DEPARTMENT OF STATISTICAL SCIENCE TAUGHT POSTGRADUATE STUDENT HANDBOOK

The Department of Statistical Science Taught Postgraduate Student Handbook has been written for postgraduate students admitted by the Department of Statistical Science to study for one of the following degrees:

- MSc Data Science
- MSc Statistics
- MSc Statistics (Medical Statistics)

The contents also provide information that may be useful for postgraduate students studying Statistical Science as part of the following degrees:

- MSc Computational Statistics and Machine Learning (known as CSML)
- MSc Data Science and Machine Learning (known as DSML)

However, students on these programmes should refer primarily to the corresponding information published by the Department of Computer Science at: http://www.cs.ucl.ac.uk/current_students/degree_programme/.

The Department of Statistical Science Taught Postgraduate Student Handbook is intended to provide particular information for students registered for the degrees listed above. General information about studying at UCL is given in the Academic Manual (http://www.ucl.ac.uk/srs/academic-manual/) and UCL Students (http://www.ucl.ac.uk/students/) sections of the UCL website. It is important that you are aware of the contents of these sections of the UCL website.

The Department of Statistical Science Taught Postgraduate Student Handbook contains numerous hyperlink sources of further information. The corresponding URL for each hyperlink is not always written out in full, so if you are reading a printed copy of the handbook, you may need to refer to the electronic version available at: https://www.ucl.ac.uk/statistics/current in order to access all of the information that you require.

The information given in this handbook is as far as possible accurate at the date of publication, but the Department reserves the right to make amendments before the commencement of, or during, the academic session to which it refers. Information concerning College regulations and procedures is given for guidance only and is not intended as a substitute for that contained in the UCL Academic Manual and on the main UCL website (available from the web addresses above).

Department of Statistical Science, University College London, September 2018.
CONTENTS

PROVOST'S WELCOME ... 5
DEPARTMENT OF STATISTICAL SCIENCE ... 6
Staff .. 6
 Academic staff .. 6
 Teaching staff .. 6
 Professional services staff ... 6
Staff with particular responsibility for taught postgraduates 6
 MSc Tutor .. 6
 Programme Administrator ... 6
 Personal Tutor ... 7
 Other relevant staff roles ... 7
Students' common room and Departmental student society 7
Study facilities ... 7
How UCL and the Department will communicate with students . 8
 Email .. 8
 DOSSSH .. 8
Processing of personal information .. 8
 How UCL uses student information .. 8
 Portico ... 9
 Return of coursework ... 9
 References ... 9
CALENDAR OF EVENTS .. 10
UCL term dates .. 10
Module selection and verification deadlines 10
UCL examination periods ... 10
Key dates ... 11
 Term 1 .. 11
 Term 2 .. 11
 Term 3 .. 11
 Summer .. 11
TEACHING AND STUDYING ARRANGEMENTS ... 12
Module System ... 12
Timetable .. 12
Scheduled teaching and learning activities 12
 Lectures .. 12
 Tutorials ... 12
 Workshops ... 12
 Problem classes ... 12
 Office hours .. 12
Learning resources and key facilities .. 13
 UCL Library Services ... 13
 UCL Information Services Division (ISD) 13
 UCL Centre for Languages & International Education (CLIE) ... 14
 Moodle .. 14
 Calculators ... 14
 Statistical tables ... 15
 Feedback on student work .. 15
 Model answers ... 16
WHAT IS EXPECTED OF STUDENTS ... 17
Student code of conduct ... 17
Attendance requirements ... 17
 Tier 4 students: absence from teaching and learning activities .. 18
CHANGES TO REGISTRATION STATUS .. 37
Changing modules .. 38
Changing programme .. 38
Tier 4 students and changing programmes .. 38
Interruption of studies .. 38
Withdrawing from a programme ... 38
STUDENT SUPPORT AND WELLBEING .. 39
Central wellbeing and support services .. 39
The Student Centre ... 39
Student Disability Services ... 39
Student Psychological Services ... 39
International student support and welfare ... 39
Accommodation .. 40
Financial support .. 40
Student of Concern ... 40
Registering with a doctor and out-of-hours support services 40
Registering with a doctor .. 40
Out-of-hours support and information helpline 41
Crisis support - immediate help ... 41
Equality and diversity .. 41
Inclusion Leads ... 41
UCL’s zero tolerance policy on harassment and bullying 41
Harassment and bullying .. 41
Sexual misconduct .. 42
Support for students who have been affected by sexual violation 42
STUDENT REPRESENTATION ... 42
Students’ Union UCL ... 42
Student societies .. 42
Academic Representatives ... 43
Staff-Student Consultative Committee .. 43
Departmental Teaching Committee .. 43
The Advice Service .. 43
Student complaints .. 44
Informal resolution .. 44
Formal complaints .. 44
STUDENT FEEDBACK ... 44
Student surveys .. 45
Student evaluation questionnaires .. 45
The Annual Student Experience Review (ASER) 45
UCL ChangeMakers ... 45
EMPLOYABILITY AND CAREERS ... 46
Careers information .. 46
UCL Careers .. 46
Royal Statistical Society (RSS) accreditation 46
Entrepreneurship at UCL ... 47
UCL Global Citizenship Programme ... 47
HEALTH, SAFETY AND SECURITY .. 47
Health, safety and security at UCL .. 47
AFTER STUDY .. 48
Transcripts ... 48
Graduation Ceremonies ... 48
UCL Alumni Online Community ... 48
MODULE INFORMATION ... 48
Dear students

To those of you who are returning, welcome back. To those of you who are new, congratulations for choosing UCL as your university. Whatever your degree programme, your UCL education offers fantastic opportunities to stretch your intellect, expand your experience and develop your skills. And you are in London, which was this year recognised by QS as the best city in the world for students.

We want you to learn how to think, not what to think: through our Connected Curriculum you have the opportunity to take part in research and enquiry and to create new knowledge. Your programmes are informed by the work of UCL’s world-leading researchers and are designed to develop your skills of analysis and problem-solving, preparing you for your career, wherever it takes you. At UCL, we believe the best way to solve a problem is to bring together thinking from different academic disciplines. This is reflected in the UCL Grand Challenges, our joined-up approach to the world’s most pressing problems. Most of our degrees allow you to take elective modules from other disciplines within UCL and we encourage language study, to bring new perspectives to your studies.

I warmly encourage you to shape your journey at UCL. Take our university-wide surveys and make your voice heard. Become a ChangeMaker or an Academic Representative and work in partnership with academics to make your programme of study even better.

You’ll also have opportunities to learn outside your degree programme. Participate in our Global Citizenship Programme, exploring ways of addressing some of the world’s most pressing challenges in the two weeks of summer term following exams. Get involved with amazing volunteering opportunities (coordinated by the Volunteering Services Unit) and make a difference locally. Investigate opportunities for entrepreneurship through UCL Innovation and Enterprise.

UCL is first and foremost a community of great minds. You are a valuable member of that community. I hope you will take every opportunity to shape your time here, so that your experience is the best possible.

Professor Michael Arthur
UCL President and Provost
DEPARTMENT OF STATISTICAL SCIENCE

The Department of Statistical Science is a constituent department of the Faculty of Mathematical and Physical Sciences (abbreviated to MAPS). Some information about the history of the Department is provided on the Departmental website.

The Department of Statistical Science is located on the first and second floors of 1-19 Torrington Place. The offices of the academic staff are all in this location. The Teaching & Learning Office can be found in room 138 on the first floor.

Staff

Academic staff

Prof RE Chandler (Head of Department)

Dr G Ambler Dr G Baio Dr JA Barber
Dr A Beskos Dr C Cotar Prof M De Iorio*
Prof P Dellaportas Prof T Fearn Prof JE Griffin
Prof SE Guillas Dr FJ Király Dr SJ Livingstone
Dr I Manolopoulou Dr G Marra Dr PJ Northrop
Dr AG O’Keeffe Prof SC Olhede Prof RZ Omar
Dr Y Pokern Dr K Sadeghi Prof AS Siddiqui
Dr K Stavrianaki Dr RBA Silva Dr ADL van den Hout
Dr T Wang Dr HM Wilkinson-Herbots Dr J Xue

Teaching staff

Dr N Abourashchi Dr A Donov Dr SJ Harden
Dr J Herbert* Dr TR Honnor Dr EM Jones
Dr MJ Rassias Dr C Selcuk*

*members of staff indicated with an asterisk are based outside UCL

Professional services staff

Mrs D Jayawardena Wilkinson (Departmental Manager)

Dr RG Evans Ms KA Leport Ms HAC Moesli
Mr J Picken Mr C Visavakul Ms L Whitlie

Staff with particular responsibility for taught postgraduates

MSc Tutor

The MSc Tutor in the Department of Statistical Science is responsible for the day-to-day running of the three programmes listed at the top of page 1. The equivalent responsibility for the CSML and DSML programmes is held by Programme Tutors in the Department of Computer Science. However, the MSc Tutor in the Statistical Science Department acts as the Statistics Tutor to CSML and DSML students, whom they may consult about the Statistics modules in their degree programmes.

The MSc Tutor is Dr C Cotar (room 126, c.cotar@ucl.ac.uk).

Programme Administrator

The Programme Administrator works closely with the MSc Tutor and is the first point of contact for many aspects of your studies. For example, you should contact the Programme
Administrator to notify absence from college, to submit medical documentation or to change a module registration.

The Programme Administrator is Ms L Whitlie (room 138).

Personal Tutor

UCL is committed to providing all students with the academic guidance and personal support that they need to flourish as members of our active learning and research community. As part of the wider support infrastructure provided by a programme, every taught postgraduate student will be assigned a member of staff who can provide constructive academic and personal development guidance and support. At the start of the year, students will be provided with the name and identity of their Personal Tutor, the date of their first meeting, and where and when the Personal Tutor can be found in term time. Students are encouraged to be proactive in engaging with their Personal Tutor, as it is the responsibility of the student to keep in touch.

Your Personal Tutor’s name is shown on your Portico record (see “Portico” section on page 9) and it is expected that it will be the same person throughout the whole of your degree programme.

Further information:

- **Personal Tutors**

 If you become unhappy with your degree programme, or a particular module, or with your progress, or if you cannot cope, or if you have other problems, you should immediately discuss the matter with the MSc Tutor, Programme Administrator or your Personal Tutor. Such problems are often much simpler to deal with if they are addressed immediately. You will then be directed to an appropriate person for more specialist advice if that is necessary.

Other relevant staff roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careers Tutor</td>
<td>Dr C Cotar (room 126)</td>
</tr>
<tr>
<td>Chair of Staff-Student Committee</td>
<td>Dr SJ Harden (room 140)</td>
</tr>
<tr>
<td>Chair of Departmental Teaching Committee</td>
<td>Dr J Xue (room 141)</td>
</tr>
</tbody>
</table>

Students’ common room and Departmental student society

Room 117 is the common room for all taught programme students registered in the Department of Statistical Science. All such students are eligible for membership of the student-run Statistics Society, which organises social and other activities. Any mail arriving in the Department addressed to taught programme students will be placed in the pigeonholes in the Students’ Common Room.

Study facilities

Masters students have their own study room (the Postgraduate Study Room, room 123), which contains several PCs. This facility is managed by the Departmental Systems Administrator, Mr C Visavakul (room 132, c.visavakul@ucl.ac.uk). Students may also use the lecture room 102 for study when it is not being used for lectures or other classes and meetings.

Departmental opening hours are 08:00 to 19:00 on weekdays (Mondays to Fridays). Outside these hours postgraduate students still have access to the building via their entry/ID cards during 1-19 Torrington Place opening hours, which are 06:30 to 23:00 on
weekdays and 08:00 to 20:00 at weekends. Access to the Department outside normal office hours will require knowledge of the key-pad entry codes, which can be obtained from the Departmental Office (room 120). Please note that out-of-hours access is restricted to Departmental rooms only and that the rest of the building (including the ISD computer cluster, room 113) will still close at 19:00.

There is substantial space for reading and studying in the College Library (see page 13).

How UCL and the Department will communicate with students

UCL will communicate with students via:

- **UCL student email** – Students should check their UCL email regularly.
- **UCL Moodle** – UCL’s online learning space, used by module organisers, programme leaders, departments and faculties to provide essential information in addition to learning resources.
- **myUCL** – A weekly term-time e-newsletter to all students (undergraduate and postgraduate) at UCL, which covers key internal announcements, events and opportunities.
- **UCL Instagram** – UCL’s official Instagram channel, featuring news, events, competitions and images from across the UCL community.
- **@ucl Twitter channel** – Sharing highlights of life at UCL from across UCL’s diverse community.

Email

Email is used for communication throughout the College and you will be allocated an email address by UCL. Please check your UCL email account regularly. There may be urgent messages left for you, e.g. from Student and Registry Services, the Teaching & Learning Office, your Personal Tutor, or from staff teaching modules that you attend.

Your tutors, lecturers and College administrative staff will use your College email address and expect you to read and act promptly upon all messages sent to you at this address. If you wish to use only your own email address from a provider external to the College, then it is your responsibility to arrange for emails to be forwarded from your College email address. However, UCL cannot be held responsible for mail that is delayed or lost as a result of being forwarded to an external provider. Any consequences arising from not acting upon emails to your College address rest with YOU.

DOSSSH

The Department maintains a Moodle space called the “Department of Statistical Science Student Home” (DOSSSH) to which all Statistical Science students have access. Please check the DOSSSH page regularly. The DOSSSH page contains notices about modules, examinations and other useful information about the Department, as well as downloadable forms and links to resources that are described elsewhere in this handbook.

Processing of personal information

Whilst you are a student at UCL, the College will need to store and communicate information about you. This section summarises UCL and Departmental procedures with respect to such information.

How UCL uses student information

UCL uses student information for a range of purposes, including the provision of teaching and learning, managing accommodation and ensuring health and safety. Information about
students will only be shared within UCL when necessary or appropriate. UCL may be required by law to share student information with some external agencies for a variety of purposes, such as the Higher Education Statistics Agency and the Office for Students. After students leave UCL, certain information is retained in accordance with UCL’s Data Retention Schedule. You can see how UCL uses student information in the UCL privacy statement.

Further information:
- UCL General Student Privacy Notice
- UCL Information Security Policies

Students may send queries on data protection matters to the following University Data Protection Officer UCL e-mail address: data-protection@ucl.ac.uk.

Portico

Portico is the main UCL student information system which is used by all students for:
- Updating personal data such as addresses or contact numbers
- Completing online module registration
- Viewing information about programmes/modules
- Viewing examination timetables and results
- Pre-enrolment and re-enrolment
- Applying for programme transfer
- Applying for graduation ceremonies

Further information:
- Portico login
- Portico Helpdesk

If you need a document that can be used to confirm your registration status at UCL, you can print out a Statement of Student Status letter or an opening a bank account letter via Portico. Just log into Portico and click on the Statement of Student Status link on your Portico home page. Alternatively you can send an email request to studentstatus@ucl.ac.uk with your name, student number, date of birth and desired delivery address. Please note that the Department will NOT issue certificates of student status or attendance.

It is your responsibility to ensure that your personal details held on the UCL central record are correct and up-to-date. Instructions on how to update your personal information can be found on the UCL Students website. Any consequences arising from the failure to correct or update your personal information rest with YOU.

Return of coursework

Marked coursework, bearing a grade, may be returned to you via your pigeonhole, in classes, or through the Teaching & Learning Office. These routes are not completely secure and may result in other students seeing your grade. If you are unhappy about this, you should discuss your concerns with the module tutor.

References

We need your explicit permission to give any reference for you. This applies to ALL references, (e.g. for a landlord, a prospective employer or a Masters degree programme). Thus, when you give either the Department’s or a tutor’s name as a referee, it is important that you complete and sign a “Reference Request” form confirming that you have done so. The form is available from the Teaching & Learning Office and the DOSSSH Moodle page (see page 8).
CALENDAR OF EVENTS

UCL term dates

Terms for the 2018/19 session are based on the pattern of 12 weeks, 11 weeks and 7 weeks.

First Term
Monday 24 September 2018 – Friday 14 December 2018

Second Term
Monday 07 January 2019 – Friday 22 March 2019

Third Term
Tuesday 23 April 2019 – Friday 07 June 2019

For those departments that operate them, Reading Weeks are the weeks beginning Monday 05 November 2018 (Term 1, Week 7), and Monday 11 February 2019 (Term 2, Week 6).

Christmas College Closure
Close 17:30 Friday 21 December 2018

Easter College Closure
Open 09:00 Wednesday 02 January 2019
Close 17:30 Tuesday 16 April 2019
Open 09.00 Tuesday 23 April 2019

Bank Holidays
Closed - Monday 06 May 2019
Closed - Monday 27 May 2019
Closed - Monday 26 August 2019

Further information:

• [Term dates 2018/19](#)

Module selection and verification deadlines

Initial module selections will need to be made by the following deadlines:

Students select modules for the year ahead (any changes to Term 1 modules will also need to be made by this deadline) Term 1, Week 3

Departments approve selections for the year ahead Term 1, Week 5

Students verify module selections and notify the Department if they want to make any changes to their Term 2 or 3 modules. Term 1, Week 11

Departments approve any changes to Term 2 or 3 modules. Term 1, Week 12

Exact deadlines will be published each year in the Student and Registry Services calendar and in the ‘Module Selection Task’ on Portico.

It is very important that module selections are verified by the above dates as the examination timetable will be based on the information recorded on Portico at this point.

UCL examination periods

Main Exam Period
Thursday 25 April 2019 – Friday 07 June 2019

Late Summer Exam Period
To be confirmed – check the above link for updates
Key dates

Term 1

- **Week 0**: All students have to carry out College enrolment and module registration. Further details concerning induction arrangements for new students are provided upon arrival at the Department.

 College enrolment is organised by Student and Registry Services, who send you information about the procedure before the start of the term. New students must complete enrolment in person when they arrive at UCL. Continuing students can generally re-enrol online.

 Module registration is done using the online Portico system. The procedure will be explained to you upon arrival (see also “Degree Programme Specifications” section on page 20). Tutorial groups are allocated automatically and your groups will appear in your online timetable (see “Timetable” section on page 12).

 Foundation Fortnight: details are given to you on arrival at the Department.

- **Week 2**: Beginning of lectures for all modules in the Department of Statistical Science.

- **Week 3**: This is the deadline for making Term 1 module amendments.

- **Week 7**: This is Reading Week. Classes in the Department of Statistical Science are replaced by self-study activities, including some set by the module lecturers. Not all departments observe reading week and you MUST attend classes given in other departments if they continue during this time.

- **Week 11**: This is the deadline for making Term 2 module amendments.

- **Week 12**: End of all term 1 teaching in the Department of Statistical Science.

Term 2

- **Week 1**: Beginning of lectures in the Department of Statistical Science. Students should check their online timetable for the Term 2 tutorial arrangements, and also check for any other timetable changes that may have occurred.

- **Week 6**: This is Reading Week. Refer to the corresponding item in Term 1 for details.

- **Week 11**: End of all teaching in the Department of Statistical Science.

Term 3

- **Week 1**: Some revision classes will be offered. Thursday is the start of the main examination period.

- **Week 7**: Friday is the end of the main examination period.

Summer

- Students begin work on their project at the start of June, culminating in an oral presentation and submission of the written dissertation at the start of September.

- For students who are required to resit elements of the taught component during the summer, these assessments will take place in the late summer examination period.

 Modules not organised by the Department of Statistical Science may not follow the above schedule. For further information you should check with the relevant teaching department.
TEACHING AND STUDYING ARRANGEMENTS

Module System
Taught postgraduate programmes are made up of component modules. Most modules consist of lectures supplemented by at least one of the following: tutorials, workshops, problem classes. The proportions of these activities vary over modules; details for modules offered by the Department of Statistical Science are provided later in this handbook.

Timetable
The timetable for lectures, workshops and problem classes can be found at http://www.ucl.ac.uk/timetable. After making your module selections on Portico, tutorial allocation will be arranged by the relevant Teaching & Learning Administrator before lessons start and your tutorial group will automatically appear in your online timetable. However, it may take one or two days after registration has been approved before all of the classes appear on your personal timetable, particularly for tutorials. Check your timetable frequently, in case alterations have been made. Note also that, once allocated, your tutorial group will NOT be changed unless you can demonstrate a timetable clash.

Although the timetable states that lectures (and other classes) begin and end on the hour, there is a College-wide agreement that this refers to a starting time of 5 minutes past the stated hour and a finishing time of 5 minutes to the hour. This should give you time to get to your next lecture before it is due to start.

Scheduled teaching and learning activities

Lectures
These are formal and can involve large groups, often including students from other degree programmes. Where possible, Statistical Science lectures take place in lecture rooms 102 and 115 in 1-19 Torrington Place. These rooms are too small for many of the larger modules, however, and therefore many Statistical Science lectures take place in other rooms around the College, as do lectures for other UCL modules.

Tutorials
Small group weekly tutorials are provided for some modules. These are less formal than lectures and enable you to raise your own questions about course material, as and when they arise from lectures or coursework.

Workshops
Workshops, also referred to as "practical classes" within the Department, involve doing set work under guidance from the module staff. Some workshops will take place in computer cluster rooms. You should take a pocket calculator to all workshops (see page 14 for guidelines regarding calculators).

Problem classes
These involve discussing coursework with the whole class.

Office hours
For modules offered by the Department of Statistical Science, each member of the academic and teaching staff should nominate at least one weekly office hour during term time in which they will be available to answer general queries arising from lectures, problem
sheets, etc. If you need to consult a module lecturer, please do so in an office hour. *In particular, in the period leading up to any assessment (see "In-Course Assessment" section on page 29) the module lecturer will set aside a fixed time or times at which (s)he will be available to answer questions about the assessment. (S)he will NOT answer queries about the module outside these times until the assessment is over.*

For other modules, refer to the corresponding information published by the relevant teaching department.

Learning resources and key facilities

UCL Library Services

UCL has 19 libraries and a mixture of quiet study spaces, bookable study rooms and group work areas. Each library has staff that students can ask for help. The UCL Library Services page has information for students about using the library, services available, electronic resources and training and support.

- **Library information for students**

The Science Library (in the DMS Watson building, Malet Place) contains an exceptionally good collection of statistical science text and reference books. Copies of most books that are highly recommended for modules taught by the Department are included in the Short Loan Collection on the ground floor in the Science Library. The Collection consists of all subjects of the Science Library and is arranged on open access shelves in one alphabetical sequence under authors. The period of loan for statistical science books is 2 days. Books cannot be taken out of the room without being issued. Other recommended books, for which there is less demand, are kept on the third floor of the Science Library. The loan period assigned to these is one week. There are longer loan periods for other books.

UCL Library Services has developed a set of online training materials, to help users find and use information effectively. Topics covered include finding materials in reading lists; search tips and techniques; accessing electronic resources; referencing; and copyright and plagiarism issues. Students taking project modules may also benefit from the more advanced “WISE for Built Environment, Engineering, Maths and Physical Sciences” course, accessible from https://www.ucl.ac.uk/library/training/guides.

A new graduate Research Grid was opened recently on the fourth floor of the Science Library. This can accommodate up to 74 graduate students and offers a variety of workstations and study spaces to suit individual study as well as collaborative social learning. The new learning space features a group meeting room, a private Skype point, student lockers, 24 all-in-one Desktop PCs and a hot water point for tea and coffee.

UCL Information Services Division (ISD)

The UCL Information Services Division (ISD), the primary provider of IT services to UCL, offers IT learning opportunities for students and staff in the form of ‘How to’ guides which provide step-by-step guidance to all of ISD’s key services, including email and calendar services, user IDs and passwords, print, copy and scanning, wifi and networks. There are also opportunities for digital skills development through face-to-face training in areas such as data analysis, programming, desktop applications and more, along with individual support through drop-ins and via the ISD Service Desk. UCL also has a licence for Lynda.com which provides thousands of high quality video-based courses from programming to presentation skills. Learning on Screen (“bob”) provides students with access to an archive of 65 free-to-air channel programming for educational usage. In addition, Kanopy (“thoughtful entertainment”) is available to UCL students, and offers a wide range of movies.
E-learning services available to students include Moodle, Turnitin and Lecturecast and allow students to access online course materials or take part in online activities such as group work, discussions and assessment. Students can re-watch some lectures using the Lecturecast service and may also use interactive tools in the classroom.

ISD provides desktop computers and laptops for loan in a number of learning spaces. Information on Learning and Teaching spaces as well as a map of computer workrooms is available on the ISD website. Computers at UCL run a Desktop@UCL service which provides access to hundreds of software applications to support students. It is also possible to access a large range of applications remotely, from any computer, using the Desktop@UCL Anywhere service. Students also have access to a range of free and discounted software via ISD Software for Students.

All students are encouraged to download the UCL-Go app, available for iOS and Android devices. The app gives access to Moodle and timetabling and shows where desktop computers are available on campus.

UCL Centre for Languages & International Education (CLIE)

The UCL Centre for Languages & International Education (CLIE) offers courses in 13 foreign languages and English for Academic Purposes (EAP), across a range of academic levels to support UCL students, staff and London’s wider academic and professional community. CLIE provides modern foreign languages and EAP modules for UCL students, courses satisfying UCL’s Modern Foreign Language requirements and degree preparation courses for international students. CLIE also offers UCL summer school courses. Students can access language-learning resources online through the CLIE Self-Access Centre, including film and documentary and books for self-study.

Further information:
- CLIE website
- CLIE Self-Access Centre

Moodle

Moodle is UCL’s online learning space. It includes a wide range of tools which can be used to support learning and teaching. Moodle is used to supplement taught modules, in some cases just by providing essential information and materials, but it can also be integrated more fully, becoming an essential component of a module. Some modules may use Moodle to provide access to readings, videos, activities, collaboration tools and assessments.

All modules in the Department of Statistical Science have a presence on Moodle, and students registered for these modules can use the service to access online resources such as module information, lecture notes and assessment material. Students are given additional printing credits, to allow them to print copies of the lecture notes for each of their statistics modules.

Further information:
- Moodle
- Frequently Asked Questions
- Quick Start Guide

Calculators

There are eight calculator models that the College has approved for use in examinations. These are the Casio FX83ES, FX83GT+, FX83MS and FX83WA which are all battery powered, and Casio FX85ES, FX85GT+, FX85MS and FX85WA which are all solar powered. Students on the degree programmes covered by this handbook may NOT use any...
other type of calculator in Statistical Science examinations. Students are therefore strongly advised to purchase one of these calculators at the start of their degree programme. The use of a non-approved calculator constitutes an examination irregularity (i.e. cheating) and carries potentially severe penalties.

Statistical tables

Statistical tables are provided by the College for use in all examinations set by the Department. The currently provided tables are *New Cambridge Statistical Tables* by D.V.Lindley & W.F.Scott. These will be the statistical tables referenced in the Department’s modules.

Feedback on student work

Students receive feedback on all items of assessed coursework (see “Components of Compulsory Assessment” section on page 29) and on selected items of non-assessed work. Feedback may be given in tutorials, problems classes or electronically. It may take the form of verbal or written comments, either personalised or in the form of general points that emerged from the class as a whole. These comments are intended to help you see what was done well and where there is room for improvement. For assessed work, the comments are also provided to help justify the grade awarded.

For assessed work, feedback will include a *provisional* letter grade. The correspondence between letter grades and percentage marks, along with guidance regarding the interpretation of each grade, is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mark</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>≥ 80</td>
<td>The criteria for an A grade are all met. Additionally, exceptional quality has been demonstrated with respect to at least two of the following: understanding, insight, depth of analysis or clarity of discussion, with evidence (where appropriate) of relevant knowledge or reading.</td>
</tr>
<tr>
<td>A</td>
<td>70 to 79</td>
<td>The criteria for a B grade are all met, along with one or more of the following: high quality answers in a wide range of questions, evidence of a very sound understanding, thoroughness of discussion and clarity of expression, evidence of insight, wide knowledge or reading. There may be a small number of relatively minor errors or inconsistencies, but there should not be serious errors in knowledge or understanding.</td>
</tr>
<tr>
<td>Pass</td>
<td></td>
<td>Good understanding of the questions asked, good knowledge of the main aspects of the subject and good levels of appropriate skills (such as the ability to carry out calculations and manipulations, and to develop a logical argument), along with a level of understanding appropriate to a Masters qualification. At the higher end of the range, one would expect to see clear expression and presentation. A few mistakes are allowable, providing they are not serious.</td>
</tr>
<tr>
<td>B</td>
<td>60 to 69</td>
<td></td>
</tr>
</tbody>
</table>
Grade Mark Interpretation

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mark</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>50 to 59</td>
<td>Reasonable understanding of the subject (sufficient for a pass at Masters level) and a reasonable level of ability in the appropriate skills. At the lower end of this range, work may differ from scripts in the 46-49 range by showing a wider knowledge or having more convincing answers. At the higher end, work in this category may fail to reach Grade B either because it does not demonstrate a wide enough range of knowledge (e.g. some good answers, but too many questions or part questions either omitted or answered inappropriately), or because skill deficiencies lead to too many mistakes or badly presented answers.</td>
</tr>
<tr>
<td>D</td>
<td>40 to 49</td>
<td>Some limited understanding of the subject, but insufficient for a pass at Masters level. This grade might indicate, for example, a serious but largely unsuccessful attempt at a paper; or that some progress has been made but in an insufficient number of questions or at an insufficient level of analysis. It might also indicate answers that show some knowledge of the main concepts, definitions and terminology but are limited, for example, by errors or ambiguities in notation, or because their relevance to the question is not made clear.</td>
</tr>
<tr>
<td>Fail</td>
<td>F ≤ 39</td>
<td>At the lower end of this scale, the answers will show little or no understanding of either the questions or the subject. At the higher end, a very limited understanding may be present, but answers will present little evidence of relevant knowledge and contain many mistakes, irrelevancies or misunderstandings. In practice, one might expect a mark at the lower end to indicate that a candidate has not made a serious attempt at answering the questions or who has practically no understanding of the subject; and a mark at the higher end to arise when questions have been attempted but the answers contain little of relevance.</td>
</tr>
</tbody>
</table>

Model answers

Many Statistical Science modules have regular sets of exercises. These are designed to help students learn and, in most modules, it is essential that students do the exercises in order to understand the subject. Module lecturers are often asked to provide model answers to the exercise sheets. There is a similar demand for model answers to past exam papers. Lecturers do provide model or outline answers to some exercises and to some exam questions, but it is Departmental policy not to do so in general, for a number of reasons:

- We do not want to encourage students to “learn answers” but rather to create a culture in which they know that they must work out the answer for themselves. Often it is not the answer, but the process of working it out that is the main learning experience.

- We are trying to encourage independent thought and understanding, so that students can answer (more or less well) different questions, similar questions in different forms, and to solve related problems. Understanding in statistical science, and in mathematics, comes much more from doing than from reading.

- It is important for students to learn how to persevere with a problem when they are “stuck”. In the past, we have found that model answers handed out in one year are often passed on to students in a subsequent year, to the detriment of the learning process.

A common argument put forward by students is “Yes, we want to do the exercises, but we would like model answers in order to check that we have the right method and answer”. Of course it can sometimes be helpful to look at answers, but it is also important to learn how to verify answers when they are not otherwise available, and to gain the confidence to know
when you are right. One function of tutorials is to discuss problems or work through them with the teacher, and this is one way in which answers may be obtained. Part of the skill of the teacher is to help the student to progress without “spoon feeding” the answer.

Having said all of this, the Department recognises that while preparing for examinations in particular, it can be useful for students to have the final answers (rather than complete solutions) to past exam questions: this provides some confidence that the answers obtained while attempting past papers are correct. All teaching staff should provide such “final” answers routinely, for selected exam papers from 2016 onwards, via their module Moodle pages (see page 14).

WHAT IS EXPECTED OF STUDENTS

Student code of conduct

UCL enjoys a reputation as a world-class university. It was founded on the basis of equal opportunity, being the first English university to admit students irrespective of their faith and cultural background and the first to admit women. UCL expects its members to conduct themselves at all times in a manner that does not bring UCL into disrepute. Students should ensure they read and familiarise themselves with UCL’s Student Code of Conduct and be aware that any inappropriate behaviour may lead to actions under UCL’s Student Disciplinary Procedures.

Further information:
- UCL Student Code of Conduct
- UCL Disciplinary Code and Procedure in Respect of Students
- UCL Code of Practice on Freedom of Speech

Attendance requirements

UCL expects students to aim for 100% attendance, and has a minimum attendance requirement of 70% of scheduled learning, teaching and assessment activities. If a student does not meet this requirement they may be barred from summative assessment.

You are expected to be in attendance during the UCL terms throughout your programme of study. This includes reading weeks (see page 10). If you wish to be absent from College for some special reason, you should obtain permission beforehand from the MSc Tutor.

If you have a good reason for needing to miss a compulsory class, you must inform the Programme Administrator and lecturer or tutor concerned in order to be excused. The Department keeps records of coursework submission and attendance at tutorials and workshops. At the end of each term, you will be required to explain an unsatisfactory attendance record to the Faculty Tutor. An inadequate explanation may lead to your studies being suspended.

You may also be taking some modules provided by other departments, where arrangements are likely to be different from those in the Department of Statistical Science. It is important that you know what is expected of you in each of these modules. You may be barred from taking examinations if you have not attended enough tutorials or submitted enough coursework, **EVEN** if it does not count towards the final examination mark.

The importance of attendance at lectures and other classes has been stressed above. Requests for special attention (e.g. for missed notes, handouts, problem sheets etc.) due to non-attendance without good reason (e.g. medical), do not create a good impression. The
same applies to non-submission of coursework. Remember that when writing a job reference for you, we are usually asked to provide information about your attendance and punctuality, as well as your ability, etc. If you are absent from any lecture or other class, you should endeavour to copy up notes promptly.

Further information:
- Attendance Requirements
- Barring Students from Assessment

Tier 4 students: absence from teaching and learning activities

In line with UCL’s obligations under UK immigration laws, students who hold a Tier 4 visa must obtain authorisation for any absence from teaching or assessment activities. UCL is required to report to UK Visas and Immigration (UKVI) and engagement monitoring is undertaken by departments at regular points during a student’s registration. This is not only to meet the UKVI requirements, but also to identify any problems as early as possible to ensure action is taken to advise or assist the student.

Further information:
- Authorised Absence
- UCL Immigration and Visas

Absence from assessment

Any student who is absent from an assessment will receive a mark of zero and will be considered to have made an attempt, unless they obtain authorisation for the absence and formally defer their assessment to a later date by submitting a request for Extenuating Circumstances (see page 28).

Studying

Tutorials

Tutorials in the Department of Statistical Science are compulsory and provide the opportunity to get personal attention. It is important to prepare yourself by reading through the latest lecture material and trying the relevant exercises sheets before the tutorial. Think of questions relating to the course material to ask; make a note of points that you don’t understand so that you can have them clarified in tutorials. Take your recent lecture notes and exercise sheets to each tutorial, in particular those relating to material that you know will be discussed.

Lectures, workshops and problem classes

Most new material is presented in lectures; some might be introduced by your trying ideas in workshops. The workshops give the opportunity to solve problems with guidance, a helpful alternative method of learning. In most modules learning is sequential; you need to have met and understood past material in order to follow the current material. You are therefore strongly advised to attend all classes. Teaching staff and demonstrators are able to give some personal attention in workshops; absences are likely to be noted.

Staff sometimes receive complaints from students about disruption and noise (caused by other students) in large classes. All students are respectfully asked to consider others when in the classroom: excessive noise and disruption can have a negative impact on the learning experience for everybody. Any student who is persistently disruptive will be asked to leave the classroom, and will receive an official warning from their Programme Tutor with an appropriate note placed on the student’s record.
Coursework
In the Department of Statistical Science regular, often weekly, coursework is set. Some of this is for in-course assessment, but much of it is to help you to learn the material being taught. You will normally receive feedback from coursework during problem classes, tutorials or workshops, as appropriate for the module. You will generally be expected to hand in your work so that we can monitor your progress. The detailed arrangements for coursework will vary between modules and you will be told about them at the start of each module. You should ensure that you know what is required for each module that you take.

Our teaching assumes that you have attempted the coursework, and we may refer to it in subsequent classes and coursework. In-course assessment is compulsory: it contributes to your final examination mark for that module and non-submission may mean that you cannot pass the module (see “Assessment” section on page 29). Furthermore, for modules with tutorial classes your tutor will record whether you have submitted each piece of non-assessed coursework by the specified deadline and whether it is a reasonable attempt (i.e. an attempt of pass standard). The Department of Statistical Science expects a reasonable attempt for at least 70% of non-assessed coursework in each module. If you fail to satisfy this requirement you may be barred from taking the examination for the module.

Ensure that you leave yourself enough time to complete each exercise sheet. Weekly sets of exercises may well need about 5 hours work on them, including reading time. In some modules, more substantial sets of exercises are given out on a fortnightly basis: it is recommended that you start them in the first of the two weeks allowed. A prompt start to exercises set for in-course assessment is well advised.

It is good practice to aim for legibility, accuracy and clarity in your coursework, whether or not it is for in-course assessment (the same applies to examinations, of course!).

Self study
After a lecture, study your notes carefully. Work through the details slowly and annotate your notes in a different colour to that used in taking them; this can help with revision. It is important to keep on top of each module by reviewing the appropriate notes before the next class (lecture, tutorial, problem class or workshop). Read supporting material from textbooks as necessary. Start coursework well in advance of the submission date (see the above comments on coursework).

The following will help you understand and communicate your understanding of course material:
• continual practice at solving problems;
• thorough preparation for all classes;
• regular revision of course material as the module progresses;
• seeking help when you have difficulties.

The Department has prepared a self assessment questionnaire to help you to evaluate what you are getting out of your studies and to take responsibility for your own progress. This questionnaire is available on the DOSSSH Moodle page (under the Student Feedback topic). Try completing it for each module during reading week.

Total workload
For a typical 15 credit module, you should expect a workload of about 9 or 10 hours per week – this includes lectures, workshop, problems class, tutorial, reading and coursework, as appropriate for each module. For example, if you are studying the equivalent of four 15 credit modules per term, your total weekly workload is expected to be around 40 hours.
As part of monitoring your own progress, you may find it helpful, in some weeks, to keep a diary of the time you spend actively working.

DEGREE PROGRAMME SPECIFICATIONS

Module codes

Each module offered in a programme has a code: this consists of a four character prefix that indicates the department responsible for organising the teaching of that module, followed by four numbers to provide a unique code within that department. Modules in Statistical Science have the prefix STAT (see the lists of modules that follow).

Selecting modules

Each degree programme has some compulsory modules that cover the core material. These are then supplemented through the choice of appropriate options to make up a total of 180 credits for the entire programme. To take an optional module, you must register for it on Portico. Instructions on how to do this can be found on the Portico website (log on to Portico and select the "Module registration documentation" option from within the "Module Selection" container). In choosing options, you are advised to try and balance the amount of work evenly between the two terms.

The deadlines for making module selections are outlined in the Key Dates section (see page 10) and are posted on Portico each year. It is therefore essential that you make sure you research your module choices thoroughly before selecting them. If you want to make a change after you have confirmed your module choices, please consult the MSc Tutor. Changes can be made by the Programme Administrator and you will need to request any changes in good time before the relevant deadline.

MSc Data Science

Aims and objectives

To provide a one year taught MSc qualification for professionals in need of developing computational and statistical skills for large-scale data analysis in industry, government and research. A student on completion of the MSc programme should have acquired:

- knowledge and understanding of: traditional branches of statistics; algorithms and computational methods for modern statistical inference and their scalability; statistical applications that require the integration of a variety of data sources and customized tools for analysis.

- an ability to: select appropriate statistical methodologies for a problem, and to set adequate computational trade-offs according to its scale and goals of the analysis; provide an assessment and communication of the outcomes of an analysis, indicating points of improvement and which reliable conclusions can be drawn, acknowledging uncertainty; lead efforts to extract new insights from available data originally collected with different purposes and with varying levels of error, and to ensure its quality.

- Practical skills to: use appropriate statistical methods for data analysis; interpret the outcome of a statistical analysis; use appropriate algorithms and software as required by the problem; design customized tools for problems that cannot be easily tackled with available software; integrate data available under a variety of sources and sampling biases.

- an ability to: communicate ideas effectively both orally and in writing; work independently and in groups; communicate with data providers to clarify the scope of a
data analysis project; manage a project in a timely and organized manner, setting realistic goals and assessment criteria; monitor progress by self-assessment and by asking for appropriate feedback; be flexible on which methods and tools can be used in practice for any project, and adapt them as necessary during its lifetime.

Curriculum

Compulsory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP0088</td>
<td>Introduction to Machine Learning</td>
<td>1</td>
</tr>
<tr>
<td>STAT0027</td>
<td>Foundation Fortnight</td>
<td>1(^1)</td>
</tr>
<tr>
<td>STAT0029</td>
<td>Statistical Design of Investigations</td>
<td>1</td>
</tr>
<tr>
<td>STAT0030</td>
<td>Statistical Computing</td>
<td>1 & 2</td>
</tr>
<tr>
<td>STAT0032</td>
<td>Introduction to Statistical Data Science(^2)</td>
<td>1</td>
</tr>
<tr>
<td>STAT0034(^3)</td>
<td>Research Project</td>
<td>Jun - Sep(^4)</td>
</tr>
</tbody>
</table>

Optional

Choose four modules, normally at least two from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT0009</td>
<td>Stochastic Systems(^5)</td>
<td>1</td>
</tr>
<tr>
<td>STAT0010</td>
<td>Forecasting</td>
<td>2</td>
</tr>
<tr>
<td>STAT0011</td>
<td>Decision & Risk</td>
<td>2</td>
</tr>
<tr>
<td>STAT0012</td>
<td>Factorial Experimentation</td>
<td>2</td>
</tr>
<tr>
<td>STAT0013</td>
<td>Stochastic Methods in Finance</td>
<td>1</td>
</tr>
<tr>
<td>STAT0017</td>
<td>Selected Topics in Statistics</td>
<td>2</td>
</tr>
<tr>
<td>STAT0018</td>
<td>Stochastic Methods in Finance 2</td>
<td>2</td>
</tr>
<tr>
<td>STAT0020</td>
<td>Quantitative Modelling of Operational Risk & Insurance Analytics</td>
<td>2</td>
</tr>
<tr>
<td>STAT0031</td>
<td>Applied Bayesian Methods</td>
<td>2</td>
</tr>
</tbody>
</table>

and up to two from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP0053</td>
<td>Affective Computing & Human-Robot Interaction</td>
<td>2</td>
</tr>
<tr>
<td>COMP0080</td>
<td>Graphical Models</td>
<td>1</td>
</tr>
<tr>
<td>COMP0084</td>
<td>Information Retrieval & Data Mining</td>
<td>2</td>
</tr>
<tr>
<td>COMP0087</td>
<td>Statistical Natural Language Processing</td>
<td>2</td>
</tr>
</tbody>
</table>

Subject to the constraint that at least two of the four modules must be taken from within Statistical Science, students may substitute some of these options for other modules offered by the Departments of Computer Science and Statistical Science and/ or may choose one module from other data science-related modules offered in the College. Such modules are sometimes referred to as **electives**. The timetable will not be amended so that you may accommodate an elective module. However, students may usually take electives that are scheduled for Friday afternoons even though these clash with occasional workshops for statistics modules: in this case, it is the student’s responsibility to catch up on any work missed as a result of the clash.

\(^1\) The Foundation Fortnight begins one week before the start of Term 1.

\(^2\) Students may not take both STAT0028 and STAT0032.

\(^3\) The same module code is used for the project modules of all three programmes listed at the top of page 1, but students are expected to select a research topic that is appropriate to their particular field of study.

\(^4\) Training sessions for the project are held throughout the year.

\(^5\) To study STAT0009 Stochastic Systems, students should have previously studied at least one undergraduate introductory module in applied probability covering discrete- and continuous-time Markov Chains.
Please remember that your registration for any non-compulsory module is subject to approval both by the MSc Tutor and by the department offering the module. Attempts to register for unsuitable modules will be rejected. If you are in any doubt as to whether you will be allowed to take a particular module, you should discuss it with the MSc Tutor, BEFORE attempting to register for it on Portico.

Part time study

The MSc Data Science is available for part time study. The part time MSc is a two year programme. The rules are the same as for the full time programme, with the same compulsory and optional modules (special teaching times are not offered for part time students). Students are expected to split the eight taught modules evenly between the first and second years. It may be permitted to split the eight modules 3:5 or 5:3 over the two years instead, but this has to be approved by the MSc Tutor.

The Foundation Fortnight is taken at the beginning of the first year. It is recommended that students take STAT0027 in the first year, and prerequisites of modules need to be fulfilled, but otherwise there are no restrictions on which modules are taken in which year. Part time students submit their project at the end of their second year. It is possible to arrange with the project supervisor to start to work on the project earlier than full time students, but part time students are not entitled to a higher overall amount of supervision.

MSc Statistics

Aims and objectives

To provide a one-year taught Masters degree in Statistics for more advanced training in statistical theory and applications, which enables graduates to enter specialist employment or academic research. A student on completion of the MSc programme should have acquired:

- a grounding in a selection of traditional branches of statistics;
- an introduction to modern ideas of statistics such as applied Bayesian methods, generalised linear modelling and object oriented statistical computing;
- an introduction to a selection of applications of statistics from medicine, industry and finance;
- experience of seeking out, interpreting and presenting statistical ideas or information, both orally and by written report.

Curriculum

Compulsory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT0027</td>
<td>Foundation Fortnight</td>
<td>16</td>
</tr>
<tr>
<td>STAT0028</td>
<td>Statistical Models & Data Analysis</td>
<td>1</td>
</tr>
<tr>
<td>STAT0029</td>
<td>Statistical Design of Investigations</td>
<td>1</td>
</tr>
<tr>
<td>STAT0030</td>
<td>Statistical Computing</td>
<td>1 & 2</td>
</tr>
<tr>
<td>STAT0031</td>
<td>Applied Bayesian Methods</td>
<td>2</td>
</tr>
<tr>
<td>STAT0034</td>
<td>Research Project</td>
<td>Jun - Sep</td>
</tr>
</tbody>
</table>

6 The Foundation Fortnight begins one week before the start of Term 1.
7 Students may not take both STAT0028 and STAT0032.
8 The same module code is used for the project modules of all three programmes listed at the top of page 1, but students are expected to select a research topic that is appropriate to their particular field of study.
9 Training sessions for the project are held throughout the year.
Optional

Choose four modules, normally from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT0008</td>
<td>Statistical Inference(^{10})</td>
<td>1</td>
</tr>
<tr>
<td>STAT0009</td>
<td>Stochastic Systems(^{11})</td>
<td>1</td>
</tr>
<tr>
<td>STAT0010</td>
<td>Forecasting</td>
<td>2</td>
</tr>
<tr>
<td>STAT0011</td>
<td>Decision & Risk</td>
<td>2</td>
</tr>
<tr>
<td>STAT0012</td>
<td>Factorial Experimentation</td>
<td>2</td>
</tr>
<tr>
<td>STAT0013</td>
<td>Stochastic Methods in Finance</td>
<td>1</td>
</tr>
<tr>
<td>STAT0014</td>
<td>Medical Statistics 1</td>
<td>1</td>
</tr>
<tr>
<td>STAT0015</td>
<td>Medical Statistics 2</td>
<td>2</td>
</tr>
<tr>
<td>STAT0017</td>
<td>Selected Topics in Statistics</td>
<td>2</td>
</tr>
<tr>
<td>STAT0018</td>
<td>Stochastic Methods in Finance 2</td>
<td>2</td>
</tr>
<tr>
<td>STAT0019</td>
<td>Bayesian Methods in Health Economics</td>
<td>2</td>
</tr>
<tr>
<td>STAT0020</td>
<td>Quantitative Modelling of Operational Risk & Insurance Analytics</td>
<td>2</td>
</tr>
</tbody>
</table>

In some circumstances, you may choose one module from other statistics-related modules offered in the College. Such selections are sometimes referred to as electives. The following are recent examples of elective modules that previous students have taken:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP0078</td>
<td>Supervised Learning</td>
<td>1</td>
</tr>
<tr>
<td>ECON0064</td>
<td>Econometrics</td>
<td>1</td>
</tr>
<tr>
<td>MATH0061</td>
<td>Equities, Foreign Exchange and Commodities Modelling</td>
<td>1</td>
</tr>
<tr>
<td>MSIN0084</td>
<td>International Capital Markets</td>
<td>2</td>
</tr>
</tbody>
</table>

The timetable will not be amended so that you may accommodate an elective module. However, students may usually take electives that are scheduled for Friday afternoons even though these clash with occasional workshops for statistics modules: in this case, it is the student’s responsibility to catch up on any work missed as a result of the clash.

Please remember that your registration for any non-compulsory module is subject to approval both by the MSc Tutor and by the department offering the module. Attempts to register for unsuitable modules will be rejected. If you are in any doubt as to whether you will be allowed to take a particular module, you should discuss it with the MSc Tutor, \textbf{BEFORE} attempting to register for it on Portico.

Part time study

The MSc Statistics is available for part time study. The part time MSc is a two year programme. The rules are the same as for the full time programme, with the same compulsory and optional modules (special teaching times are not offered for part time students). Students are expected to split the eight taught modules evenly between the first and second years. It may be permitted to split the eight modules 3:5 or 5:3 over the two years instead, but this has to be approved by the MSc Tutor.

The Foundation Fortnight is taken at the beginning of the first year. It is recommended that students take STAT0028 in the first year, and prerequisites of modules need to be fulfilled, but otherwise there are no restrictions on which modules are taken in which year. Part time students submit their project at the end of their second year. It is possible to arrange with

\(^{10}\) The module on Statistical Inference is compulsory for MSc students needing to reinforce this area.

\(^{11}\) To study STAT0009 Stochastic Systems, students should have previously studied at least one undergraduate introductory module in applied probability covering discrete- and continuous-time Markov Chains.
the project supervisor to start to work on the project earlier than full time students, but part
time students are not entitled to a higher overall amount of supervision.

MSc Statistics (Medical Statistics)

Medical Statistics is a pathway of the regular MSc Statistics, which means that the same
rules for the MSc Statistics also apply, but with some additional restrictions.

Aims and objectives

Medical Statistics is a fundamental scientific component of health research. Medical
Statisticians interact closely with biomedical researchers, epidemiologists and public health
professionals and contribute to the effective translation of scientific research into patient
benefits and clinical decision-making. As new and more complex biomedical problems
emerge, medical statistics faces exciting challenges in the novel application of existing tools
and the development of superior methods.

A priority for the National Institute for Health Research is to build research capacity in
medical statistics, as there is currently a shortage of individuals with sufficient training and
expertise in this area to support the current volume of health research. The Medical
Statistics pathway provides students with a sound background in theoretical statistics as
well practical hands-on experience in designing, analysing and interpreting health studies.
The aim is to equip students with the skills needed to work as medical statisticians in the
pharmaceutical industry, universities, the NHS, and clinical trials and other medical
research units.

Curriculum

Compulsory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT0008</td>
<td>Statistical Inference</td>
<td>1</td>
</tr>
<tr>
<td>STAT0014</td>
<td>Medical Statistics 1</td>
<td>1</td>
</tr>
<tr>
<td>STAT0015</td>
<td>Medical Statistics 2</td>
<td>2</td>
</tr>
<tr>
<td>STAT0027</td>
<td>Foundation Fortnight</td>
<td>1️⃣2️⃣</td>
</tr>
<tr>
<td>STAT0028</td>
<td>Statistical Models & Data Analysis</td>
<td>1</td>
</tr>
<tr>
<td>STAT0030</td>
<td>Statistical Computing</td>
<td>1 & 2</td>
</tr>
<tr>
<td>STAT0031</td>
<td>Applied Bayesian Methods</td>
<td>2</td>
</tr>
<tr>
<td>STAT0034</td>
<td>Research Project</td>
<td>Jun - Sep 1️⃣4️⃣</td>
</tr>
</tbody>
</table>

Optional

Choose one module from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEHC0045</td>
<td>Epidemiology</td>
<td>1</td>
</tr>
<tr>
<td>STAT0029</td>
<td>Statistical Design of Investigations</td>
<td>1</td>
</tr>
</tbody>
</table>

and one module from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENE0005</td>
<td>Advanced Computational Biology</td>
<td>2</td>
</tr>
<tr>
<td>STAT0019</td>
<td>Bayesian Methods in Health Economics</td>
<td>2</td>
</tr>
</tbody>
</table>

1️⃣2️⃣ The Foundation Fortnight begins one week before the start of Term 1.

1️⃣3️⃣ The same module code is used for the project modules of all three programmes listed at the top of page 1, but
students are expected to select a research topic that is appropriate to their particular field of study.

1️⃣4️⃣ Training sessions for the project are held throughout the year.
MSc Computational Statistics and Machine Learning

The specifications of this programme are available from the Department of Computer Science at: http://www.cs.ucl.ac.uk/prospective_students/msc_computational_statistics_and_machine_learning/.

MSc Data Science and Machine Learning

The specifications of this programme are available from the Department of Computer Science at: http://www.cs.ucl.ac.uk/prospective_students/msc_data_science_and_machine_learning/.

RESEARCH PROJECT

Guidelines for preparation and submission

Students should plan to take a short break after their written examinations, before starting work on their projects. All supervisors are likely to be away from time to time during the period June-September, attending conferences or on holiday. Students should therefore see their supervisors as soon as their examinations are over, to make mutually convenient arrangements for starting work on their projects.

Over the course of the project, student and supervisor should arrange to meet regularly (about once a week, whenever possible) and should agree a suitable timetable for completing the work and producing a written account. The supervisor should advise the student to start to write up the work, and to ask for the supervisor's feedback on their writing, early in this period.

Supervisors will provide feedback on an entire draft of the project dissertation on at least one occasion, providing it is available in at least three weeks before the deadline for submission. Any request for feedback after this deadline is at the discretion of the supervisor. Supervisors should provide feedback within two weeks.

Final (word-processed) dissertations should be handed in to the Teaching & Learning Office by 16:00 on the advertised date (this is normally at the start of September). Late submissions will incur severe “lateness” penalties (see “Late Submission Penalties” section on page 30). Furthermore, an electronic version of the dissertation should be submitted via Moodle on the same day (the MSc Tutor will circulate more detailed instructions nearer to the date).

The length of a project dissertation will depend on the topic of the project and may vary considerably. Lengths between 8,000 and 15,000 words (excluding computer programs, tables, graphs, formulae and other output) are generally acceptable. Typical projects are between 10,000 and 12,000 words long.

Each dissertation should include a table of contents, an introduction, a conclusion or discussion section, and a list of references. The reference list should include all references that have been used to support the work reported in the project; and these references should be cited in the text of the dissertation as appropriate to indicate where they have been used, following accepted conventions for citation. The pages should be clearly numbered and should have a left-hand margin of at least 2cm. Examiners attach considerable importance to accuracy, clarity and overall quality of presentation.
In addition to the project dissertation, each student will be required to give a presentation on their research. The time normally allocated to each presentation is 15 minutes excluding questions. Students are expected to attend and actively participate in the oral presentations by other students. Presentations normally take place in early September; students therefore need to ensure that they are available in the Department at this time.

Specific dates for the arrangements referred to in the third and fourth paragraphs above will be provided separately. Please ensure that you are aware of them.

Guidelines for assessment

Project dissertations are read independently by two examiners, one of whom is normally the candidate’s project supervisor. Each examiner provides a brief written assessment. A selection of dissertations are also read by a visiting examiner. The final mark is agreed by the whole exam board, which includes the visiting examiner. The final mark should be interpreted in accordance with the guidance notes on page 15.

Examiners will satisfy themselves that the dissertation is the work of the candidate, and will take into account the following points:

- the difficulty and novelty of the project;
- the amount of new methodology/application knowledge that the student was required to learn;
- the degree of direction required from the project supervisor;
- the student’s progress throughout the project.

Subject to these overall criteria, examiners will consider both the content of the dissertation and its presentation, with a higher priority being attached to content. Aspects considered will usually include the following:

- **Content**: amount of work done; extent to which understanding has been demonstrated; quality and accuracy of reasoning, validity of interpretation, relevance of conclusions; critical appraisal, discussion of limitations and suggestions for further work; clarity of objectives; quality of literature review; quality of data organisation and collection (if applicable); quality of programming or use of software (if applicable).

- **Presentation**: layout of dissertation and care in its presentation; structure of the dissertation; use of appropriate judgement in selecting material; clarity of expression, readability and coherence; correctness of grammar and spelling; adequacy of diagrams, graphs and tables (if applicable); quality of presentation of mathematical material (if applicable).

A mark less than 50 will be awarded if the material, though correct, is judged to be wholly reproduced in a purely technical manner.

For a mark over 85, it is expected that the student, in addition to having submitted a well-presented dissertation demonstrating a good understanding of the material and a comparatively high amount of work, will also have shown some initiative rather than simply following instructions. Marks of 90 or more may be appropriate where in addition the technical or conceptual difficulty of the material is very high, or where some of the work could be considered original research on the part of the student.

The length of project dissertation will depend on the topic of the project and may vary considerably. Lengths between 8,000 and 15,000 words (excluding computer programs, tables, graphs, formulae and other output) are generally acceptable. Typical projects are between 10,000 and 12,000 words long. Over-length dissertations will be penalised (see page 30). It is generally required that the amount of work done and demonstrated is high...
enough, and that the material is presented in a way understandable to fellow students with a comparable background (so 8,000 words may only be an appropriate length for a very theoretical or densely presented dissertation). On the other hand, dissertations should not be too repetitive or contain unnecessary or irrelevant details, which may lead to downmarking. Although the word counts given above exclude appendices, tables and program listings, these items will also be penalised if they are excessive.

Each project presentation will be assessed by two examiners. Normally, neither of the examiners will be the candidate’s supervisor. The examiners make independent notes on the presentation prior to discussing and agreeing a mark. Aspects considered will usually include the following:

- **Content**: was the presentation interesting? Did it focus on the important aspects of the work and flow logically? Was there sufficient detail to be intelligible to statistically literate listeners who do not have an in-depth knowledge of the specific topic? Were there clear aims and conclusions?

- **Presentation skills**: was the verbal presentation confident and clearly audible with varied inflexion? Did the presentation engage with the audience? Were visual aids clear, well produced and well used? Were questions handled appropriately? Was the amount of material appropriate for the time allowed?

EXTENUATING CIRCUMSTANCES AND REASONABLE ADJUSTMENTS

Reasonable adjustments

UCL will make Reasonable Adjustments to learning, teaching and assessment to ensure that students with a disability are not put at a disadvantage. UCL also provides Reasonable Adjustments for students who might not consider themselves to have a ‘disability’ but who nevertheless would benefit from additional support due to an ongoing medical or mental health condition. It is the responsibility of the student to request Reasonable Adjustments, and students are encouraged to make a request as early as possible.

Further information:

- [Reasonable Adjustments](#)
- [Student Disability Services](#)

Special examination arrangements

Special Examination Arrangements (SEAs) are adjustments to central or departmental written examinations which can be made as a Reasonable Adjustment for students with a disability or longer-term condition or as a form of mitigation for students with shorter-term medical Extenuating Circumstances. This may include, but is not limited to extra time, a separate room, rest breaks and specialist equipment. Students must make an application to use the special examination facilities.

Further information:

- [Special Examination Arrangements](#) – guidance and forms
- [Special Examination Arrangements](#) – regulations

Any special arrangements that are agreed for you will automatically be taken into account in all centrally-organised exams held during the main exam periods. However, in order to have
your requirements taken into account for any departmentally-organised assessments held outside the main exam period, you must provide the relevant department with a copy of your letter in advance of the test date.

Illness and other extenuating circumstances

UCL recognises that some students can experience serious difficulties and personal problems which affect their ability to complete an assessment such as a sudden, serious illness or the death of a close relative. Students need to make sure that they notify UCL of any circumstances which are unexpected, significantly disruptive and beyond their control, and which might have a significant impact on their performance at assessment. UCL can then put in place alternative arrangements, such as an extension or a deferral of assessment to a later date.

To apply for Extenuating Circumstances you must complete an Extenuating Circumstances Form (available from the below link or the DOSSSH Moodle page) and submit this, together with appropriate supporting evidence, to the Teaching & Learning Administrator as soon as possible and **NO later than one week after the circumstance has taken place.** Claims must be supported by written evidence from a doctor, or other appropriate authority. Evidence must cover the full period for which you are claiming mitigation and must be provided in English or accompanied by a translation formally notarised by a solicitor. If you are unable to obtain evidence in order to submit your claim within the one week deadline, you should submit the claim on time, indicating on the form that the evidence is to follow.

Depending on the type of mitigation being requested, your claim will be reviewed by relevant members of staff from the Department and/or MAPS Faculty, who will make a decision either to accept or reject the claim, or to request additional evidence. You will be notified in writing within one week of the decision being made. Where a claim is accepted, the notification will include details of the mitigation to be applied. Where further evidence is required, you will be expected to provide this within a further two weeks.

Unless you follow the above procedure, it will NOT be possible for the examiners to take any extenuating circumstances into account. Details of the precise circumstances affecting individual students are not made available to all examiners.

Further information

- [Extenuating Circumstances](#)
- [Grounds for Extenuating Circumstances](#)

The Extenuating Circumstances regulations are designed to cover unexpected emergencies; they are not always the best way to help students who might have a longer-term medical or mental health condition or a disability. Although there may be times when it is necessary for such students to use the Extenuating Circumstances regulations, students should make sure they are aware of, and take advantage of, all the other support mechanisms provided by UCL such as:

- [Reasonable Adjustments](#)
- [Special Examination Arrangements](#)
- [Disability Support](#)
- [Interruption of Study](#)
- [Student Psychological Services](#)
- [Student Support and Wellbeing](#)
- [Fitness to Study Procedure](#)
- [UCL Student Mental Health Policy](#)
Support to study policy and fitness to study procedure

Students with physical or mental health concerns are encouraged to make contact with the available support services as early as possible so that UCL can put in place reasonable adjustments to support them throughout their studies. However there may be occasions when a student's physical or mental health, wellbeing or behaviour is having a detrimental effect on their ability to meet the requirements of their programme, or is impacting on the wellbeing, rights, safety and security of other students and staff. In such cases UCL may need to take action under the Fitness to Study Procedure.

Further Information:
- Fitness to Study Procedure
- Learning Agreements, Barring, Suspensions and Terminations of Study
- UCL Disciplinary Code and Procedure in respect of Students

ASSESSMENT

Components of compulsory assessment

Details of each component of compulsory assessment and the proportion it normally contributes towards the final mark are given for each module in the “Module Information” section from page 48 onwards.

In-course assessment

At the beginning of each module, the lecturer will provide details of the method and dates of in-course assessment and the amount of work involved. The assessment dates will also be posted on the module Moodle page. Students should ensure that they have no other commitments on these dates; in-course assessment is a form of examination, and should be treated as such. For students required to resit the in-course assessment during the late summer, an alternative form of assessment may be employed for the second attempt.

Each piece of in-course assessment set by the Department of Statistical Science has its own rubric and the instructions given must be followed. In particular, do pay attention to the consequences of missing the deadline set, non-submission and plagiarism; any of these can result in your not passing the module. Teaching staff will set aside extra office hours to discuss assessment-related matters (see page 12) students should respect the lecturers’ time by confining queries to these hours.

Some assessments will be in the form of a “take-home” assignment, to be handed in to the Teaching & Learning Office or the module lecturer by a set deadline. For such assessments, you will need to sign a cover sheet (provided by the module lecturer) containing a declaration that the submitted work is entirely your own (see “Plagiarism and collusion” section on page 31). You will also need to submit your work in a single securely stapled bundle including the cover sheet.

Late Submission Penalties: Planning, time-management and the meeting of deadlines are part of the personal and professional skills expected of all graduates. For this reason, UCL expects students to submit all coursework by the published deadline date and time, after which penalties will be applied. If a student experiences something which prevents them from meeting a deadline that is sudden, unexpected, significantly disruptive and beyond their control, they should submit an Extenuating Circumstances Form (see “Extenuating Circumstances” section on page 28). If the request is accepted, the student may be granted an extension. If the deadline has already passed, the late submission may be condoned i.e. there will be no penalty for submitting late.
Further information:

- **Late Submission Penalties**

Word counts: Some assessments (usually involving the production of reports) carry a specified word count. The rubric will include clear instructions about word counts, the inclusion of footnotes, diagrams, images, tables, figures and bibliographies etc. Students are expected to adhere to the requirements for each assessment. Students exceeding these parameters may receive a reduction in marks.

Further information:

- **Word Counts**

The rubric may indicate that the word count excludes appendices. *However, this should not be regarded as an invitation to transfer large amounts of surplus text into an appendix and the mark awarded will reflect the standard of judgement shown in the selection of material for inclusion.*

Written examinations

These normally take place during Term 3. Student and Registry Services will contact you with details of your personal examination timetable, normally just before the end of Term 2.

Students must ensure that they are aware of the regulations governing written examinations detailed in the *UCL Examination Guide for Candidates* on the Examinations and Assessments website. Students should pay particular attention to the regulations around examination irregularities. Students who are suspected of any form of cheating or of breaching the Examination Regulations will be investigated under UCL’s Examination Irregularities and Plagiarism procedures (see “Examination Irregularities” section on page 33).

Further information:

- **Examination Regulations**

In most examinations set by the Department of Statistical Science, there are two sections and candidates are required to answer all questions. The questions in section A are intended to be straightforward and to focus on core material, whereas those in section B are more challenging. The rubric will indicate the proportion of the total mark allocated to each section. Statistical tables will be provided by the College in all examinations set by the Department (the currently provided tables are *New Cambridge Elementary Statistical Tables* by D.V.Lindley & W.F.Scott). You should take a pocket calculator to all of these examinations (see page 14 for details of permitted calculators).

Recent past examination papers are available from the UCL Library Services website.

Final module mark

To pass a module at Masters level, a final mark of at least 50 is required. For modules with more than one assessment component, the scheme used for combining the individual marks is given for each module in the “Module Information” section from page 48 onwards.

Feedback on assessments

Regular feedback is an essential part of every student’s learning. It is UCL policy that all students receive feedback on summative assessments within one calendar month of the submission deadline. This feedback may take the form of written feedback, individual discussions, group discussions, marker’s answers, model answers or other solutions (although students should note that UCL is generally unable to return examination scripts or
comments on the same). Students writing dissertations or research projects should also expect to receive feedback on a draft on at least one occasion.

If, for whatever reason, a department/division cannot ensure that the one calendar month deadline is met then they will tell students when the feedback will be provided - it is expected that the extra time needed should not exceed one week. Where feedback is not provided within the timescale, students should bring the matter to the attention of their Programme Tutor or Head of Department.

Further information:
- **UCL Feedback Turnaround Policy**

Plagiarism and collusion

Plagiarism means attempting to pass off someone else's work as your own, while collusion means passing off joint work as your own unaided effort. Both are unacceptable, particularly in material submitted for examination purposes including exercises done in your own time for in-course assessment. Plagiarism and collusion are regarded by the College as examination irregularities (i.e. cheating) and are taken extremely seriously. UCL uses a sophisticated detection system (Turnitin®) to scan work for evidence of plagiarism and collusion, and the Department reserves the right to use this for assessed coursework. This system gives access to billions of sources worldwide, including websites and journals, as well as other work submitted to the Department, UCL and other universities. It is therefore able to detect similarities between scripts that indicate unacceptable levels of collusion, as well as material taken from other sources without attribution.

If plagiarism or collusion are suspected, on the basis either of the Turnitin® software or other evidence, it can be dealt with informally only in the case of first offences. All other cases must be dealt with formally, which involves adjudication by a departmental panel and/or College Examinations Irregularities panel (see “Examination Irregularities” section on page 33).

What isn't acceptable?

Students sometimes find it difficult to know what counts as plagiarism or collusion. The following list is not exhaustive, but gives some indication of what to avoid. It is based on guidelines developed by Nick Hayes of the UCL Pharmacology Department. You may **NOT**:

- Create a piece of work by cutting and pasting material, e.g. texts or figures, from other sources (including websites, books, lecture notes and other students' work).
- Use someone else's work as your own. This includes, but is not limited to:
 - Making notes while discussing an assessment with a friend, and subsequently using these as the basis for all or part of your submission.
 - Telephoning another student to discuss how best to carry out a particular piece of analysis.
 - Employing a professional ghostwriting firm or anyone else to produce work for you.
- Use somebody else's ideas in your work without citing them.
- Ask a lecturer in the Department for help with assessed work, unless you make it clear to them that the work is assessed.
- Help another student with their assessed work. If you do this, you will be deemed to be guilty of an examination irregularity.
What is acceptable?

The following practices do not constitute plagiarism / collusion:

- Quoting from other people's work, with the source (e.g. book, lecture notes, website) clearly identified and the quotation enclosed in quotation marks.

- Summarising or paraphrasing other people's work, providing they are acknowledged as the source of the ideas (again, usually this will be via a reference to the book, journal or website from which the information was obtained).

- Asking the module lecturer for help with difficult material, providing it is clear that the question is in connection with the assessment. The lecturer will be able to judge for him or herself what is an appropriate level of assistance.

Some examples

Unfortunately, each year there are some students in the Department of Statistical Science who submit work that contravenes the regulations. The consequences can be severe.

Example 1: Final-year student A had a lot of coursework deadlines in the same week as an important job interview. One of the coursework deadlines was for an extended piece of data analysis, set two weeks previously. Because of his other commitments, student A did not start this piece of coursework until shortly before the deadline, at which point he discovered that he did not have enough time to do it. He asked student B for help. The result was that both students submitted essentially identical work using exactly the same computer output. A Departmental panel was convened to investigate the matter. The panel suggested that student B had passed electronic material (computer output and graphics files) to student A, who had pasted this material straight into his own submission. Although student A admitted asking student B for help, both students denied exchanging electronic material. They were, however, unable to explain how the same electronic files came to appear in both submissions. As a result, the allegation was upheld and both students were penalised. Student A was given a mark of zero for the module in question (this meant that he had no possibility of passing it that year), and student B was given a mark of zero for the coursework component.

Example 2: Students C and D both had to submit some computer code for an assessment, which was worth one third of the total mark for a module. There was considerable flexibility in how to go about the assessment. Although the students submitted code that looked very different, closer inspection revealed that they were carrying out the same procedures in more or less the same order, and that the methods they used to carry out these procedures were essentially the same. Further, these procedures and methods were not used by other students in the class. On investigation, it transpired that the students had discussed the assessment over the phone while sitting in front of their computers. This is unacceptable, and as a result the marks of both students for this piece of assessment were halved.

Example 3: The in-course assessment for a particular module was organised as a multiple choice exam taken via Moodle outside of lessons. Each student could attempt the one-hour exam at any time of their choosing within a ten day window, but were clearly advised that they must work alone. After the exams had been graded, it was noticed that students E and F had given identical answers to every question (including incorrect answers). Inspection of the Moodle logs revealed that the students had started and finished their attempts at exactly the same time, using IP addresses that were traced to adjacent PCs in the same computer cluster. Students E and F admitted colluding on the in-course assessment and were both given a mark of zero for that component.
How to avoid plagiarism and collusion

If you are found to have committed an offence of plagiarism or collusion, it makes no difference whether or not you intended to do so. Ignorance is no excuse. To avoid committing an offence, a useful rule of thumb is: if in doubt, don't do it. Make sure that any work you submit is your own unaided effort. More specific guidance is as follows:

- Plan your work schedule carefully, to allow enough time to complete each piece of assessment.
- If you have genuine problems in meeting a deadline, don't take the easy way out and borrow a friend's work. Discuss your difficulty with the module lecturer in the first instance.
- If you are stuck with an assessment, don't ask another student for help. Discuss it with the module lecturer.
- If another student asks you for help with an assessment, or asks to see your work, suggest that they approach the module lecturer instead. Remember: if somebody else copies or uses your work, you will be penalised as well, even if you didn't expect them to use your work in this way.

More information can be found at http://www.ucl.ac.uk/current-students/guidelines/plagiarism, and in the UCL Library Services WISE courses (see page 13).

Examination irregularities

UCL students are expected to be aware of and adhere to UCL's referencing and examination requirements as a condition of their enrolment:

- **For examinations**, the *UCL Examination Guide for Candidates* is published annually on the Examinations and Assessments website. All candidates for written examinations must ensure they are familiar with the requirements for conduct in examinations set out in this guide.

- **For coursework submissions**, students must ensure that they are familiar with the UCL Library Guide to References, Citations and Avoiding Plagiarism which provides detailed guidance about UCL's referencing and citation requirements. Students should also ensure that they are familiar with the specific referencing requirements of their discipline.

Any student suspected of examination misconduct, plagiarism, self-plagiarism, collusion, falsification, contract cheating, ghost writing (paying and/or instructing someone to write an assignment for you) or any other form of academic misconduct which is likely to give an unfair advantage to the candidate and/or affect the security of assessment and/or compromise the academic integrity of UCL will be investigated under the Examination Irregularities and Plagiarism procedures. If misconduct is found, students are likely to be failed for that assignment and/or module. Serious or repeated offences may lead to failure of the whole year, suspension or even expulsion. A breach of copyright or intellectual property laws may also lead to legal action.

Further information:

- Plagiarism
- Library Guide to References, Citations and Avoiding Plagiarism
- Examination Irregularities and Plagiarism Procedure
- Students can also seek advice from the Students' Union Advice Service
Examination marks

Marking, second-marking and moderation

All work that is submitted for summative assessment is marked by a UCL Internal Examiner or Assistant Internal Examiner. All UCL programmes also include rigorous second-marking and internal moderation processes to ensure that marking is consistent and fair. Second-marking can take a number of different forms depending on the type of assessment, but the overall aim is to ensure that marking is as accurate as possible. Internal moderation also helps UCL to ensure that marking is equitable across different modules, pathways, options and electives.

External examining at UCL

External Examiners are senior academics or practitioners from other universities who help UCL to monitor the quality of the education we provide to our students. In particular, External Examiners scrutinise the assessment processes on each programme, helping UCL to ensure that all students have been treated fairly, that academic standards have been upheld and that the qualifications awarded are comparable with similar degrees at other UK universities.

Each External Examiner submits an on-line annual report. Faculties and departments are required to reflect on any recommendations and address any issues raised in a formal response. The report and response are discussed with Student Reps at the Staff-Student Consultative Committee, and are scrutinised by faculty, department and institution-level committees. Students can access their External Examiner’s report and departmental response via their Portico account or by contacting their Programme Administrator in the first instance or Student and Registry Services directly at examiners@ucl.ac.uk.

Boards of examiners

Marks are finalised at meetings of examiners in the departments offering the modules. When finalising the marks, examiners in the Department of Statistical Science refer to the grade descriptors summarized in the “Feedback on student work” section on page 15.

Provisional results for the taught component and provisional award recommendations for postgraduate students registered in the Department of Statistical Science are released after the appropriate examiners’ meetings, normally in June and November respectively. These results are provisional until confirmed by UCL Education Committee later in the year and will be published online via the DOSSSH Moodle page. To access the provisional results online you will need your candidate ID number, along with your UCL userid and password. Students will be advised of the release date in advance via UCL email.

Appeals concerning examination results

Where informal resolution is not possible, candidates may appeal against their examination results under one or more of the following conditions:

- Either the examination and/ or classification process was not conducted in accordance with the relevant regulations/ procedures.
- The examiners could not reasonably be made formally aware of special circumstances (e.g. illness) notified by the candidate which significantly affected his/ her performance in the examination. For a candidate to appeal on these grounds, it is necessary to demonstrate that they could not reasonably have submitted the appropriate claim for Extenuating Circumstances by the required deadline (see page 28).
There has been an arithmetical or transcription error in the compilation of the marks and/ or the result.

There is substantive evidence that one or more of the examiners can be shown to have been biased or prejudiced against the candidate in one or more specific examinations.

Any such appeal should be pursued via the Student Complaints Procedure (see page 44). Note that appeals will NOT be considered except under one or more of the conditions above. The Department of Statistical Science would therefore like to reassure all students that all staff in the Department take the assessment process extremely seriously. The marking process described above is designed to ensure that papers are marked fairly and accurately, with all marks agreed by at least three examiners (two internal and one external) and any difficulties discussed by the entire Board of Examiners.

Reassessment and deferred assessment

The following section describes the modules which students must pass in order to achieve their degree. Where a student fails to meet these requirements, the Consequences of Failure regulations in the UCL Academic Manual apply.

If a student fails one or more modules the Board of Examiners may offer them a reassessment opportunity. Depending on the amount of failure, this may take the form of either a resit in the late summer or a repeat in the following academic session. The marks for modules successfully completed at the second attempt will be capped at the pass mark - 50% for modules at Masters level. Students are permitted a maximum of two attempts at any given assessment.

If an assessment has been affected by Extenuating Circumstances students may be offered a deferral i.e. a ‘new first attempt’ or a ‘new second attempt’. If the student successfully completes a deferral of their first attempt, their module marks will not be capped. If the student successfully completes a deferral of their second attempt (i.e. they have Extenuating Circumstances on a resit or repeat), their module marks will be capped at the pass mark (i.e. the existing cap will not be removed).

There are some circumstances in which students will not be offered another attempt:

- If students are eligible for condonement (see page 36) their marks will be condoned and they will not be offered a resit (however if a student has Extenuating Circumstances the condonement criteria won’t be applied until all deferrals are complete).
- Students cannot be reassessed in a passed module (unless they have valid Extenuating Circumstances).
- Students might not be allowed a second attempt if they have been excluded for academic insufficiency, academic misconduct or disciplinary issues.

Students who fail a Masters research project will normally resit by 31 January of the following academic session. Exceptionally, the Exam Board may decide that the extent of failure is such that the student needs to repeat the dissertation with tuition and fees.

Further information:

- Consequences of Failure
AWARD AND CLASSIFICATION

The award requirements and classification scheme for Masters degrees are based on the marks for two elements: eight taught modules consisting of core and approved optional modules taken by the candidate (as detailed in the “Degree Programme Specifications” section beginning on page 20) and a research project.

Information on condonement

Condonement allows a student to be awarded a qualification where they are carrying a small amount of failure, as long as their overall performance is of a good standard and the requirements of any relevant professional, statutory or regulatory bodies are met. Students who meet the condonement criteria will not be reassessed. Condonement can be applied only to module marks falling within a certain range, and students will need to meet defined criteria to be eligible for condonement. For modules at Masters level, the condonable range is 40.00-49.99%.

Some modules may be ‘non-condonable’ i.e. students must pass them. All Masters level research projects are non-condonable. Beyond this, a student’s eligibility for condonement in any given module is determined by the programme on which they are enrolled. For the MSc Data Science and MSc Statistics programmes, all the taught modules are eligible for condonement. For the MSc Statistics (Medical Statistics) pathway, however, the modules: STAT0014 Medical Statistics 1 and STAT0015 Medical Statistics 2 may not both be condoned. If you are registered on the MSc Statistics (Medical Statistics) pathway and are otherwise eligible for a Masters award, but have achieved marks in the condonable range for both STAT0014 and STAT0015, you will instead be awarded an MSc Statistics, i.e. the medical specialisation will not be recognised in the award title.

Further information

- [Condonement](#)

Award requirements

For the award of a Masters degree, a student must:

- Pass all non-condonable modules, AND
- Attain marks in the condonable range in no more than 30 taught credits, AND
- Pass the remaining taught credits, AND
- Pass the research project, AND
- Achieve a credit-weighted mean of at least 50.00% across all credits.

Students unable to meet these requirements having exhausted all reassessment attempts may be eligible for an interim qualification, i.e. a Postgraduate Certificate (PG Cert) or Postgraduate Diploma (PG Dip). Any such award will be unclassified.

Further information

- [Masters Award Requirements](#)
- [Interim Qualifications](#)

Classification scheme

A student who meets the award requirements for a Masters degree will be awarded a Pass, Merit or Distinction classification. The following rules will be used to determine the classification:
Qualifies for Distinction
- A credit-weighted mean of at least 69.50% across all credits, AND
- A mark of at least 70.00% in the research project

OR
- A credit-weighted mean of at least 68.50% across all credits, AND
- Module marks of at least 70.00% in at least 50% of the taught credits, AND
- A mark of at least 70.00% in the research project

Qualifies for Merit
- A credit-weighted mean of at least 59.50% across all credits, AND
- A mark of at least 60.00% in the research project

OR
- A credit-weighted mean of at least 58.50% across all credits, AND
- Module marks of at least 60.00% in at least 50% of the taught credits, AND
- A mark of at least 60.00% in the research project

Qualifies for Pass
- Meets the award requirements

Prizes

Departmental
The following sessional prizes may be awarded to students on the MSc Data Science, MSc Statistics and MSc Statistics (Medical Statistics) programmes:

- MSc Prize: for outstanding overall performance.
- Project Prize: for the best MSc project.

Faculty
The Department may nominate outstanding students for consideration by the MAPS Faculty for the following award:
- MAPS Postgraduate Prize

CHANGES TO REGISTRATION STATUS

Students wishing to make changes to their registration status should first discuss their plans with their Personal Tutor or Programme Tutor who can explain the options available and help students to make the right decision. Students should also ensure that they read the relevant sections of the UCL Academic Manual before making any requests to change their academic record.

Further information:
- Changes to Registration Status

15 If the same recipient would otherwise be selected for both prizes, there will instead be two prizes for outstanding overall performance (and no Project Prize).
Changing modules
If a student wishes to make changes to their individual modules they will need to do so by the deadlines in the Key Dates section (see page 11). Students should contact their Teaching & Learning Office as soon as possible as all changes will need to be approved.

Further information:
• Module Selection

Changing programme
If a student wishes to transfer from one UCL degree programme to another, they must make a formal application. The usual deadline for change of degree programme during the academic session is the end of October each year to be compatible with module selection deadlines, although later transfers may be possible, where the transfer does not affect module selections. Students should log in to their Portico account and complete the online application under the ‘C2RS Home’ menu. Students are strongly advised to discuss their plan with the departments involved before requesting a change of programme on Portico.

Further information:
• Programme Transfers

Tier 4 students and changing programmes
Only some Tier 4 students are permitted to change their programme at UCL without first completing their previous programme. There are some circumstances where a Tier 4 student is permitted to change programme, however please be aware that this could affect your current Tier 4 visa and you could be required to apply for a new visa from outside the UK. Changing to a programme at a lower level than your previous/ current programme is not permitted under Tier 4 regulations.

If you are thinking of changing programmes at UCL and you hold a Tier 4 visa, please get in touch with the Visa Compliance Team for further information: visacompliance@ucl.ac.uk.

Interruption of studies
If a student requires a temporary break from their studies and plans to resume their programme at a future date, they must apply for a formal interruption of study.

Further information:
• Interruption of Study

Withdrawing from a programme
If a student wishes to leave their degree programme prior to completing their final examinations they must apply for a formal withdrawal from their studies. Applications must be made in advance of the effective date of change. Students should log in to their Portico account and complete the online application under the ‘C2RS Home’ menu.

Further information:
• Withdrawing from UCL
STUDENT SUPPORT AND WELLBEING

Central wellbeing and support services
UCL is committed to the wellbeing and safety of its students and tries to give assistance wherever possible to ensure that studying at UCL is a fulfilling, healthy and enjoyable experience. There is a wide range of support services for students - the Current Students Support website provides more information. Students should be aware that, while there are many services on offer, it is their responsibility to seek out support and they need to be proactive in engaging with the available services.

The Student Centre
The Student Centre provides front-line administrative services to UCL students and is an excellent source of information about the services provided by Student Support and Wellbeing. They can also provide advice about a range of Student Records enquiries and fulfil requests for proof of student status.

Further information:
- Student Centre website

Student Disability Services
Student Disability Services provide a comprehensive range of support services for students who have a disability which impacts upon their studies at UCL. They support students with physical and sensory impairments, specific learning difficulties, autistic spectrum disorders, mental health difficulties, and long-term health conditions. As well as arranging for adjustments to learning environments, the team loan out specialist equipment and provide one-to-one tutoring and support for students with specific learning difficulties.

Further information:
- Student Disability Services

Student Psychological Services
Student Psychological Services is dedicated to helping UCL students with personal, emotional and psychological concerns. The Student Psychological Services Team is diverse and consists of a variety of highly trained and experienced professionals, who offer short-term CBT and psychodynamic support. There are currently two psychiatrists and ten therapists on staff with varying kinds of psychological training and expertise.

Further information:
- Student Psychological Services

International student support and welfare
The International Student Support and Welfare Team provide specialist support and advice for all non-UK students at UCL. As well as immigration information, they help to support students through the transition to university in the UK by organising the International Student Orientation Programme (ISOP) at the start of each term, and arranging regular workshops for international students which tackle particular issues.

Further information:
- International Students
Accommodation

UCL Accommodation provides a range of housing options which includes two Halls of Residence (catered), self-catered Student Houses and Intercollegiate Halls (both catered and self-catered) shared with other colleges of the University of London. Each Hall has a designated Warden supported by a number of live in Student Residence Assistants to provide support for students and to foster a positive environment within the accommodation.

Further information:
- Wardens at UCL Residences

Financial support

At UCL we understand students can face a range of financial issues. We aim to help and advise students as much as possible, so that they have more control over their own financial situation. The Student Funding Team offer online information and one-to-one support through appointments as well as a drop-in service. Students with a more complex or sensitive circumstances can make an appointment with the Student Funding Welfare Adviser.

Further information:
- UCL Financial Support
- Manage your Money

Student of Concern

There are many sources of support for students who are having difficulties, but sometimes it is hard to know how to help a student who appears to be struggling, particularly if they seem unwilling or unable to seek the help they need. Anyone concerned about the behaviour of a student, who believes the problem may be related to health and wellbeing issues, is encouraged to complete the online UCL Student of Concern Form. Depending on the concerns raised, Student and Registry Service may respond by offering support or advice to the student or the person who submitted the form, liaise with support services or, if necessary, work with the relevant authorities to ensure the student is safe.

Further information:
- Student of Concern

Registering with a doctor and out-of-hours support services

Registering with a doctor

Students are strongly encouraged to register with a doctor as soon as possible after they arrive in London so that they can access healthcare as quickly as possible if they become ill or injured. When attending a university in the UK students are also advised to be vaccinated against Meningitis C.

The Ridgmount Practice is a National Health Service (NHS) practice providing healthcare and dental services for students living within its catchment area (i.e. near the main UCL campus). Students can also choose to register with a practice closer to where they live if they prefer. The Ridgmount Practice also runs a Walk-in Surgery which any UCL student can attend, even if they are not registered with the practice.

Further information:
- Register with a Doctor
- Ridgmount Practice
Out-of-hours support and information helpline

UCL works in partnership with Care First to provide an out-of-hours support and information helpline. The helpline is free of charge and includes access to information specialists who are trained by Citizens Advice and to professionally-qualified and BACP-accredited counsellors who can help students with a range of emotional and psychological difficulties.

Further information:
- Care First

Crisis support - immediate help

If a student is in crisis there are a range of UCL and external sources of help such as Nightline, Ridgmount Medical Practice, Hall Wardens, Student Psychological Services and the Samaritans.

Further information:
- Crisis Support

Equality and diversity

UCL fosters a positive cultural climate where all staff and students can flourish, where no-one will feel compelled to conceal or play down elements of their identity for fear of stigma. UCL is a place where people can be authentic and their unique perspective, experiences and skills seen as a valuable asset to the institution. The Equalities and Diversity website brings together a range of information on issues relating to race, gender, religion and belief, sexual orientation, and disability amongst other equalities initiatives at UCL.

Inclusion Leads

Inclusion Leads provide support and assistance for students and staff about issues relating to equalities and diversity. The Inclusion Lead for the Department of Statistical Science is Ms KA Leport (room 138, k.leport@ucl.ac.uk).

Further information:
- Equalities, Diversity and Inclusion
- Support for Pregnant Students
- Support for Student Parents
- Religion and Belief Equality Policy for Students
- LGBTQ+ Students
- UCL Chaplain and Inter-Faith Adviser
- Inclusion Leads (formerly DEOLOs)

UCL’s zero tolerance policy on harassment and bullying

Harassment and bullying

Every student and member of staff has a right to work and study in a harmonious environment. UCL will not tolerate harassment or bullying of one member of its community by another or others and promotes an environment in which harassment and bullying are known to be unacceptable and where individuals have the confidence to raise concerns in the knowledge that they will be dealt with appropriately and fairly.

Further information:
- UCL Policy on Harassment and Bullying
- Students’ Union Advice Service
Sexual misconduct

It is unacceptable for any person at UCL, whether staff or student, to be subjected to any unwanted and persistent behaviour of a sexual nature. UCL is working with the Students’ Union to implement a two-year action plan to tackle issues of sexual harassment and make sure that staff and students have access to relevant training. Any UCL student experiencing sexual harassment may access confidential support from a range of sources including their personal tutor or any other member of staff in their department or faculty who they trust, their Hall Warden, or a Students’ Union student officer. Support is also available from the trained staff at the Students’ Union Advice Service, or the UCL Student Mediator.

Further information:

- Zero Tolerance to Sexual Harassment

Support for students who have been affected by sexual violation

UCL will do its utmost to support anyone who has been, or is being, affected by sexual violence. If a student would like to talk to somebody at UCL, the Student Support and Wellbeing Team can offer advice on the support available both internally and externally.

Further information:

- Support for students affected by sexual misconduct and/or sexual violation

STUDENT REPRESENTATION

Students’ Union UCL

The Union helps you to do more at UCL, experience something you’ve always dreamt of, turn a curiosity into a new passion and help you reach your potential. The Union cares about the things you care about, it’s made up of all kinds of people from all kinds of places and it’s there to fight for you when you need someone in your corner.

Students’ Union UCL is the representative body of all UCL students. It’s run by students for students and is a registered charity, independent of UCL. All UCL students at every level are automatically members of the Union (but can opt out), and the Union’s leaders are elected annually by and from all current students. The elected leaders are called Sabbatical Officers and they represent students on various UCL committees and campaign on the issues that matter to students. Alongside the Sabbatical Officers are more than 1000 voluntary representatives, elected or appointed to cover every part of UCL life.

Further information:

- Students’ Union website
- Elections information (including how to run for office)

Student societies

UCL students currently run over 250 different clubs and societies through the Students’ Union, providing a wide range of extra-curricular activities for students to get involved with during their time at UCL. The Welcome Fair will be your opportunity to meet all of the clubs and societies in one place and will take place on 29 and 30 September.

Further information:

- Students’ Union Clubs & Societies
- Club and Society Welcome Events
Academic Representatives

Your Students' Union is there to make sure you have the best possible time while you're studying at UCL. One of the ways they do that is by working with departments and faculties to ensure that every student is represented and has a voice in the way that the university works.

Every student at UCL will have an Academic Representative who will be your eyes, ears, and voice. They'll work closely with staff in your department to make sure that they understand what you most value, and take action to deal with things you'd like to see improve. They'll also work with representatives in your faculty and the Students' Union to make things better across the whole of UCL.

These Academic Representatives are appointed during early October – if you’d like to take up the role, staff in your department can tell you how. If you take up a representative role, the Students’ Union will work closely with you to provide training, support, and advice, and you’ll be able to change the experience of everyone on your programme or in your department for the better.

Even if you don’t fancy taking up a role yourself, keep an eye out for your chance to vote for which students you feel will do the best job.

Further information:
- Academic Representatives
- Find your Representative
- Become an Academic Representative

Staff-Student Consultative Committee

Every department at UCL has a Staff-Student Consultative Committee (SSCC) that meets at least three times a year. The SSCC is a forum for discussion between staff and student academic representatives. It’s a great chance to work closely with staff to improve students’ learning experience, and a big part of how together we make education better at UCL.

It is possible in principle for every interested student to attend the committee meetings (subject to space restrictions). The minutes of previous meetings are available on the DOSSSH Moodle page for students to consult.

Departmental Teaching Committee

This committee oversees the organisation and structure of the degree programmes and modules offered by the Department. It also considers teaching matters arising from meetings of the Staff-Student Consultative Committee. Student representatives (including at least one from each undergraduate year group) are invited to Departmental Teaching Committee meetings.

The Advice Service

The Students' Union Advice Service is available to UCL students. Trained and experienced caseworkers are ready to support you with any difficulties that might occur during your time at UCL. The Advice Service specialises in:
- Academic issues - including examination irregularities and student complaints
- Housing - including contract checking and housemate disputes
- Employment - including unpaid wages and part time employment contracts
Money advice - including advice on benefits
Many other legal and university matters

Sessions are confidential and will not be reported to your department or any other university staff unless at your request. Students can make an appointment or attend a drop-in session for free, confidential and independent advice and support.

Further information:
- Students’ Union Advice Service

Student complaints
UCL aims to ensure that every student is satisfied with their experience of UCL. However we recognise that from time to time problems do arise and students may wish to express concern or dissatisfaction with aspects of UCL or the quality of services provided.

Informal resolution
Many complaints can be resolved at an informal or local level without needing to submit a formal complaint. Students can speak to their Personal Tutor, Programme Leader, Departmental or Faculty Tutor or Academic Representative if they have any concerns about their programme. They can also speak to the UCL Student Mediator or the Students’ Union Advice Service. UCL strongly encourages this kind of resolution and does expect students to have attempted some form of informal resolution before making a formal complaint.

Formal complaints
If an issue cannot be resolved at a local level, students may feel they need to submit a formal complaint using UCL’s Student Complaints Procedure. UCL aims to ensure that all complaints are treated fairly, impartially, effectively and in a timely manner, without fear of victimisation. The Complaints Procedure applies across all schools, faculties, academic departments and professional service divisions.

Further information:
- UCL Student Complaints Procedure
- UCL Student Mediator

STUDENT FEEDBACK

UCL’s goal is to put students’ feedback, insights and contributions at the heart of our decision-making. We value students’ feedback and work with students as partners in the process of shaping education at UCL. In recent years, as a direct result of student feedback, we extended library opening hours, opened new study spaces and scrapped graduation ticket fees for students.

The Department is very interested in how students feel about studying Statistics at UCL and how well we are doing according to the students’ point of view. There are a number of ways in which students can give feedback to the Department, some of which are detailed below. Students are also encouraged to give individual feedback to their Personal Tutor (regarding general issues) and to the module lecturers (regarding specific modules). The Department will try its best to take students’ opinions into account wherever possible.
Student surveys
One of the principal ways in which UCL gathers and responds to student feedback is via online student experience surveys such as the National Student Survey, The Postgraduate Taught Experience Survey and the New to UCL survey. Whether it’s about teaching, accommodation, or facilities, surveys are a chance for students to have their say about what works and what needs improving, to help us make sure that UCL is as good as it can be for current and future students. We aim to minimize the volume of surveys students are asked to take, so undergraduates will be invited to take just one institutional survey per year, and full-time postgraduate students will be invited to take two. Each survey usually takes just a few minutes to complete, all responses are anonymous and some include a generous prize draw. Every piece of feedback is read and the results of each survey are then shared with staff right across UCL – including President & Provost Michael Arthur.

Further information:
• You Shape UCL

Student evaluation questionnaires
Departments also run student evaluation questionnaires on individual modules throughout the year. This gives students the opportunity to feedback about the teaching on their specific modules, helping departments to continuously improve learning, teaching and assessment. Feedback from SEQs feeds into the Annual Student Experience Review process.

The Department relies on feedback from as many students as possible in order to get a clear picture of how well the modules are running and whether improvements can be made. You will be asked to complete a questionnaire for each module that you take. This is usually done during the last two weeks of a module. You are expected to take this exercise seriously. Anonymity is preserved and space is provided on the questionnaires for additional comments if you feel that is required (positive comments are also helpful; frivolous comments will be discounted).

The Annual Student Experience Review (ASER)
UCL’s Annual Student Experience Review (ASER) process requires all departments to undertake an annual self-evaluation and produce a development plan for how they plan to improve in the coming year. The self-evaluation involves looking at student feedback from surveys and student evaluation questionnaires as well as other data about student performance and academic standards, such as the feedback provided by the External Examiner, which helps departments to understand what is working well and what might need improving. Student Academic Representatives are active participants in the evaluation process and creation of the development plan through discussions at departmental and faculty committees, giving students an important role in identifying and planning improvements within their department. Students can view the completed reports and action plans on the faculty/departmental intranet.

Further information:
• Annual Student Experience Review

UCL ChangeMakers
UCL ChangeMakers supports students and staff to work in partnership to enhance the student learning experience across UCL. UCL ChangeMakers Projects supports students
and staff in running projects to improve the learning experience at UCL. Anyone with an
idea can submit a proposal for funding and support. UCL ChangeMakers ASER facilitators
are students who work with Student Academic Representatives and staff in selected
departments to formulate the departmental educational enhancement action plan. UCL
ChangeMakers Student reviewers work with staff to review their teaching practice.

Further information:

- UCL ChangeMakers

EMPLOYABILITY AND CAREERS

Careers information

Within the Department, there is a careers noticeboard in the Students’ Common Room. Job
advertisements and information about careers talks, fairs and courses are posted there.
Special careers talks arranged by the Careers Tutor.

You may approach members of the academic and teaching staff for a job reference.
However, please note that staff cannot supply a reference without your written permission
(see page 9). If you require a reference, therefore, you should fill in a form, available from
the Departmental Office and the DOSSSH Moodle page (see page 8). This form also
contains space for you to provide other relevant information (for example, a description of
the position / course you are applying for, and a brief CV). This kind of information will
enable staff to write constructive references for you.

UCL Careers

UCL Careers provides a wide variety of careers information, one-to-one guidance and
events for UCL students and recent graduates, and assists them through the entire job
hunting process, including exploring options, searching for vacancies, preparing CVs and
applications, practicing for interviews, aptitude tests or assessment centres, and providing
access to recruitment fairs and other employment-related events. They can also advise on
exploring options for further study and funding. Services and events are available to all
taught students, researchers (PhD students and postdocs) and graduates (for up to 2 years
after programme completion).

UCL Careers also supports employability activities within departments such as work-related
learning, including internships and placements. UCL students are helped with applications
and sourcing opportunities with web resources and advice. They can book appointments
via myUCLCareers and can source opportunities via myUCLCareers, UCL Talent Bank - a
shortlisting service connecting students to small and medium sized organisations, and apply
for opportunities within our summer internships and global internships schemes.

Further information:

- UCL Careers
- myUCLCareers
- UCL Careers information on internships and placements

Royal Statistical Society (RSS) accreditation

The Royal Statistical Society (https://www.rss.org.uk/) accredits university degree
programmes at undergraduate and taught postgraduate level for a particular year on the
basis of information supplied by the university. The MSc Statistics programme was
accredited up until the 2017/18 academic session, meaning that Graduate Statistician (GradStat) status will automatically be granted, on application to the RSS, to holders of the MSc Statistics (including the Medical Statistics pathway) who successfully completed the taught part of the degree programme during the accredited years. Applicants must already be Fellows of the RSS or become Fellows concurrently.

The Department will be applying to retain this accreditation for eligible students who enrol from September 2018 onwards. Alternatively, graduates may apply individually for GradStat status; they will need to provide a transcript of modules taken.

Entrepreneurship at UCL

UCL has a long and successful track record of supporting spin-outs and start-ups developed by its academic and student communities. Many of the student and staff entrepreneurs have won external awards and achieved substantial investment allowing their enterprises to grow and reach their full potential. UCL offers a wide range of support to students ranging from training programmes, advice on whether an idea has commercial potential, one-to-one sessions with business advisers, funding, competitions and incubator space to help them start or grow their business.

Further information:

- [UCL Innovation and Enterprise](#)

UCL Global Citizenship Programme

The UCL Global Citizenship Programme is aimed at UCL undergraduates and taught postgraduates offering them the chance to put their studies in a global context, connect with students across UCL and see the world differently. The Programme runs for two weeks after summer exams have finished, providing a range of opportunities to help students boost their studies, develop hands-on skills and make an impact on the world. Participation is free and is not assessed. Places are awarded on a first come, first served basis.

Further information:

- [UCL Global Citizenship Programme](#)

HEALTH, SAFETY AND SECURITY

Health, safety and security at UCL

UCL’s overall objective is to provide and maintain a safe and healthy environment for staff, students, people who work with UCL and those who visit. Health and safety is an integral part of the way in which UCL’s activities are managed and conducted. The UCL Safety Services webpage includes further information about health and safety policies and useful guidance and tools for risk assessment. The UCL Security Services webpage includes information regarding security operations, emergency contacts and tips for staying safe at UCL.

Further information:

- [UCL Health and Safety Policy](#)
- [UCL A-Z Safety Guidance](#)
- [General Fire Safety for UCL Students](#)
- [UCL Security Services](#)
- [Staying Safe at UCL](#)
AFTER STUDY

Transcripts
Five copies of your official transcript, detailing examinations taken and results achieved, are issued automatically to all graduating students and sent to their contact addresses as held on Portico approximately 8-10 weeks after the awards have been ratified by the UCL authorities.

UCL Student Records can produce additional transcripts for students on taught programmes as well as for affiliate students via the UCL Transcript Shop.

Further information:
- Transcripts

Graduation Ceremonies
Following successful completion of their studies, graduation ceremonies are held to celebrate students’ achievements.

Further information:
- Graduation Ceremonies

UCL Alumni Online Community
The UCL Alumni Community is a global network of more than 250,000 former students. Alumni can take advantage of a wide range of benefits – on campus, across the UK and globally – including the Alumni Card, access to thousands of e-journals and library services and a free UCL-branded email for life. All students and alumni can connect through the UCL Alumni Online Community, an exclusive mentoring platform with sector based and international networks, and get involved through events, reunions, and the UCL Connect professional development series.

Further information:
- UCL Alumni

MODULE INFORMATION
The following pages give more detail, including outline syllabuses, of the core and optional modules comprising the MSc Data Science, MSc Statistics and MSc Statistics (Medical Statistics) programmes. For most modules, some indication is also given of areas where the material may be applied in practice; this is to help students decide which options might be most suitable for them.
STAT0008
STATISTICAL INFERENCE

Level: 7 Credits: 15 Term: 1

Aims: To provide a grounding in the theoretical foundations of statistical inference and, in particular, to introduce the theory underlying statistical estimation and hypothesis testing.

Objectives: On successful completion of the module, a student should be able to: describe the principal features of, and differences between, frequentist, likelihood and Bayesian inference; define and derive the likelihood function based on data from a parametric statistical model, and describe its role in various forms of inference; define a sufficient statistic; describe, calculate and apply methods of identifying a sufficient statistic; define, derive and apply frequentist criteria for evaluating and comparing estimators; describe, derive and apply lower bounds for the variance of an unbiased estimator; define and derive the maximum likelihood estimate, and the observed and expected information; describe, derive and apply the asymptotic distributions of the maximum likelihood estimator and related quantities; conduct Bayesian analyses of simple problems using conjugate prior distributions, and asymptotic Bayesian analyses of more general problems; define, derive and apply the error probabilities of a test between two simple hypotheses; define and conduct a likelihood ratio test; state and apply the Neyman-Pearson lemma;

Applications: The theory of statistical inference underpins statistical design, estimation and hypothesis testing. As such it has fundamental applications to all fields in which statistical investigations are planned or data are analysed. Important areas include engineering, physical sciences and industry, medicine and biology, economics and finance, psychology and the social sciences.

Prerequisites: STAT0027.

Texts:

Assessment:
• In-course assessment (see page 29)
• 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
About 8 sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: 2 two-hour classes.
Tutorials: 1 hour per week.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0009
STOCHASTIC SYSTEMS

Level: 7 Credits: 15 Term: 1

Aims: The study of random processes, with the emphasis on Operational Research applications and including queueing theory, renewal and semi-Markov processes and reliability theory.

Objectives: On successful completion of the module, a student should understand such concepts for stochastic processes as the Markov property, stationarity and reversibility and be able to determine whether such properties apply in straightforward examples; recognise and apply appropriately a range of models, as listed in the module contents, in a variety of applied situations so as to determine properties relevant to the particular application.
Applications: Stochastic systems arise in many areas of application. They play a fundamental role in Operational Research which addresses real-world problems through the use of mathematics, probability and statistics; topics such as queueing theory and reliability are important examples. Stochastic processes are also vital to applications in finance and insurance, and have many applications in biology and medicine, and in the social sciences. Stochastic process theory underpins modern simulation methods like Markov-chain Monte-Carlo (MCMC).

Prerequisites: STAT0027, or simultaneous or previous attendance of STAT0032, together (in either case) with an undergraduate introductory module in applied probability.

Texts:

Assessment:
• In-course assessment (see page 29)
• 2 hour written examination
The final mark is a 4 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
About 9 sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: two 2 hour sessions.
Tutorials: 1 hour per week.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0010
FORECASTING

Level: 7 Credits: 15 Term: 2

Aims: To introduce methods of finding and extrapolating patterns in time-ordered data.

Objectives: On successful completion of the module, a student should be familiar with the most commonly-used models for time series; be able to derive properties of time series models; be able to select, fit, check and use appropriate models for time-ordered data sequences; understand and be able to interpret the output from the time series module of a variety of standard software packages.

Applications: Time series data take the form of observations of one or more processes over time, where the structure of the temporal dependence between observations is the object of interest. Such data arise in many application areas including economics, engineering and the natural and social sciences. The use of historical information to estimate characteristics of observed processes, and to construct forecasts together with assessments of the associated uncertainty, is widespread in these application areas.

Prerequisites: STAT0027 or STAT0032.

Texts:
Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 4 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
About 7 sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: two 2 hour classes.
Office hours, during which the lecturer will be available to discuss students' individual problems with the module, will also be provided.

STAT0011
DECISION AND RISK

Level: 7 Credits: 15 Term: 2

Aims: To provide an introduction to the ideas underlying the calculation of risk both from a Bayesian and frequentist standpoint, and the structure of rational, consistent decision making.

Objectives: On successful completion of the module, a student should be able to understand special measures of risk, understand the concepts of decision theory, find appropriate probability models for risky events and check the validity of the underlying assumptions, and be familiar with methodology for detecting changes in risk levels over time.

Applications: The ideas introduced in this module provide a generic framework for thinking about risk and decision-making in the presence of uncertainty. As such, they can be applied in many diverse areas. The module will use examples from natural hazards, environmental hazards, finance, and social policy.

Prerequisites: STAT0027 or STAT0032.

Texts

Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work About 8 sets of exercises. These will not count towards the final mark.

Timetabled workload
Lectures: 2 hours per week.
Workshops: three 1 hour sessions.
Office hours, during which the lecturer will be available to discuss students' individual problems with the module, will also be provided.

STAT0012
FACTORIAL EXPERIMENTATION

Level: 7 Credits: 15 Term: 2

Aims: To introduce \(2^k\) experiments, fractions and blocking. To introduce designs for response surface modelling. To discuss experimental designs to achieve quality control, including Taguchi ideas.

Objectives: On successful completion of the module, a student should have an understanding of the basic ideas relating to \(2^k\) factorial experiments, including for fractional designs and with blocking; should be able to analyse data from these experiments by the analysis of variance and/or graphical techniques; be able to design experiments for response surface modelling; be able to understand and use practical aspects of experimental design including randomisation.

Applications: Factorial experiments are useful in any situation in which a complex system has to be investigated or optimised.
The applications tend to be in the fields of science and technology, though that may be a result of a lack of imagination rather than a lack of wider applicability. Some examples are the optimisation of an industrial production process, the design of a new drug, the design of a human-computer interface, the optimisation of products and marketing campaigns, computer simulations to explore the effect of interventions on, e.g., economy or climate, or the quality of new statistical methodology.

Prerequisites: STAT0029 and either STAT0028 or STAT0032.

Texts:

Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 4 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
About 8 sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: 2 two-hour classes.

Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0013 STOCHASTIC METHODS IN FINANCE

Level: 7 **Credits:** 15 **Term:** 1

Aims: To introduce mathematical concepts and tools used in the finance industry, in particular stochastic models and techniques used for financial modelling and derivative pricing.

Objectives: On successful completion of the module, a student should have a good understanding of how financial markets work, be able to describe basic financial products, have a good knowledge of the basic mathematical and probabilistic tools used in modern finance, including stochastic calculus, and be able to apply the relevant techniques for the pricing of derivatives.

Applications: The techniques taught in this module are widely used throughout the modern finance industry, including the areas of trading, risk management and corporate finance. They also have applications in other areas where investment decisions are made under uncertainty, for example in the energy sector where decisions on whether or not to build (i.e. invest in) new power plants are subject to uncertainty regarding future energy demand and prices.

Prerequisites: STAT0027, or simultaneous or previous attendance of STAT0032.

Texts:
Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: four 2 hour classes.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0014
MEDICAL STATISTICS 1

Level: 7
Credits: 15
Term: 1

Aims: To provide an introduction to the fields of clinical trials and epidemiology, with emphasis on the statistical ideas and methodology most widely used in these areas.

Objectives: On successful completion of the module, a student should have an understanding of ways to measure health outcomes, types of observational studies and their design issues, and design features of randomised trials. In addition they should be able to implement and interpret results from basic methods of analysis used in health studies as well as logistic regression and methods for analysis of survival data.

Applications: This module, together with STAT0015, has applications in both medicine and epidemiology. Important areas include the design and analysis of medical research studies, including randomised controlled trials.

Prerequisites: STAT0027. Simultaneous or previous attendance of STAT0028 and STAT0008, or its equivalent.

Content: The role of medical statistics; Types of observational studies: case-control, matched case-control, cohort, cross-sectional and their analysis: introducing absolute and relative measures of risk, rates and odds; Design features of randomised trials: randomisation, blocking, stratification, minimisation, blinding, use of placebos; Survival analysis: features of survival data, hazard and survivor functions, censoring, Kaplan Meier Curves, Log rank Tests, Cox regression; Analysis of parallel group trials: basic analysis, intention to treat and per protocol analyses, missing data, use of baseline data, subgroup analyses, interpretation of results; Confounding and interaction: concepts of confounding and interaction, stratification and matched analysis; Logistic regression: odds ratios, predictions, multiple logistic regression, categorical and continuous covariates, assumptions of linearity, interactions, goodness of fit (Hosmer-Lemeshow), conditional logistic regression; Calculation of sample size for trials and observational studies; Introduction to statistical software STATA. There will be computer or paper based practical sessions on analysis of observation studies, study design, analysis of trials, confounding and interaction, survival analysis, logistic regression and sample size calculation.

Texts:

Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
Several sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: two 2 hour classes.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.
STAT0015
MEDICAL STATISTICS 2

Level: 7 Credits: 15 Term: 2

Aims: To provide a continuation of the study of medical statistics started in STAT0014, with emphasis on more advanced topics in epidemiological methods and the design and analysis of clinical trials.

Objectives: On successful completion of the module, a student should be able to: model survival data using parametric regression models; develop and validate a risk prediction model; analyse clustered data using a regression model; design and analyse a cross-over trial, cluster randomised trial, equivalence trial and early phase trial; understand the issues concerning interim analyses and missing data; carry out a meta-analysis.

Applications: This module, together with STAT0014, has applications in both medicine and epidemiology. Important areas include the design and analysis of medical research studies, including randomised controlled trials.

Prerequisites: STAT0014, or its equivalent.

Content: Modelling survival data using parametric models. Risk prediction models, Introduction to clustered data including cluster randomised trials, repeated measures and GEEs. Hierarchical regression models for continuous, binary and survival outcomes. Interim analyses in trials. Equivalence trials. Cross over trials. Early phase trials. Systematic reviews and meta-analysis. Missing data. In addition, there will be weekly practical sessions on many of the topics listed above.

Texts:
D. Collett: Modelling Survival Data in Medical Research. Chapman and Hall.

Assessment:
• In-course assessment (see page 29)
• 2 hour written examination

The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
Several sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: two 2 hour classes.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0017
SELECTED TOPICS IN STATISTICS

Level: 7 Credits: 15 Term: 2

Aims: To provide an introduction to, and practical experience of, key ideas in selected specialized topics that are at the forefront of developments in modern statistical research and practice. The module is aimed specifically at students who may be considering going on to do research in statistics or related areas.

Objectives: On successful completion of the module, students should be able to: explain the motivation for, and key ideas involved, in the topics that have been studied; identify situations in which the studied techniques are potentially applicable, while recognizing their potential limitation; use software packages that are available in R to apply the techniques to real-world examples where appropriate; and understand the context of research papers in the areas that have been studied.

Applications: the availability of huge and often complex data sets, coupled with cheap computing power makes it possible to contemplate analyses that were inconceivable even two decades ago. The development of statistical methodology has made full use of these opportunities, so that modern statistics has made significant contributions in a wide range of application areas. The material
covered in this module will vary from year to year so that the specific applications will vary; however, it will provide students with some insight into the state of the art. As such it would be suitable for students contemplating research in statistics or, indeed, in any other subject where complex problems require the use of advanced statistical methods.

Prerequisites: STAT0008, STAT010 and STAT0030, or their equivalents.

Content: This module will provide an introduction to two or three advanced topics in modern statistics. The precise topics covered will vary from year to year, depending on teaching staff availability and research interests. Examples of topics might include: bootstrap and related methods; extreme value theory; multivariate analysis; nonparametric smoothing; robust methods; spatial statistics; applied probability; and estimating functions. Where appropriate, the methods will be illustrated using software available in the R package.

Topic 1: Extreme value theory and practice (Dr PJ Northrop) Extreme value analyses aim to estimate the probability of events that are more extreme than anything that has previously been observed. For example, suppose that we work for an oil company that has discovered oil beneath the sea and wishes to construct an oil rig to extract the oil. The oil rig must have a high probability of withstanding the weather in the area, such as the effects of large waves, over its intended lifetime. We have 35 years of wave height data available, but the oil rig is expected to be used for at least 100 years. If the climate remains constant over time the largest wave observed over the next 100 years will probably be larger than the largest wave observed in the previous 35 years.

Thus extreme value analyses make inferences about, say, the upper tail of a distribution, usually beyond the range of the observed data. In the simplest analyses models are fitted to a dataset containing the largest value observed in each year of the observation period, i.e. annual maxima. Extreme value theory provides motivation for a certain type of model for sample maxima, in the same way that the Central Limit Theorem suggests the normal distribution as a model for sample means. Alternative analyses are based on setting a high threshold and modelling the amounts by which the data exceed the threshold.

Initially we will study the basics of extreme value theory, in the idealised situation where observations on the variable of interest are mutually independent, and methods by which the resulting models may be fitted to data. We will consider how to use the fitted models to answer questions of practical importance. Then we consider how the basic theory can be extended to more realistic situations such as: response data that are dependent in time and/or space; regression situations in which the extremes of a response depend on covariates; multivariate extreme value analyses (in which there is more than one response variable of interest). In most cases models will be fitted using maximum likelihood but we will also consider Bayesian approaches. The methods will be illustrated using software available in contributed R packages, using examples from the environment and finance.

Prerequisites: STAT0008 and STAT0030, or their equivalents, are required. Either STAT0028 or STAT0032 and STAT0031, or their equivalents, are desirable. The following texts are relevant to this part of the module:

Topic 2: Dependence modelling in finance using copulas (Dr A Donov) The study of the dependence structure between financial assets has become prominent in many financial applications. For example, in quantitative risk management, specification and identification of statistical dependence between asset returns in portfolios is crucial for risk assessment, quantification and management. To accurately measure the portfolio risk, one needs to consider the way assets tend to move together. For example, there is a considerable difference if all assets in a portfolio tend to plummet in value simultaneously, or at different times. In the
first scenario, the consequences might be more severe in that the benefits of diversification will not be realised. Hence, accurately modelling the dependence structure is an important task.

The dependence structure between random variables can be completely described if their multivariate distribution is known. The most commonly used joint distribution in empirical finance is the multivariate normal (or Gaussian) distribution. In a joint Gaussian distribution, the dependence structure is completely described by Pearson's correlation coefficient. However, in practice the joint distribution of asset returns is far from being Gaussian. Numerous empirical studies show that the Gaussian distribution is not capable of capturing important characteristics observed in finance. Hence, Pearson's correlation is inadequate in capturing accurately the dependence structure amongst financial variables.

This part of the module will introduce copula theory for modelling the dependence structure with specific applications in finance. Copula models have become popular over the last decade as they provide greater flexibility by allowing the dependence structure to be modelled separately from marginal distributions. Topics covered will include theoretical foundations of copulas, and various dependence measures. The widely used bivariate parametric copula families will be considered, along with their estimation and goodness-of-fit tests. Furthermore, a rich class of higher dimensional copulas named vine copulas will be covered. Additionally, the time-varying dependence structure will be taken into account by combining copula theory with regime switching models that exhibit the Markov property. The module will also consider some recent contributions to copula theory for high-dimensional data, namely factor copula models. All financial applications will be illustrated using R software and real financial data.

Prerequisites: STAT0008, STAT0010 and STAT0030, or their equivalents, are required. STAT0011, and either STAT0028 or STAT0032, or their equivalents, are desirable. The following texts are relevant to this part of the module:

Assessment:
- Two pieces of extended coursework (one for each topic)
There is no written examination. The final mark is an average of the two coursework marks (equally weighted).

Other set work:
Several sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: eight 2 hour classes.
Office hours, during which the lecturers will be available to discuss students’ individual problems with the module, will also be provided.

STAT0018
STOCHASTIC METHODS IN FINANCE 2

Level: 7 Credits: 15 Term: 2

Aims: To explore advanced topics in finance via mathematical and statistical methods in order to gain a better understanding of optimal decision making, risk management and derivative pricing techniques. The module will be built on material covered in STAT0013.

Objectives: On successful completion of the module, a student should be able to: Define the concepts of risk aversion and stochastic dominance, and apply them to manage risk in, and rank capital projects; Understand how dynamic programming can be used to make optimal decisions under uncertainty; Understand how to apply mathematical and statistical modelling techniques to credit risk modelling, value-at-risk measurements and capital adequacy assessments; Understand a range of modelling techniques used in derivative pricing, and the concepts and assumptions that underpin them; Criticise and
understand the limitations of these techniques as they are used in the modern finance industry.

Applications: The techniques taught in this module are widely used throughout the modern finance industry, including the areas of: business investments decisions (for example in the energy sector where decisions on whether or not to invest in and build new power plants are subject to uncertainty regarding future energy demand and prices); in corporate finance; in trading activities in the financial markets; in financial and other forms of risk management; in valuing and accounting for assets; and in the prudential regulation of the banking industry.

Prerequisites: STAT0013, or its equivalent.

Content: Utility theory; Real options, including dynamic programming, optimal investment rules, and managerial flexibility; Risk management, including value-at-risk and credit risk modelling; More advanced techniques in derivative pricing.

Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
Several sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: 2 two-hour classes.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.
economics evaluation and PSA with R/BUGS/BCEA; Advanced topics in PSA in R using BCEA; Evidence synthesis (1): decision models; Evidence synthesis (2): network meta-analysis; Markov models in health economics.

Texts:

Assessment:
- In-course assessment (see page 29)
- 2 hour written examination

The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
Several sets of practical exercises involving R and BUGS. These will not count towards the final mark.

Timetabled workload:
Lectures: 1 hour per week.
Workshops: 1 hour per week.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0020
QUANTITATIVE MODELLING OF OPERATIONAL RISK AND INSURANCE ANALYTICS

Level: 7 **Credits:** 15 **Term:** 2

Aims: To develop a core mathematical and statistical understanding of an important new emerging area of risk modelling known as Operational Risk which arose from the development of the Basel II/III banking regulatory accords. This will equip students with the necessary tools to undertake core modelling activities required in risk management, capital management and quantitative modelling in modern financial institutions.

Objectives: On successful completion of the module, a student should be able to: describe the key quantitative requirements of the Basel II/III banking accord; describe the 56 risk cells (business units and risk types) required under the standard Basel II/III regulator frameworks; describe the basic indicator, standardized and advanced measurement approaches; describe the key components of a loss distributional approach model; develop frequency and heavy tailed severity models for Operational risk types including estimation or the model parameters and model selection; describe properties and asymptotic estimators for risk measures that are required for capital calculation; describe the coherent allocation of capital to business units from the institutional level; introduce and understand the influence of dependence modelling within an LDA model structure; obtain familiarity with particular classes of copula statistical models of basic relevance to practical Operational risk modelling; decide upon appropriate combining approaches for different sources of data required by regulation to be considered in OpRisk settings; develop loss aggregation methods to aggregate OpRisk loss processes.

Applications: An integral part of modern financial risk involves Operational Risk, the third key risk type that financial institutions must model and hold capital for according to the international banking regulations of Basel II/III. The key set of concepts and mathematical modelling tools developed in this module will equip the future risk modellers and quantitative analysts with the appropriate core mathematical and statistical background to undertake development of such risk models in industry.

Prerequisites: Familiarity with distribution theory and generating functions, for example as encountered in STAT0027 or STAT0032. Also some basic experience in either Matlab, Python or R is needed, as taught in STAT0029, or its equivalent.

Content: Key components of operational risk frameworks, external databases, scenario analysis, operational risk in different financial sectors, risk organization and governance. Basic indicator approach, standardized approaches, advanced measurement approach. Loss distributional approach: quantiles and moments, frequency

Texts:

Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
About 8 sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Workshops: two 2 hour classes.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0027 FOUNDATION FORTNIGHT

Level: 7 **Credits:** 0 **Term:** 1

Aims: To review the prerequisite undergraduate material assumed for the rest of the degree programmes listed at the top of page 1.

Objectives: On completion of the module, a student should have reviewed and completed exercises on basic probability theory, statistical estimation and hypothesis testing, practical statistics and associated computing.

Prerequisites: Introduction to theory of probability and statistics, and the associated necessary mathematical theory.

Content: Introduction to probability, conditional probability, random variables and distributions, expectation, special distributions, Poisson processes, Markov chains and “birth-death” processes. Introduction to estimation, sampling distributions of estimators, testing hypotheses, categorical data, non-parametric methods, linear statistical models, Minitab computing package.

Texts:

Assessment:
This module is not formally assessed.

Set work:
Exercises are set with each topic. Many of these are from the book by Rice.

Timetabled workload:
About 45 hours, mainly during the week preceding and in the first week of Term 1.
STAT0028
STATISTICAL MODELS AND DATA ANALYSIS

Level: 7 Credits: 15 Term: 1

Aims: To introduce the theory of linear and generalised linear / additive models and associated data analysis.

Objectives: On successful completion of the module, a student should have an understanding of the exponential family of distributions and their use in the formulation of generalised linear / additive models, and should be able to interpret the results of fitting such models in both a technical and non-technical manner.

Applications: The statistical methods introduced in STAT0028 are very general, and they are used in almost all areas in which statistics is applied. In the module, we will analyse data sets from, among other areas, industrial quality control, astronomy, social sciences, and biology.

Prerequisites: STAT0027. Simultaneous or previous attendance of STAT0008, or its equivalent.

Content: Multiple Linear Regression: inference techniques for the General Linear Model, applications, variable selection. Generalised Linear Models: structure incorporating an introduction to the exponential family of distributions, inference procedures. Categorical data: special cases of generalised linear models leading to logistic regression and log-linear models, use in data analysis. Introduction to non-linear modelling, mixed modelling, generalised estimating equations. Introduction to Generalised Additive Models: penalised regression splines and penalised estimation. STAT0030 gives students the computing skills to implement the methodology discussed in this module.

Texts:

Assessment:
• In-course assessment (see page 29)
• 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
Exercises will be set during the module, which will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Tutorials: 1 hour per week.
Office hours, during which the lecturer will be available to discuss students' individual problems with the module, will also be provided.

STAT0029
STATISTICAL DESIGN OF INVESTIGATIONS

Level: 7 Credits: 15 Term: 1

Aims: To provide an introduction to the statistical aspects relating to the design of experimental and observational studies, and to introduce associated methods of statistical analysis.

Objectives: On successful completion of the module, a student should have an understanding of the basic ideas of experimental design and observational studies; should be able to analyse data from a variety of experimental designs by the analysis of variance; should be able to assess the appropriateness of various sampling schemes and perform appropriate analyses.

Applications: this module addresses the issues of what data are needed to answer a particular substantive question, and conversely what questions can reasonably be
answered using data that may be available. These issues are fundamental to quantitative analyses in all application areas.

Prerequisites: STAT0027, or simultaneous or previous attendance of STAT0032.

Content: Principles of experimental design; planning of experiments; comparative experiments; common designs: completely randomised, randomised blocks, Latin square; factorial experiments; nested and split-plot; fixed and random effects; associated analyses - analysis of variance. Observational studies v. experiments: problems of bias, confounding, difficulty of causal interpretation; planning observational studies; analysis: matching, adjusting for confounding variables; cohort studies; case-control studies. Sampling: target and sampled populations, finite populations, simple random sampling, stratification and cluster sampling, ratio and regression estimators, randomised response methods; introduction to questionnaire design.

Texts:

Assessment:
- Two pieces of extended coursework, one of which involves working in groups to design, carry out and report the results of an experiment
- There is no written examination. The final mark is an average of the two coursework marks (equally weighted).

Other set work:
Exercises will be set during the module which will not count towards the final mark.

Timetabled workload:
Lectures and workshops: 2 hours per week.
Tutorials: 1 hour per week.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0030

STATISTICAL COMPUTING

Level: 7 **Credits:** 15 **Term:** 1 & 2

Aims: To introduce the statistical package R with particular application to statistical modelling and a selection of computational techniques.

Objectives: On successful completion of the module, a student should be able to use the statistical package R to input, edit and manipulate data, produce appropriate graphics and implement statistical methods taught in modules STAT0028, STAT0029 and STAT0032. In addition, the student should be familiar with some basic principles of programming, and should be able to carry out simple programming in R with application to a variety of computational and numerical techniques.

Applications: the generic programming skills acquired in this module are applicable across a wide variety of scientific disciplines as well as in the IT sector. More specifically, the R programming environment is gaining popularity among many research communities as well as in specialised areas of business and industry, such as finance and reinsurance, where non-routine statistical analyses are increasingly required.

Prerequisites: Simultaneous or previous attendance of STAT0028 or STAT0032, together (in either case) with STAT0029 or IEHC0045.

Texts:
Assessment:
- Three pieces of extended coursework
There is no written examination. The final mark is a 1:2:2 weighted average of the three coursework marks.

Timetabled workload:
About 10 two-hour workshops.
Office hours, during which the lecturer will be available to discuss students' individual problems with the module, will also be provided.

STAT0031
APPLIED BAYESIAN METHODS

Level: 7 Credits: 15 Term: 2

Aims: To introduce the Bayesian approach to statistical inference, to develop relevant theory, methodology and computational techniques for its implementation and to develop basic skills in use of the WinBUGS software for Bayesian modelling.

Objectives: On successful completion of this module, a student should be able to give an account of the underlying principles of Bayesian inference, and contrast these with those of other schools of inference; manipulate probability formulae to derive posterior and predictive distributions; perform conjugate prior-to-posterior analysis for simple Binomial, Poisson and Normal models; analyse these and more complex Normal models, using priors representing great prior uncertainty; use hierarchical and graphical modelling to represent and analyse complex systems; describe and implement Gibbs sampling methods for estimating posterior quantities; and use WinBUGS software to estimate complex Bayesian models.

Applications: Bayesian methods are currently gaining increasing popularity, largely because advances in computing facilities and in modern simulation-based Markov Chain Monte Carlo (MCMC) methods provide a means of analysing the complex data structures that arise in application areas as diverse as artificial intelligence, biology, genetics and environmental science. This module focuses on fundamental concepts and techniques, and introduces the computational tools needed to apply Bayesian methods in challenging research-level problems.

Prerequisites: STAT0027 or STAT0032.

Texts:

Assessment:
- In-course assessment (see page 29)
- 2 hour written examination
The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
About 5 sets of exercises. These will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week. Some of these may be devoted to workshops or coursework feedback.
Tutorials: 2 hours per fortnight.
Office hours, during which the lecturer will be available to discuss students' individual problems with the module, will also be provided.

STAT0032
INTRODUCTION TO STATISTICAL DATA SCIENCE

Level: 7 Credits: 15 Term: 1

Aims: To provide a general background on fundamental statistical methods and applications in data science.

Objectives: On successful completion of the module, students should have an understanding of the fundamental aspects of probability and statistics sufficient to follow
other Masters level modules in Statistical Science. Students should also be equipped to lead basic data analysis projects in industry and research. The module will teach students: how to use probability as a language to express uncertainty; ways of visualizing and preparing data for statistical analysis; estimation techniques in the context of applied data analysis problems; the role of algorithms in the computation of estimators; how to express uncertainty in estimation via confidence intervals and hypothesis testing; predictive analysis from the point of view of regression.

Applications: The statistical methods introduced in STAT0032 are very general, and they are used in almost all areas in which statistics is applied. In the module, we will discuss applications in the context of business, social sciences, and biology, among others.

Prerequisites: Knowledge of introductory probability and statistical theory, and the associated necessary mathematical theory.

Texts:

Assessment:
• In-course assessment (see page 29)
• 2 hour written examination

The final mark is a 9 to 1 weighted average of the written examination and in-course assessment marks.

Other set work:
Exercises will be set during the module, which will not count towards the final mark.

Timetabled workload:
Lectures: 2 hours per week.
Tutorials: 1 hour per week.
Office hours, during which the lecturer will be available to discuss students’ individual problems with the module, will also be provided.

STAT0034
PROJECT

Level: 7 Credits: 60 Term: All

Aims: To enable students to apply Statistical Science to real world problems and to present their findings in a written report.

Objectives: On successful completion of the module, a student should be able to plan a suitable schedule for completing an extended project; obtain or access relevant background information and data; select and apply appropriate formal and informal statistical methods, using computer software as appropriate; assess what has been achieved and point to further research; use appropriate word processing skills to write up a project dissertation efficiently; and communicate findings both technically and non-technically, in a word processed dissertation and an oral presentation.

Prerequisites: Relevant material from the taught component of the Masters programme.

Assessment:
Dissertation (normally between 10000-12000 words, i.e. about 30 pages, A4 size, double-spaced typing, excluding graphs, tables, computer programmes and other output), to be submitted by the start of September. Over-length reports will be penalised (see page 30). Oral presentation (15 minutes excluding questions) at the start of September. The final mark is a 4 to 1 weighted average of the dissertation and presentation marks.

Timetabled workload
Skills development: Preparation for the project starts with several practical exercises,
presented and discussed in workshop sessions during Terms 1 and 2. Topics include preparing and presenting short talks, presenting information in tabular and graphical form, reading and digesting other people's research, and the use of the document preparing system LaTeX. Participation in these activities is mandatory although it does not count towards the assessment for the module: any student whose participation is inadequate will be referred to the MSc Tutor. Tutorials: about once a week, starting in June. Individual study: full-time, starting in June.

COMP0053
AFFECTION COMPUTING AND HUMAN-ROBOT INTERACTION

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Information on this module is available from the following webpage: http://www.cs.ucl.ac.uk/1819/a7p/t2/comp0053_affective_computing_and_human_robot_interaction/.

COMP0080
GRAPHICAL MODELS

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Information on this module is available from the following webpage: http://www.cs.ucl.ac.uk/1819/a7p/t1/comp0080_graphical_models/.

COMP0084
INFORMATION RETRIEVAL & DATA MINING

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Information on this module is available from the following webpage: http://www.cs.ucl.ac.uk/1819/a7p/t2/comp0084_information_retrieval_and_data_minining/.

COMP0087
STATISTICAL NATURAL LANGUAGE PROCESSING

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Information on this module is available from the following webpage: http://www.cs.ucl.ac.uk/1819/a7p/t2/comp0087_statistical_natural_language_processing/.

COMP0088
INTRODUCTION TO MACHINE LEARNING

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Information on this module is available from the following webpage: http://www.cs.ucl.ac.uk/1819/a7p/t1/comp0088_introduction_to_machine_learning/.

GENE0005
ADVANCED COMPUTATIONAL BIOLOGY

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Information on this module is available from the following webpage: https://www.ucl.ac.uk/lifesciences-faculty-php/courses/view_course.php?coursecode=GENE0005.

IEHC0045
EPIDEMIOLOGY

<table>
<thead>
<tr>
<th>Level</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Information on this module is available from the following webpage: http://www.ucl.ac.uk/iehc/study/postgraduate_tought/mschealthsociety/modules/core_modules/epidemiology.

The information given in this document is as far as possible accurate at the date of publication but the Department reserves the right to amend it.

Department of Statistical Science, UCL, September 2018.