,13.9) (1.11g
6917 308

(6907.5,6907.0) (317.5,318.0) (0. 29¢
167 5

(162.1,162.1) (9.9,9.9) (2.54¢
232 17

(232.9,232.0) (16.1,17.0) (0.04¢
1656 130

(1652.9,1652.4)(133.1,133.6)(0.077

1924 160
(1924.3,1923.9)(159.7,160.1)(0.00(

1842 151
(1839.0,1838.5)(154.0,154.5)(0.06¢
154 11

(152,5,151.8) (12.5,13.2) (0.19:
6206 669

(6209.9,6208.6)(665.1,666.4)(0.02!

1060 144

(10.92,11.55)(1072.5,1064.9)(131.5,139.1)(1.33

11.35

(11.17,11.81)(797.9,791.9)

13,04

(12.49,12.55)(734.2,733.7)

12,03

(12.66,12.77)(834.9,833.9)

13.51

(12.18,12.88)(766.7,760.6)

796 102

(110.3,106.1) (C.03

722 117

(104.8,105.3) (1.62

841 115

(121.1,122.1) (0.

755 118

(106.3,112.4) (1.



B) ' Chi2

1.9,13.9) (1.118,1.128)

3
17.5,318.0) (0.298,0.330

.9,9.9) (2.548,2,583)

6.1,17.0) (0.048,0.000)

0
33.1,133.6) (0.077,0.102)

0
59.7,160.1) (0.000,0.001)

1
54.0,154.5) (0.064,0.086)

2.5,13.2) (0.192,0.400)

)
5.1,666.4) (0.025,0.011)

1.5,139.1) (1.334,0.199)
1.3,106.1) (C.032,0.177)

.8,105.3) (1.626,1.494)

5
21.1,122.1) (0.347,0.474)

8
06.3,112.4) (1.460,0.316)

p(L) n(R)
18.75 26
(6.53,6.44) (29.9,29.9)

11.42
(9.67,9.52)

411
(419.1,419.8)

25.0 15
(13.30,12.97) (18.3,17.4)

14.58 41
(16.24,16.97) (40.2,39.9)

19.04 170
(17.03,16.66) (174.2,175.0)

18.23 148
(17.19,16.86) (149.9,150.5)

19.54 140
(17.58,17.21) (143.4,144.1)

22,50 31
(19.34,20.50) (32.3,31.8)

20.97 471
(21.48,21.11) (468.0,470.2)

27.38 122
(28.53,30.35) (120.1,117.0)

25.75 173
(28.50,30.19) (166.6,162.7)

19.01 30
(29.07,28.34) (85.8,86.7)

32.33 113

(30.70,,29.79) (115.7,117.3)

25.65 142
(30.86,32.65)

(132.1,128.6)

n(L)
6
(2.1,2,1)
53
(44.9,44.2)
5
(2.7,2.6)
7
(7.8,8.1)
40
(35.8,35.0)
33
(31.1,30.5)
34
(30.6,29.9)
9
(7.7,8.2)
125
(128.0,125.8)
46
(47.9,51.0)
60
(66.4,70.3)
23

(35.2,34.3)

54

(51.3,49.7)

49
(58.9,62.4)

2

Chi

{(7.819,8.050)

(1.639,1.956)

(2.376,2.562)

(0.097,0.194)

(0.602,2.863)

(0.139,0.241)

(0.461,0.665)

(0.255,9,098)

(0.091,0.007)

(0.108,0.701)

(0.864,2.181)

(5.945,5.193)

(0.211,0.519)

(2.427,4.256)

p(L)

(10.08,12.05)
28.0
(14.94,17.85)
(20.86,24.93)
(25.99.26.93)
(26.62,31.81)
(26.71,31.92)
(27.43,32.79)
(29.68,29.99)
(33.29,39.78)
(41.19,41.32)

(43.94,44.43)

(45.66,54.57)

LxL

n (R)

0

18
(21.3,20.5)

0

(48.73,58.00)

(48.52,

33.3
(27.34,

43.4
(46.50

n (L) Chi

0

7

(3.7,4.5) (3.357,1.755)

3



Chi2

»13.9)  (1.118,1.128)
>,318.0) (0,298,0.330
9.9) (2.548,2.583)
»17.0)  (2.048,0.000)
1,133.6) (0.077,0.102)
',160.1) (0.000,0.001)
+154.5) (0.064,0.086)
13.2) (0.192,0.400)
+666.4) (0.025,0.011)
,139.1) (1.334,0.199)

3,106.1) (€C.032,0.177)

8,105.3) (1.626,1.494)

1.1,122.1) (0.347,0.474)

6.3,112.4) (1.460,0.316)

RxL
p(L) n(R)
18.75 26
(6.53,6.44) (29.9,29.9)
11.42 411
(9.67,9.52) (419.1,419.8)
25.0 15

(13.30,12.97) (18.3,17.4)

14.58 41
(16.24,16.97) (40.2,39.9)

19.04 170
(17.03,16.66) (174.2,175.0)

18.23 148
(17.19,16.86) (149.9,150.5)

19.54 140
(17.58,17.21) (143.4,144.1)

22,50 31
(19.34,20.50) (32.3,31.8)

20.97 471
(21.48,21.11) (468.0,470.2)

27.38 122
(28.53,30.35) (120.1,117.0)

25,75 173
(28.50,30.19) (166.6,162.7)

19.01 20
(29.07,28.34) (85.8,86.7)

32.33 113

(30.70,,29.79) (115.7,117.3)

25.65 142
(30.86,32.65)

(132.1,128.6)

n(L)

6
(2.1,2,1)

53
(44.9,44.2)

5
(2.7,2.6)

7
(7.8,8.1)

40
(35.8,35.0)

33
(31.1,30.5)

34
(30.6,29.9)

9
(7.7,8.2)

125

(128.0,125.8)

46
(47.9,51.0)

60
(66.4,70.3)

23
(35.2,34.3)

54

(51.3,49.7)

49

(58.9,62.4)

Chi?
(7.819,8.050)
(1.639,1.956)
(2.376,2.562)
(0.097,0.194)
(0.602,2.863)
(0.139,0.241)
(0.461,0.665)
(0.255,9.098)
(0.091,0.007)
(0.108,0.701)

(0.864,2.181)

(5.945,5.193)

(0.211,0.519)

(2.427,4.256)

p(I

(1(

28
(1.

(2



Chi

p(L)

(7.819,8.050)  (10.08,12.05) 0 0
28.0 18 7
(1.639,1.956)  (14.94,17.85)  (21.3,20.5) (3.7,4.5)  (3.357,1.755)
0 3
(2.376,2.562)  (20.86,24.93)
3 1
'0.097,0.194)  (25.99.26.93)
4 Q
0.602,0.863)  (26.62,31.81)
7 1
0.139,9.241)  (26.71,31.92)
5 6
0.461,1.665)  (27.43,32.79)
0 0
0.255,1.098)  (29.68,29.99)
5 1
0.091,0.007)  (33.29,39.78)
3 4
1.108,0.701)  (41.19,41.32)
6 2
).864,2.181)  (43.94,44.43)
0 0
5.945,5.193)  (45.66,54.57)
1 7
(0.211,0,519) (48.73,58.00)
Y 0
(2.427,4.256)  (48.52,49.19)
27. ;
(27.34,32.67) (26.2,24.2) (9.8,11.8)  (0.651,0.007)
43.4 10 13
46.
(46.50,50.50) (12.3,11.4) (10.7,11.6)  (0.928,0.334)




e

-ted Talues (E) are for two different models, ta' in which p(L)=0.095 and p(L DC)=0.25,

DC)=0.125.

y

ens (1924)

z (1924)

erbaéh (1925)
oerg (1926)
shuer (1927)

an (1928)

ch (1930)

on & Jones (1932)
ks (1933)

1an, Freeman and
‘inger (1937)
‘erwek (1938)

(1940)

ss (1946)
a2 (1950)
naume (1957)

zo (1960)
ter-Saltzmann et al

76)
hlin & Nichols (1976)

n data, the observed and expected numbers of each type ¢

p(L)

16.21

25.00

5.33

14.49

20.28

31.00

20.93

10.71

9.52

19.00

18.85

11.88

18.44

12.82

24.24

13.32

17.11

14.10

N (R-R)
E(a,b)

26

(26.5,26.4)

10
(10.3,10.3)

67
(67.6,67.7)

53
(51.6,51.3)

156

(158.6,157.9)

25
(24.3,24.2)

25
(27.5,27.4)

56
(57.1,56.8)

35
(35.2,35.0)

34
(33.5,33.4)

80
(82.2,81.8)

176

(177.2,176.4)

72
(70.1,69.8)

261

(266.7,265.5)

19
(19.4,19.3)

199

(199.2,198.2)

132

(131.5,130.8)

380

(338.1,386.3)

N (R-L)
E(a,b)

10
(8.8, 9.0)

7
(6.2,6.3)

8
(6.6,6.5)

12
(14.7,15.2)

77
(71.6,73.1)

19
(20.2,20.5)

18
(12.9,13.2)

13
(10.8,11.3)

6
(5.6,5.9)

13
(13.8,14.2)

38
(33.6,34.3)

41
(38.6,40.3)

24
(27.8,28.4)

76
- (64.5,66.9)

12
(11.2,11.4)

51
(50.7,52.6)

46
(47.0,48.3)

123

(106.7,110.4)

Monozygotic twins

n(L~L)
E(a,b)

1
(1.5,1.4)

1
(1.3,1.3)

0
(0.6,0.7)

4
(2.6,2.3)

11
(13.6,12.9)

6
(5.3,5.2)

0
(2.5,2.4)

1
(2.1,1.8)

1
(1.2,1.0)

3
(2.6,2.4)

4
(6.2,5.8)

6
(7.2,6.4)

7
{(5.1,4.8)

6
(11.8,10.5)

2
(2.4,2.3)

9
(9.2,8.2)

9
{8.5,7.9)

11

Chi?2
(a,b)

0.045,0.027
0.029,0.030
0.067,0.083
1.250,1.815
0.973;0:517
0.171,0.240
4.696,4.313
1.070,0.066
0.006,0.000
0.127,0.246

1.443,1.010

10.366,0.037

1.258,1.789

5.013,3.227

0.122,0.071

0.005,0,121

0.054,0.27¢

(19.2,17.3 ) 6.107,3.83
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Chi2
(a,b)

0.045,0.027
0.029,0.030
0.067,0.083
1.250,1.815
0.973,0:517
0.171,0.240
4.696,4.313
1.070,0.066
0.006,0.000
0.127,0.246

1.443,1.010

10.366,0.037

1.258,1.789

5.013,3.227

0.122,0.071

0.005,0.121

0.054,0.276

'.3 ) 6.107,3.830

.

rs ot each type of twin-pair (R-R, R-L and L-L). The
nd p(L DC)=0.25, and 'b' in which p(L)=0.08, and

p(L)

27.41

12.69

7.03

14.04

17.00

6.03

11,38

10.63

11.00

17.14

15.41

16.27

11.61

19.69

10.89

19.31

11.11

N(R-R)
E(a,b)

16

(16.5,16:.4)

96
(97.1,96.8)

111

(111.3,111.3)

136
(133.1,132.6)
35
(34.8,34.7)
51
(51.4,51.5)
97
(97.7,97.4)
76
(75.9,75.7)
39
(40.1,39.9).
23
(24.3,24.2)
104

(105.7,105.4)

60
(60.9,60.8)

164

(166.7,166.3)

21
(21.5,21.5)

264

(269.1,268.3)

115

(115.9,115.6)

261

(266.2,265.4)

Dizygotic

N(R-L)
E(a,b)

13
(11.9,12.0)

28
(25.6,26.2)

16
(15.4,15.3)

34
(39.9,40.7)

13
(13.3,15.2)

7
(6.1,6.1)

24
(22.5,22.1)

12
(16.2,16.6)

11
(8.8,9.1)

12
(9.4,9.5)

39

(35.6,36.3)

|
I

24
(22.0,22.4)
45
(39.4,40.5)
11
(9.9,1C.0)
69
(58.8,€0.4)
54
(52.2,52.8)
70
(59.6,61.2)

twins

N (L<L)
~E(a,b)»

2
(2,5,2,4)

-~

2
(3.1,2,8)

1
(103,1.3)
8
(5.1,4.6)
2
(1.8,1.7)
0
(0.4,0,5)
2
(2.7m2.4)

2
(1.9,1.7)

0
(1.1,0.9)

0
(1.3,1.2)

3
4.7,4.4)

2
(3.0,2.8)

2
(4.8'403)

1
(1.6,1.5)
,

(7.1,6. 3)

7
(7.9,7.6)

2
(7.2,6.4)

Chi2
(a,b)

0
0.216,0.177

0.648,0.382
0.006,0.008
2.649,3,600
0.002,0.006
0.032,0.035
0.293,0.110
0.000,0.005

0.143,0.119
0.231,0.205

0.961,0.656

0.519,0.354
2.448,1.751
0f037'07028
5.530,4.198

0.176,0.068

5.673,4.348
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Table 7 . 3

This shows a simple summary of the critical features of the
main genetic models which have been proposed, including the

. present one,

Phenotypes
Study Right Left
Ramaley (1913) RR RL LL
Trankell (1955) RR RL (1-x) IL x LL
Rife (1950) RR (1-x) L xRL LL
'Mixed®
Annett (1964) RR RL LL
Levy & Nagylaki (1972) CC:LL CC:I1 CC:11 Ce:ll
Ce:LL Ce:Ll ~ cc:LL ecc:ll
ce:ll

(L,1 = Left/right language dominance)

(C,c = Contra/ipsi~-lateral hand control)
Annett (1972) RS+ (RS-) RS- (RS+)
McManus DD DC DC cC



“able 7.4

7.65

Proportion of individuals of each genotype, by handedness

and parental handedness, for a p(L-true) of 9.5%, and

additive inheritance.

Parental type

RxR
Rx L
Lx1L

RxR
Rx1L
Lx 1L

RxR
RxL
I x1L

p(DD)

« 72677923
- 34526797
. 16402560
.65610000

. 78464120
.42396487
- 23348750
72497200

0.0
0.0
0.0
0.0

p(DC)

.25146843

.56697715
.48195500
« 30780000

p(cC)

.02175223
.08775397
« 35402500
.03610000

Right-handers

.20361667
.52215615
«51453737
» 25508300

01174201
.05387786
.25197509
.01994500

Left-handers

.8525130

.76362093
+40500000
.81000000

.14748630
23637900
«59500000
. 19000000



Table 7.2

.00

Shows, the predicted proportions of the various types of

-win pair, for monozygotic twins, by parental handedness.

Pair type
parental type
RxR

Rx L

L xL

NK

87.37
68.61
52,37
83.82

10.52
25.65
35. 77
13.34

2.11
5.74
11.86
2.82
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" Table 7.6

Shows the expected genotype probabilities for an individual

from a monozygotic twin pair, according to the ty of

the twin pair, and the parental handedness type.

Genotype DD DC cc
R-R_pairs

Pate-~

ntal

type

R xR <8317 .1618 .0062

RxL «5032 .4648 .0319

LxL 3131 5174 »1690

NK . 7826 .2064 .0107
R-L pairs

RxR 0.0 .8966 .1034

RxL 0.0 .8289 1711

LxL 0.0 +5051 .4948

NK 0.0 .8647 -1352
L-L pairs

R xR 0.0 . 7429 .2570

Rx L 0.0 6176 .3823

L xL 0.0 .2539 .7460

NK 0.0 .6806 <3194
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Table 7.7

Shows the observed‘values of the numbers of R-R, R-L and

L-L matings in the parents of various study populations. The
table also shows the total number of parental pairs (n), the
overall parental incidence of left-handedness (p(L)), and the
Chj-squared value for the goodness of fit of a hinomial
distribution.

Study B=R R=L L-L n p(IL) Chi2
II: grandparents 465 32 0 497 3.21% 0.55
Chamberlain (1928) 2031 137 9 2177 5.55% 15.18
Annett (1973) 1978 171 2 2151 4.06% 0.74
II: parents 766 67 4 837 4.48% 3.50
Rife (1940) 620 62 5 687 5.24% 5.76
I: parents 172 20 3 195 6.66% 6.03
Mascie~Taylor (1978) 163 29 1 193 8.03% 0.07
Ramaley (1915) 258 45 2 305 8.03% 0.01
Hicks & Kinsbourne _

(1976) 9235 150 28 1101 9.35% 42.58
- biological parents , .

I: propositi 337 81 0 418 9.68% 4.81
II: propositi 351 79 3 433 9.81% 0.40
Ferronato et al (1974) 61 15 0O 76 9.86% 0.91
Hicks & Kinsbourne

(1976) 54 39 15 108 31.94% 3.10

- step-parents
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Figure?l Shows the ramily data of Table 1 plotted, separately
for the progeny of R x R, R x L and L x L matirgs, as a
function of the overall incidence of left-handedness in

the particular study. Data points are plotted plus or minus
one standard error. R x R progeny are plotted as small
filled circles, Rx L progeny as open circles, and L x L
progeny as filled squares. In view of the small numbers

of L x L matings, severa' groups of studies have been com-
bined, as indicated by the two large inclusion brackets.

The abscissa represents the population incidence of left-
handedness, and the ordinate represents the percentage of

left-handedness in the particular progeny type being shown.



per
- cent

Left

8 10
per cent Left
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Figure:2 shows the goodness of fit of the Annett (1972)
model to all the 14 data sets of Table¥l, and all of the

18 MZ and 17 DZ twin data sets of Tablel2. Figures?2 to

3.3 are all basically similar and have the same conventions.
Figures¥2,13,76,318,50,711 and?13 each show six small

contour maps. The upper left map (a) is for the goodness

of fit of the progeny of R x R matings, the upper right

map (b) is for the goodness of fit of the progeny of R x L
matings and the middle left map (c¢) is for the goodness of
fit of the progeny of L x L matings., The combined values of
these three values are shown in the middle rigkt map (d4).
The goodness of fit of MZ twins is shown in the lower

left map (e) and the goodness of fit of the DZ twin data is
shown in the lower right map (f). The combination of the MZ,
DZ and Family data (i.e, maps 4, e and f) is shown in
Figuresil5,3.7,79 and312; it is not applicable in all

cages,

The abscissa of each box represents a particular value
of the d egree of inheritance; in figuresi3-12 it is the
value of p(LlDC), and in figuresl2 and#13 it is the size
of the 'right shift'(in z units). The ordinate in figures

73-12 is the hypothesised true incidence of left-handeness,
and in figuresl?2 and113 the ordinate is the proportion of
individuals who are of phenotype RS-.

Within the boxes are plotted contour maps of the
probability density of the goodness of fit of the particular
models. In general, green contours are acceptable with

n >0.05 and red contours are rejected with p {0.05. Green



7.7

contours are piotted at levels of 0.05, 0.10, 0.20,

0.3%0, 0.40, 0.50 (thickened line), 0.60, 0.70, 0.80,

and 0.90, and 0.95. Red contours are plotted at levels of
0.045, 0.0t, 0.005, 0.001 (thickened line), 0.0001,
0.00001, 0.000001 and 0.0000001, as well as at values of
0.955, 0.99, 0.999, 0.9999 and 0.99999 (i.e. the fit is
too good). '

In boxes a,b,c,e and f the red and green contours
may simply be read off to show the goodness of fit of a
particular model. For the combined family data (vox a),
and for the overall combined data (figuresi5j7,39 andi12),
the probability levels depend upon the particular number of
degrees of freedom used. As explained in appendix%}t, this
is somewhat controversial. For the family and combined data
I have therefore plo*:cd two distinct sets of probability
contours. The red and green contours represent the
probability values stated earlier for the more conservative
test of goodness of fit. In these boxes there is also
a heavy black line, which is always oOuWside the green area,
and this represents the goodness of fit at the 0.05 level, on
a more liberal test.

If for the combined data there is no fit both at the 0.0
level on the more liberal test, and at the 0.0000001 level

on the more conservative test, then no graph is given.
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For figuresi3 tol7 the degrees of freedom for boxes
=z-f, and the combined data, are 14, 14, 3, 17 (31), 18, 17
and 52 (66) respectively, liberal tests, where relevant,
being shown in brackets. For figuresi8 10712 the respective
degrees bf freedom are 12, 12, 3,15 (27), 17, 16 and 48
(60). For figure?2 the degrees of freedom are 14, 14, 9,
23 (37), 18, 17, 60 (74), and for figure?t13 are 12, 12, 9
21(33), 17, 16 and 56 (68). The difference between the
Annett and other models is that in the case of the Annett
model, data sets have not been combined when th=2 L x L
values are relatively small; in consequence tle estimate

of the Chi-squared and the df may be slightly in error.

Lgn
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Figure?3 Shows the goodness of fit of the Rife model to
all of the family data of Tablel! and to the twin data of
Table?2. See the legend to Figuret2 for details.
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Figure?4 Shows the goodness of fit of the Trankell model
to all of the family data of Table?! and the twin data
of Tabled2. See the legend to Figurel?2 for details.
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Figure?5 Shows the combined fit of the contour maps of

Figure74. See the legend to Figurel2 for details.
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Figure?¥6 Shows the goodness of fit of my own model,
to the family data of Table?!, and the twin data of
Table?2. Se the legend to Figure?2 for details,
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Figured}] Shows the combined fit of the contour maps of
Figurel6. See the legend to Figurei??2 for details.
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Figurei8 Shows the goodness of fit of my own model to a

slightly restricted set of family data and twin data
(see text). See the legend to Figurel2 for details.
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Figure]9 Shows the combined fit of the contour maps

of Figurel8. See the legend to Figure?2 for 8etails.
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Figure]l0 Shows the goodness of fit of the Rife model
to the restricted set of family and twin data (see

text). See the legend to Figure}2 for details.
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Figure7i1 Shows the goodness of fit of the Trankell model
to the restricted set of family and twin data (see text).
See the legend to Figure}2 for details.
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Figure}12 Shows the combined fit of the contour maps
of FigureJll. See the legend to Figure?2 for details.
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Figure3i3 Shows the goodness of fit of the Arnett model
to the restricted set of family and twin data (see text).
See the legend to Figure]2 for details.
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Figurejl4 Shows the proportion of R-L and I-L matings
in different studies as a function of the overall inci-
dence of left-handedness in that particular generation.
The step-parent data of Hicks and Kinsbourne (1976) have
been omitted as p(L) is exceptionally high at 31.9%.
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