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1 Mathematical Biology and modelling

• Dr Stephen Baigent steve.baigent@ucl.ac.uk

1. Optimal habitat choice with travel costs

This project builds on one supervised 2 years ago. Imagine a large population consisting
of several species that populate a fixed habitat. Each habitat has a range of resources and
each species has food preferences, safety concerns, etc. How does the population fill out
the habitat? This is an evolutionary game and the choice is usually a special kind of Nash
equilibrium known as an evolutionarily stable state. If it actually costs individuals to move
between sites, this complicates the problem: They may not move even if they would be ‘fitter’
in the new site if it costs too much in fitness terms to reach it. The theory for this is not so
well known, and possibly not known for some models. The aim will be to formulate a new
2D partial differential equation model where there is not a finite number, but a continuum of
species. The first task will be to set up the model and show that it makes sense (has meaningful
solutions for reasonable scenarios) and the second task will be compute these solutions using
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finite-differences, finite elements, or similar, using Mathematica, Python, Matlab or a suitable
pde solver, and explore cost-benefit trade-offs for different models.

Pre-requisites: Some experience of programming would be useful. While the project includes
some game theory ideas covered in the 2nd term module Evolutionary Games and Population
Genetics (MATH0082), the project can be done independently.

2. Invariant manifolds of discrete-time dynamical systems

Many models that arise in theoretical ecology and evolutionary game theory have curves,
surfaces, or more generally manifolds, that are left invariant by the dynamics. For models
that have an invariant manifold that attracts all points, the model can be solved by restricting
to the manifold, generally an easier problem. The first aim of the project will be to learn
some key mathematical theory for showing when these invariant manifolds exist, and then to
apply the theory to several well-known models from theoretical ecology. A second aim will be
to find (hopefully new) ways of computing these invariant manifolds using a program such as
Mathematica, Python or Matlab, and then use the computations to push the models to limits
where the invariant manifolds lose smoothness and eventually disappear.

Pre-requisites: Some experience of programming would be useful. No Mathematical Biology
background is needed.

• Dr Giulia Celora g.celora@ucl.ac.uk

1. Modelling phenotypic heterogeneity in tumours

Cancer is a group of diseases in which cells divide continuously and excessively due to dis-
ruption of cell-cycle control. However, treatment failure is often associated to the presence
of a small number of slowly-proliferating cells that coexist with the fast-proliferating tumour
bulk. This project will consider continuous partial differential equation models to study
the role of variable nutrient levels in the emergence and maintenance of cells with heteroge-
neous proliferation phenotypes within a tumour. In doing so, the student will learn about
phenotypic-structured models (usually taking the form of non-linear and non-local PDE) and
analytical and/or numerical techniques to investigate their predictions. There will be op-
portunities to use either/both analytical and numerical methods for studying non-linear and
non-local PDEs.

Prerequisites: Familiarity with linear and non-linear differential equations (e.g. MATH0030,
MATH0066) is desirable. Experience with programming in Python/Julia or MATLAB is
helpful but not necessary.

• Dr Luca Grieco l.grieco@ucl.ac.uk

1. A generic model for cancer diagnostic pathways

When referred for investigations because of suspected cancer, patients usually undergo a ‘di-
agnostic pathway’ consisting of a sequential set of diagnostic tests/visits and regular meetings
of clinicians to determine whether or not a treatment is needed. Healthcare organisations pro-
viding these services have some national targets to meet in terms of time from initial referral
to start of treatment or discharge.

Queueing theory and stochastic simulation approaches have been widely used in the literature
to analyse these services, in particular by identifying bottlenecks generating high waiting
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times and capacity requirements to meet national performance targets [1, 2, 3]. However, the
diverse nature of the services involved (e.g. tests requiring physical presence of the patient,
report assessments where referrals are processed in batches, decisions involving meetings of
specialised clinicians) makes the modelling process particularly challenging. This project
consists of developing a generic model of cancer diagnostic pathways integrating different
modelling techniques depending on the combination of services considered. In particular,
the student will: identify the main queueing theory and stochastic simulation approaches for
cancer diagnostic pathways proposed in the scientific literature; determine the settings where
each of those approaches would be best suited; devise a flexible model for cancer diagnostic
pathways; implement the model using an appropriate programming language; analyse case
studies possibly based on real-world instances.

Pre-requisites: some good knowledge of a programming language (e.g. Python, R, Java, C++)
is particularly welcome; familiarity with probability theory would be advantageous; essential
will be the desire to explore methodologies that might not have been covered in the modules
attended so far.

[1] Chalk et al. Reducing delays in the diagnosis and treatment of muscle-invasive bladder
cancer using simulation modelling. Journal of Clinical Urology, 12(2):129–133, 2019. https:

//doi.org/10.1177/2051415818794089

[2] England et al. Examining the diagnostic pathway for lung cancer patients in wales using
discrete event simulation. Translational Lung Cancer Research, 10(3):1368, 2021. https:

//doi.org/10.21037/tlcr-20-919

[3] England et al. Modelling lung cancer diagnostic pathways using discrete event simula-
tion. Journal of Simulation, pages 1–11, 2021. https://doi.org/10.1080/17477778.2021.
1956866

• Dr Rosemary Harris rosemary.j.harris@ucl.ac.uk

1. Record statistics and applications

In a time series of data (e.g., daily stock prices, yearly mean temperatures) we can identify
a record value when an element of the series is higher (or lower) than all previous elements.
How is the frequency of such records expected to depend on time? By observing records can
we say anything about the time-dependence of the underlying process (e.g., financial trends,
climate change)? This project will investigate these questions starting with the theory of
record values for simple random walk models. The student will be expected to reproduce
some results, numerically and/or analytically from a paper by Wergen et al. [Phys. Rev. E
83 051109 (2011)], test the claims there on a different dataset and possibly consider further
extensions.

2. Modelling distorted memory

The “peak-end rule” of Kahneman et al. [Psychol. Sci. 4 (1993) 401–405 (1993)] is a
psychological heuristic reflecting the fact that human recall of past experiences is dominated
by extreme events on the one hand, and recent events on the other. This distorted memory can
affect our future decisions in interesting ways as modelled recently by Mitsokapas and Harris
[Physica A 593, 126762 (2022)]. The aim of this project is to understand and reproduce some
of the calculations in that work and in particular to consider numerically and/or analytically
how the process can be optimized when the “noise” in the decision-making depends on time.
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For an ambitious student, the model could then be generalized in various ways or even perhaps
compared with real data from online experiments.

Prerequisites for both: Some familiarity with stochastic processes and programming experience (in
any language); growing confidence in the topics of MATH0065 Advanced Modelling Mathematical
Techniques (ideal co-requisite)

• Prof. Karen Page karen.page@ucl.ac.uk

Mathematical models of diatom ecology

Diatoms are phytoplankton with beautiful glassy shells (see https://diatoms.org/what-are-diatoms
for more details). The student will review species interactions between diatom species and their
relevant predators (e.g. herbivorous copepods [1]), and study diatom spatial distributions and
movement. They will build ecological models of a selected species of diatom, studying spatial
distributions and species interactions. They may also apply species diversity measures.

[1] Pohnert, G., 2005. Diatom/copepod interactions in plankton: the indirect chemical defense of
unicellular algae. ChemBioChem, 6(6), pp.946-959.

Prerequisites: MATH0030, programming experience, differential equations. Knowledge of fluid
mechanics, especially MATH0024, is also advantageous.

• Dr Philip Pearce philip.pearce@ucl.ac.uk

1. Modelling blood flow in vascular networks

An intricate network of vessels transports blood between the heart and the rest of the organs
in the human body. This project will begin with a review of theoretical models for blood
flow in single idealised tubes and in networks of small blood vessels called capillaries. The
aim will be to write code in e.g. Python or Matlab to simulate blood flow in various network
topologies, and if possible to test how different assumptions about blood properties can be
incorporated into such models.

Pre-requisites: some programming experience; Real Fluids (a co-requisite).

2. Multi-scale modelling of living matter

The properties and dynamics of biological tissues, organisms and populations emerge from
physical and chemical interactions at the levels of molecules and cells. This project can
focus on any of these length scales, and can involve a computational or analytical approach.
Example projects include: simulating interactions between extracellular matrix proteins in
bacterial biofilms; simulating cell populations at the cellular level; or modelling bacterial
populations or tissues using a continuum approach.

Pre-requisites: Some programming experience; Mathematical Methods 4

• Prof. Alexey Zaikin alexey.zaikin@ucl.ac.uk

1. Modelling complex behaviour of organ-on-a-chip platforms with linked mechanosensitive and
genetic dynamics
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Organ-on-a-chip platforms have the potential to accurately predict human physiology and, es-
pecially, diseases. The idea of the project is to develop for the first time a mathematical model
of a such a system with linked mechanosensitive viscoelastic properties and complex dynamics
of intracellular genetic networks. Recently, we have shown that genetic networks may have
very complex dynamics [1-3]. On the other hand, recent studies suggest bidirectional causal
links between cellular clocks and mechanotransduction [4]. The modelling can be interest-
ing for investigation of organ-on-a-chip systems, which aim to mimic and predict organ-level
human physiology by incorporating 3D co-culture of multiple cell types and physiologically
relevant mechanical stimuli to recapitulate the in vivo cellular environment [5].

The project is of a computational nature and will require numerical simulations and solutions
of a system of coupled ordinary differential equations.

[1]. L. Abrego, and A. Zaikin, “Integrated Information as a Measure of Cognitive Processes
in Coupled Genetic Repressilators”, Entropy 21(4), 382 (2019). [2]. R. Bates, O. Blyuss, and
A. Zaikin,” Stochastic resonance in an intracellular genetic perceptron”, Phys. Rev. E, 89,
032716 (2014). [3]. Y. Borg, E. Ullner, A. Alagha, A. Alsaedi, D. Nesbeth, and A. Zaikin,
“Complex and Unexpected dynamics in Simple Genetic Regulatory Networks”, IJMPB 28,
1430006 (2014). [4]. Yang, N et al. Nat Commun (2017). DOI: 10.1038/ncomms14287 [5].
Thompson, CL et al. Front Bioeng Biotechnol (2020).

2 Fluids and modelling

• Dr Shane Cooper s.cooper@ucl.ac.uk

1. Mathematical approach to innovative composite material design

In this project we shall study solutions of second-order partial differential equations with
rapidly oscillating coefficients using asymptotic analysis. The equations of interest arise from
mathematical models for the behaviour of modern advanced man-made composite materials.

Recommended pre-requisites are (not necessarily all of) the following: MATH0027 (Methods
5), MATH0078 (Asymptotic methods and Boundary layer theory), MATH0080 (waves and
wave scattering), MATH0070 (linear PDE), MATH0018 (Functional Analysis) and MATH0071
(Spectral theory).

• Dr Mohit Dalwadi m.dalwadi@ucl.ac.uk

1. Fundamental models of multiscale mass and fluid transport

Multiscale problems of mass transport are ubiquitous in physical applied mathematics. Ap-
plications include fluid transport in tumours, membrane filtration, nutrient delivery to plant
roots in soil, salt transport in sea ice formation, and many more. In this project, the student
will review basic partial differential equation models for multiscale mass and fluid transport,
and go on to investigate asymptotic solution structures when regions involving different dom-
inant transport mechanisms are coupled together. There are also opportunities - but no
requirements - to write numerical simulations in this project.

Pre-requisites: Advanced Modelling Mathematical Techniques (co-requisite), Asymptotic Ap-
proximation Methods (co-requisite), Mathematical Methods 5 [or a willingness to learn aspects
of each].
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2. Cryopreservation

Cryopreservation technology is used for applications involving fertility, tissue transplantation,
and the protection of endangered species. Mathematical models can be used to understand
how to reduce cell damage in this process. Since freezing and melting involve transitions
between ice and water phases, mathematical models of this process can involve solving partial
differential equations with moving boundaries, where the position of the domain boundary
must be determined as part of the solution. In this project, the student will review basic
mathematical models for freezing, then investigate how adding cryoprotective chemicals can
reduce cell damage in cryopreservation. There will be opportunities to use both asymptotic
and numerical methods in this project.

Pre-requisites: Advanced Modelling Mathematical Techniques (co-requisite), Asymptotic Ap-
proximation Methods (co-requisite), Mathematical Methods 5 [or a willingness to learn aspects
of each].

3. Decontaminating chemical agents

When harmful chemical agents are spilled it can be incredibly harmful to people and the
environment, so it is vital to be able thoroughly decontaminate affected areas. Mathematical
models can be used to understand how to choose appropriate cleansers when confronted with
novel chemical agents in the field. Such models typically involve solving partial differential
equations with moving boundaries, where the position of the domain boundary must be de-
termined as part of the solution. In this project, the student will review basic mathematical
models for chemical decontamination, then explore more complex set-ups, such as emulsions
of agent and cleanser. There will be opportunities to use both asymptotic and numerical
methods in this project.

Pre-requisites: Advanced Modelling Mathematical Techniques (co-requisite), Asymptotic Ap-
proximation Methods (co-requisite), Mathematical Methods 5 [or a willingness to learn aspects
of each].

• Prof. Gavin Esler j.g.esler@ucl.ac.uk

1. Dam breaks in a rotating fluid

Two classic solutions in the fluid dynamics of shallow fluid layers are the dam break solution of
Ritter (1892) and the geostrophic adjustment solution of Gill (1976). The first is a nonlinear
solution when rotation is absent, and the second is a linear solution when rotation is present.
This project will investigate what happens when the flow is rotating and the (partial) dam
break is nonlinear, using the above solutions as references. The option of using either a nu-
merical computation approach or an analytical approach, or both, will be available depending
on student interest and background.

Prerequisites: Fluids MATH0015. Geophysical fluids MATH0024 and Asymptotic methods
MATH0078 are helpful but not necessary.

2. Planetary jets driven by random forcing

A classic problem in geophysical fluids is the understanding the formation of planetary-scale
jets (e.g. those seen on Jupiter) in models forced by a stochastic process (representing small
scale convective processes or instabilities). Recent breakthroughs in this area mean that in a
relevant idealised limit, the effect of the stochastic forcing can be represented by a deterministic
term which depends on certain local flow properties. The project will aim to review this
work and explore new jet-like flows, with the option of using either a numerical computation
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approach or an analytical approach, or both, being available depending on student interest
and background.

Prerequisites: Fluids MATH0015. Geophysical fluids MATH0024, as well as having encoun-
tered stochastic processes in at least one course, is helpful but not necessary. Asymptotic
methods MATH0078 could also be helpful.

• Prof. Ted Johnson e.johnson@ucl.ac.uk

1. Nonlinear wave equations

Solving nonlinear wave equations can present particular challenges due to the presence of
rapidly propagating waves. A highly efficient method has been developed to numerically
integrate these equation using exponential integrators. This project aims to summarise these
methods and then apply them to some well known equations.

Prerequisites: Ability to program in Matlab or Python.

2. Laplace’s equation in domains with corners

This project considers a method for computing potential flows in planar domains put forward
by Peter Baddoo. The approach is based on a new class of techniques, known as “lightning
solvers”, which exploit rational function approximation theory in order to achieve excellent
convergence rates. The method is particularly suitable for flows in domains with corners
where traditional numerical methods fail. The project will outline the mathematical basis for
the method and establish the connection with potential flow theory. In particular, the new
solver will be applied to a range of classical problems including steady potential flows, vortex
dynamics, and free-streamline flows. The solution method is extremely rapid and usually takes
just a fraction of a second to converge to a high degree of accuracy. Numerical evaluations of
the solutions can be performed in a matter of microseconds and can be compressed further
with novel algorithms. The method is described in the paper ‘Lightning Solvers for Potential
Flows’, Peter J. Baddoo, Fluids 2020, 5, 227; doi:10.3390/fluids5040227

Prerequisites: Complex Analysis, Matlab or Python skills

3. A terminating vortex sheet There exists a simple solution for a steady vortex sheet terminating
at a wall. However it is very likely that this steady solution is unstable i.e. that a small
perturbation will grow arbitrarily large. This project aims to consider the linear stability
problem and will involve solving finding the eigenvalues of a matrix using Matlab.

4. Gyres on a beta-plane When long lived eddies form in the oceans the potential vorticity
within the eddies tends to become uniform over time. This project will consider simple
numerical techniques for describing some of these situations. A knowledge of simple Matlab
programming will be needed.

5. A linear analysis of G. I. Taylor’s classic experiment

G.I. Taylor demonstrated (1929) the two-dimensional nature of rapidly rotating flows by
towing a short cylinder across the base of a rotating tank. The definitive linear analysis
of this problem was performed by Stewartson (1967) at UCL. The aim of this project is to
examine Stewartson’s analysis in more detail by constructing a matrix problem whose solution
describes the flow and then using Matlab to solve the matrix equation. It will also be necessary
to numerically invert a Laplace transform.

6. Time-periodic solutions of nonlinear differential equations
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The problem of finding time-periodic solutions of nonlinear partial equations is non-trivial.
This project uses an adjoint method to solve these problems by solving a series of initial value
problems. This project is similar to project 1 but is much harder.

Prerequisites: Ability to program in Matlab or Python.

• Prof. Robb McDonald n.r.mcdonald@ucl.ac.uk

1. Interface growth in two dimensions

The nonlinear dynamics when an interface deforms in response to a quantity diffusing to-
ward it generates remarkable patterns e.g. viscous fingering, branching stream networks and
fractal-like structures formed in electro-deposition. This project will use complex analysis and
simple numerical models to explore related models, such as Loewner growth, diffusion-limited
aggregation, needle models, and the connections between them.

Pre-requisites: Fluid mechanics (MATH0015) and Complex analysis (MATH0013). Willing-
ness to use and adapt existing numerical models.

2. Vortex dynamics

Investigate and develop analytical and numerical constructions of equilibria for the 2D Euler
equations having non-zero vorticity distributions in the form of points, sheets and patches.

Pre-requisites: Knowledge and enthusiasm for Fluid mechanics (MATH0015 and Complex
analysis (MATH0013) is essential.

• Prof. Frank Smith f.smith@ucl.ac.uk

The project(s) will be chosen from the following three areas:

1. Industrial modelling problems such as in the internal and external flows of fluid associated
with vehicle movements on land, sea or air

2. Biomedical flows such as through branching vessels or flexibly walled vessels

3. Modelling related to sports such as for balls, bouncing and vehicle movements

Pre-requisites: the projects above are suitable for students who have taken a full range of
methods courses, have experience with the theory of fluids and are interested in ap plying
mathematics.

• Prof. Valery Smyshlyaev v.smyshlyaev@ucl.ac.uk

1. High frequency scattering: asymptotic methods and analysis

Problems of wave scattering are mathematically boundary value problems for a PDE. Their
approximate solutions for high frequencies can be constructed analytically by a multivariable
version of WKB method, which is one of asymptotic methods. Such approximations have a
clear physical meaning, and tools of analysis are needed for controlling the accuracy of these
approximations.

Pre-requisites: Waves and Wave Scattering (MATH0080) and Analysis 4 (MATH0051);
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2. Multi-scale problems and homogenisation: asymptotic methods and analysis

Nearly everything around us contains multiple scales, i.e. has often invisible microscopically
varying physical properties on which their visible macroscopic properties depend. Mathe-
matically, one needs to deal with boundary-value problems for PDEs with microscopically
varying coefficients, and then homogenisation becomes the process of deriving approximate
PDEs with macroscopic coefficients. One way of doing this is via asymptotic methods with
respect to the underlying small parameter, and the resulting approximations often display
interesting physical effects. Tools of analysis are needed for controlling the accuracy of such
approximations.

Pre-requisites: Functional Analysis (MATH0018) and Mathematical Methods 4 (MATH0056).

• Dr Sergei Timoshin s.timoshin@ucl.ac.uk

1. Two-fluid flows

Two-fluid flows can be studied in various approximations which reflect the specifics of the
flow (e.g. thin layers), in two and three dimensions, with or without explicit time dependence.
There are many interesting and unsolved problems related, for example, to flow separation
and instability.

Prerequisites: Knowledge of fluid dynamics at the level of Real Fluids (MATH0077) is essen-
tial.

• Prof. Jean-Marc Vanden-Broeck j.vanden-broeck@ucl.ac.uk

1. Analytical and numerical studies of waves of large amplitude

The project is concerned with studies of waves propagating at the surface of a fluid. It is a
free surface flow problem because it involves solving equations in a domain whose shape has
to be found as part of the solution (the shape of the upper surface of the fluid is one of the
unknows). Analytical methods (based on asymptotic expansions) and numerical methods will
be reviewed. As time permits new problems will be considered.

Pre-requisites: Fluid Mechanics (MATH0015) or equivalent.

3 Mathematical Physics

• Prof. Timo Betcke t.betcke@ucl.ac.uk

1. Representation of electromagnetic fields through fundamental solutions

In many practical algorithms we need to numerically represent electromagnetic solutions
through simple basis functions. In this project we want to focus on the representation of
solutions of Maxwell equations through the use of fundamental solutions. Interesting ques-
tions here are convergence properties and low-rank approximations to compress field repre-
sentations. This project involves significant programming and good Python knowledge is
expected.
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• Dr Christian Boehmer c.boehmer@ucl.ac.uk

1. Continuum mechanics with microrotations

The aim of this project is to study elasticity theory in the presence of micro-rotations. This
theory is known under a few different names like Cosserat elasticity or Micropolar elasticity.
As a first step the candidate would have to become familiar with elasticity theory (linear and
non-linear) and next include micro-rotations. Various routes could be explored ranging from
more computational work using Mathematica or more analytical work which would involve
the calculus of variations to study equations of motion.

Pre-requisites: No particular prerequisites.

2. Modified theories of gravity with diffeomorphism non-invariance

The first part of the project is to study the variational approach to the Einstein field equations
and looking at the original Einstein action, sometimes called the Gamma squared action,
which is different from the Einstein-Hilbert action commonly used. This can be used to set
up a modified theory of gravity with second order field equations similar to those found in
other popular modified gravity models. Interestingly, this model is no longer diffeomorphism
invariant in general. The main part of the project is about studying this model in some
concrete situations like cosmology, spherical symmetry or the study of gravitational waves.
There are many avenues that can be explored further.

Pre-requisites: Mathematics for General Relativity (MATH0025)

3. Interior solutions with spherical symmetry

The Schwarzschild interior solution is a well-known solution for the Einstein field equations
where the source is an ideal fluid. Similar solutions can be constructed in other setups and this
project will explore such interior solutions. This can be done for a variety of different models.
Generally students will have to deal with systems of non-linear ODEs. Sometimes explicit
solutions can be found. When this is not possible, one can use perturbation techniques,
approximation methods or numerical solutions.

Pre-requisites: Mathematics for General Relativity (MATH0025)

Pre-requisites: Please note that most of these projects require a good deal of programming in
Mathematica. It is therefore essential that candidates have some programming background and
are willing to invest effort into learning Mathematica.

• Dr Selim Ghazouani s.ghazouani@ucl.ac.uk

1. Lorentzian manifolds

Lorentzian geometry is a generalisation of Riemannian geometry that is the conceptual frame-
work for Einstein’s relativity. While the theory is formally very similar to its Riemannian
counterpart, it is a very different world altogether. For instance, not every manifold carries a
Lorentzian structure. In this project, the student will study the interplay between the topol-
ogy of manifolds and the Lorentzian geometry, starting with the following question: which
two and three-dimensional manifolds carry a Lorentzian structure?

Pre-(or Co-)requisite: MATH0072 Riemannian Geometry

2. Generic dynamics

A dynamical system is the datum of a transformation of a space (be it a homeomorphism or
a differential equation) which determines the evolution of a point as time goes by. They are
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the mathematical formalisation of many a physical phenomenon, such as the evolution of the
solar system or a gas particle moving freely within a box.

This project will centre around the following question: what does a typical dynamical system
look like? Mathematicians have come up with many different examples of systems evolving
in qualitatively drastically different ways, but somehow experience shows that only a handful
of them can actually be observed in nature. In particular we will discuss formal conjectures
of Smale from the 70s putting forward a conceptual explanation for this phenomenon, and
potentially more recent developments in the field of generic dynamics.

• Prof. Rod Halburd r.halburd@ucl.ac.uk

1. Topics in complex analysis
Pre-requesite: MATH0013 Complex Analysis.
Examples of projects include: analogues of complex analysis in other settings (discrete com-
plex analysis, discrete holomorphic functions on graphs, analysis over the quaternions); value
distribution of entire and meromorphic functions; Riemann-Hilbert problems; conformal and
quasi-conformal mappings; approximation theory; differential and functional equations in the
complex domain; Riemann surfaces and Riemann theta functions; applications to mathemat-
ical physics (e.g., theta functions and finite-gap potentials in quantum mechanics, discrete
holomorphic functions and the Ising model of ferromagnetism in statistical mechanics).

2. Topics in general relativity
Pre-requesite: MATH0025 Mathematics for General Relativity.
Examples of projects include: matter sources for vacuum metrics; coordinate and spacetime
singularities; gravitational waves; exact solutions.

3. Rotating starts and galaxies
There are no specific pre-requisites for this project beyond core mathematics modules.
We will look at the mathematical theory of rotating liquid masses subject only to their own
gravitational fields. The non-relativistic theory was developed by Newton, Jacobi, Dirichlet,
Dedekind, Riemann, Poincaré, Jeans, E. Cartan, Chandrasekhar and Lebovitz. We will exam-
ine the different kinds of configurations that are possible and the bifurcations that occur as the
speed of rotation is increased. We can possibly consider the effects of adding electromagnetic
fields or relativistic effects.

4. Analogues of special functions in different fields
There are no specific pre-requisites for this project beyond core mathematics modules.
In classical analysis, “special functions” are functions that satisfy one or more useful identities
such as exponentials, trigonometric and elliptic functions, logarithms etc. These functions all
satisfy simple first-order differential equations as well as various addition or multiplication
laws. Other examples are the gamma function (which satisfies a difference equation) and
solutions of the so called “equations of mathematical physics” (hypergeometric, Bessel, etc.).
Various analogues of these functions have turned out to be useful in several settings, mostly
of a number-theoretical nature. For example, there is an analogue of the hypergeometric
function in the context of character sums over finite fields. Apart from satisfying some very
pleasing identities, these functions turned out to be useful in counting the number of rational
points modulo p on certain surfaces. Analogues of exponentials and hypergeometric functions
are known in the context of function fields over finite fields (i.e., rational functions over finite
fields). They give rise, among other things, to the useful concepts of Carlitz and Drinfeld
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modules. There are also examples from p-adic analysis and Berkovich analytic spaces. Beyond
understanding one or more of these settings, a further aim would be to construct an analogue
of certain aspects of the theory of differential or functional equations.

• Dr Betti Hartmann ucahbha@ucl.ac.uk

1. The student would be working on a project related to nonlinear effects in classical field theory.
The resulting coupled differential equations need (usually) to be solved numerically. The
student would be provided with tools to do so. Being able to program in FORTRAN, or
willing to learn, would be useful. Possible projects of current interest could be:

a) Holographic superconductors with competing order parameters

b) Black holes and compact objects in extended gravity models

2. Black holes and other compact objects are accreting matter from their environment which
leads to observable and quantifiable effects. The student would be investigating accretion
processes around compact objects such as black holes and neutron stars by using large scale
simulations and studying the observable effects. Good numerical skills would be very useful.

• Dr Michal Kwasigroch m.kwasigroch@ucl.ac.uk

1. Quantum wavefunction overlap in magnetic materials with localised electrons

Magnetism is an inherently quantum phenomenon that is associated with electronic spin –
an intrinsic property carried by each electron that is a measure of its interaction with the
magnetic field. When electronic spins are aligned we say that the material is magnetised.
The project will focus on materials, where the magnetism is generated by mobile electrons
that carry electric current as well as localised ones trapped by static ions. The interplay
between the two types of electrons is responsible for a range of interesting phenomena, often
referred to as Kondo Physics. One such phenomenon is the anomalous increase of a material’s
resistance as the temperature is lowered.

The precise location as well as momentum of an electron cannot be specified. This concept is
known as the Heisenberg Uncertainty Principle. Electrons are instead described by a complex
wavefunction, in a similar way that we mathematically describe the ripples on the surface of
water. The wavefunction measures the probability of finding a particle at a given point as well
as its likely speed. Wavefunctions of localised electrons can have many different shapes, e.g.
s or p orbitals. Localised electrons can also tunnel from one ion to another. The effectiveness
of this tunnelling depends on the overlap between the electronic wavefunctions centred on
different ions and is responsible for the alignment of their spins as well as magnetism. One
of the aims of the project will be to calculate this overlap as well as the resulting tunnelling
rate and magnetism.

Prior knowledge of quantum Physics is highly desirable but is not an essential requirement
for this project.

References

[1] R. Shankar, Principles of Quantum Mechanics

[2] Lev Landau, Quantum Mechanics: Non-Relativistic Theory

[1] Chapters 16 and 17 of P. Coleman, Introduction to Many-Body Physics
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4 Numerical Analysis and Financial Mathematics

• Dr Alejandro Diaz alex.diaz@ucl.ac.uk

1. Unconstrained optimisation through rare event simulation

Rare event simulation is a numerical technique for estimating the probability of events with
very low probability of occurrence. These events could be, for example, the failure of a large
system or the price of an asset reaching a prescribed threshold. The main tool for simulating
these events is Monte Carlo simulation. By construction, the design of the algorithm involved
has to be such that the space of events is sampled as efficiently as possible, otherwise the
process can be extremely expensive. One efficient way of doing this is to model a rare event
as a set contained in a sequence of nested subsets and generate samples according to increasing
partial thresholds. In this project, we model the problem of unconstrained optimisation as
one of rare event simulation. This means that we aim at sampling from a neighbourhood of
the argument that maximises a function. This could be, for example, a fitness or loss function
used in machine learning. The project requires familiarity with basic Monte Carlo simulation
and proficiency in coding. Matlab, Python and R are suitable programming languages.

• Dr David Hewett d.hewett@ucl.ac.uk

1. Numerical evaluation of singular integrals

The numerical evaluation of definite integrals is a central topic in numerical analysis and
scientific computing. When the integrand is a smooth function, the standard approach is to
replace the integrand by a suitable polynomial or piecewise polynomial approximation, which
can then be integrated exactly. But many integrals arising in applications involve singular
integrands that blow up at one or more points in the integration domain. In this project
we will compare some different methods for dealing with this, including local mesh refine-
ment towards the singularity and self-similarity techniques. We will then apply the resulting
approximation schemes to the solution of singular integral equations arising in electromag-
netism. An ambitious extension would be to the case where the integration domain has a
non-smooth (e.g. fractal) boundary. In the theoretical aspect of the project we will prove
some rigorous error estimates for the approximation schemes using basic tools from real and
complex analysis. It would also be helpful if the student had some interest and expertise in
programming (e.g. in Python) so they can implement the approximation schemes and study
their performance in practice.

• Dr Max Jensen max.jensen@ucl.ac.uk

1. Robust portfolio selection with mean-variance criterion

Investigate how parameter uncertainty, e.g. of covariances, affects optimal solutions in fi-
nancial portfolio management and how robust optimisation can improve the stability of the
portfolio selection. Apply this understanding to portfolio optimisation with mean-variance cri-
teria, such as the Sharpe and information ratios. Extend the initial models with transactions
costs and increasingly complex constraints.

13



The project includes a CVXPY programming component. The following initial reading is
encouraged:

(a) Pam, Huyên: Continuous-time stochastic control and optimization with financial appli-
cations, Berlin : Springer, 2009; UCL link

(b) Cornuejols, Gerard ; Tutuncu, Reha ; Pena, Javier: Optimization methods in finance,
Cambridge University Press, 2018; UCL link

(c) Boyd, Stephen; Vandenberghe, Lieven: Convex Optimization, Cambridge University
Press; author link

Prerequisites: MATH0033 Numerical Methods, MATH0058 Computational Methods, pro-
gramming in Python

5 Number Theory

• Dr Cecilia Busuioc. cecilia.busuioc@ucl.ac.uk

1. Periods of Modular Forms

The spaces of modular forms have been of interest to number theorists because they exhibit
natural rational structures. In MATH0104, we saw that the vector space of modular forms of
a given weight for the full modular group is spanned by modular forms with rational Fourier
coefficients and its finite-dimensionality led to interesting identities with a wide-range of ap-
plications. The theory of Eicher-Shimura provides us with another rational structure coming
from the periods of modular forms. The purpose of this project is to first understand the
main theory and possibly look at some applications (e.g. in relation to binary quadratic
forms, zeta-functions associated to real quadratic fields) and then to study some recent sur-
prising results of D. Zagier and collaborators who show that once one assembles the Hecke
eigenforms and their suitable period polynomials into a generating function, the result is a
product of well-known theta functions. One could then further explore some consequences of
this identity, such as recovering the Fourier coefficients of the Hecke eigenforms in question
from the given identity, which the authors were only able to show for levels 2,3, and 5.

Recommended pre-requisites: MATH0035(Algebraic Number Theory), MATH0104 (Modular
Forms)

2. Modular Curves, Regulators of Siegel Units and Applications

In Number Theory, it is a classical approach to associate to an object of arithmetic significance
an L-function defined by an Euler product encoding local information which then one hopes
to relate to global, geometric objects. Conjectures of Zagier and Boyd are such examples
in the case of an elliptic curve defined over the rationals. Recent work of F. Brunault gives
us explicit formulas of regulators of Siegel units (these are units in the function field of a
modular curve, which is the corresponding algebraic curve obtained from the quotient of the
complex upper half plane by the action of a congruence subgroup) as Mellin Transforms of
certain Eisenstein Series of weight 1, which can be used to provide numerical examples of
the conjectures mentioned above. The goal of this project is to study Brunault’s paper and
possibly compute further numerical examples of the conjectural formulas.

Recommended pre-requisites: MATH0036 (Elliptic Curves), MATH0104 (Modular Forms)

3. Cyclotomic Fields and Iwasawa Theory
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Recommended Pre-requisites: MATH0021(Commutative Algebra), MATH0022 (Galois The-
ory), MATH0035(Algebraic Number Theory)

4. Other topics in Algebraic Number Theory and Arithmetic Geometry

• Dr Luis Garcia Martinez luis.martinez@ucl.ac.uk

I am happy to discuss a variety of projects in number theory or algebra. Some examples are below.

1. Elliptic curves and the class number problem An interesting problem in algebraic number
theory is how to explicitly construct extensions of a number field with abelian Galois group.
For certain number fields this problem can be solved using elliptic curves. The goal would be
to understand this construction and some of its applications.

Prerequisites: Elliptic Curves (MATH0036). Recommended: Algebraic Number Theory
(MATH0035).

2. Units and p-adic interpolation of L-functions.

Certain number fields have units that are related to special values of L-functions, a rela-
tion that has deep consequences for their arithmetic. The goal would be to understand the
behaviour of these units in the cyclotomic (and possibly also in the elliptic) case.

Prerequisites: Algebraic Number Theory (MATH0036), Elliptic curves (MATH0035). Rec-
ommended: Prime Numbers and Their Distribution (MATH0083, can be taken at the start
of Year 4).”

• Dr Richard Hill r.m.hill@ucl.ac.uk

1. Topics in Number Theory

Prerequisites: the exact prerequisites will depend on which topic chosen, but you should
have taken at least three of the modules Number Theory (MATH0034), Algebraic Number
Theory (MATH0035), Elliptic Curves (MATH0036), Prime Numbers and their Distribution
(MATH0083) by the end of the third year.

• Dr Nikoleta Kalaydzhieva n.kalaydzhieva@ucl.ac.uk

The polynomial Pell equation

For a given non-zero positive integer D, which is not a square, we define Pell’s equation to be
x2 − Dy2 = 1, and is classically solved in positive integers x and y. Moreover, we know that
solutions always exist and there are infinitely many of them. In this project we would try to
better understand the polynomial Pell’s equation, where for a given D(t) ∈ C[t], we try to find
polynomials with complex coefficients x(t), y(t). Do we always have solutions as in the classical
case, and if so how many? We can also change our coefficient space and ask how that would change
our problem.

Prerequisite: MATH0034 (Number Theory)

• Prof. Yiannis Petridis i.petridis@ucl.ac.uk
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1. Lattice counting problems in Euclidean and hyperbolic spaces

2. Ergodic theory and Number Theory

3. The Erdős-Kac theorem on the number of distinct prime factors of the natural number n

4. Selberg’s theorem on the normal distribution of the Riemann-zeta function on its critical line

Pre-requisites: Projects normally require Prime Numbers and their Distribution (MATH0083),
and elementary probability. Depending on the project, Geometry and Groups (MATH0052) or
Multivariable Analysis (MATH0019) may be useful.

• Dr Ian Petrow i.petrow@ucl.ac.uk

I am happy to discuss projects with any students who have taken or will be taking Prime Numbers
and their distribution (MATH0083) or Modular Forms (MATH0104) and prefer to tailor projects
to students’ individual interests. Please contact me to discuss possible projects in number theory!
Nonetheless here are a few ideas to get started:

1. 100% of Galois groups over Q are Sn.

When we study Galois theory, we learn to compute the Galois group of a polynomial, or more
generally a finite extension of fields. The Galois group of a degree n irreducible polynomial is
always a subgroup of the symmetric group Sn. It is natural to ask ‘Which subgroups of Sn
occur as Galois groups?’, and if you just start to write down examples by picking a polynomial
‘at random’, you will find that you very often get the whole of Sn as its Galois group. In
this project, you will make that idea precise and show that, if one orders polynomials of fixed
degree with integer coefficients by the maximum absolute value of their coefficients, then, as
size of the coefficients gets large, the proportion of polynomials with Galois group the full
Sn approaches 100%. The proof of this fact is a beautiful mix of algebraic number theory,
group theory, and prime number theory. A reach on this project would be to try to read and
understand a recent breakthrough paper of Bhargava (Fields Medal).

Prerequisites: Required: Galois Theory (MATH0022) and Number Theory (MATH0022).

Strongly recommended: Algebraic Number Theory (MATH0035) and Prime Numbers and
their distribution (MATH0083).

2. Representation of integers by quadratic forms and modular forms

Let Q(x) be a positive-definite quadratic form with integer coefficients in at least 3 variables.
A basic and old question for each n > 0 is how many integral representations of n by the
quadratic form Q(x) are there? For some highly structured specific choices of Q, we can give
an exact formula for the number of x in Zr such that n = Q(x), but in general an exact
formula isn’t possible. Instead, we look for approximate formulas for the number of solutions
as n→∞. For quadratic forms in 3 or 4 variables the proof of such a formula uses modular
forms, which are certain special functions on hyperbolic spaces which have deep connections to
modern number theory. The goal of this project is to learn the proof of the asymptotic formula
for the representation number and use this as motivation to learn the theory of modular forms.
Of particular interest will be certain examples called theta functions, and their role in the
proof of the representation number theorem.

Prerequisites: MATH0051 Analysis 4: Real Analysis MATH0052 Geometry and Groups
MATH0083 Prime Numbers and their Distribution
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3. Moments of L-functions The Riemann Zeta Function (of Riemann Hypothesis fame) is the ur
example of an L-function, a class of holomorphic functions on C that have deep connections
to number theory. They control the distribution of prime numbers and play a key role in
the wide-ranging web of conjectures at the forefront of research in number theory called the
Langlands Program. In this project, we study L-functions from a statistical/probabilistic
point of view. Namely, we consider various “families” of L-functions and estimate power-
averages (or, moments) of the L-functions over the family. The goal of this paper is to
understand a paper of Sounararajan that is able to upper bound moments of L-functions
assuming the Generalized Riemann Hypothesis, and a paper of Rudnick-Soundararajan that
is able to lower-bound moments of L-functions.

• Dr Alex Walker alexander.walker@ucl.ac.uk

1. The Congruent Number Problem

A congruent number is a positive integer which appears as the area of some right triangle with
rational side lengths. For example, the (3,4,5) triangle has area 6 and demonstrates that 6 is
a congruent number. The problem of classifying congruent numbers was partially resolved in
1983 by Tunnell’s theorem, which related congruence to the behavior of a certain Diophantine
equation related to half-integral weight modular forms. This project begins with the classic
history of the congruent number problem and then discusses modern connections to elliptic
curves and modular forms.

Pre-requisites: Modular Forms (MATH0104) is required. Prime Numbers and their Distribu-
tion (MATH0083) and Elliptic Curves (MATH0036) are both recommended.

• Prof. Andrei Yafaev a.yafaev@ucl.ac.uk

1. Complex multiplication of elliptic curves It is a curious fact that the (transcendental) number

eπ
√
163 (known as the Ramanujan constant) is actually very close to an integer (its decimal

expansion has twelve nines after the decimal point). This fact can be explained by a rather
deep theory - that of complex multiplication of elliptic curves. An elliptic curve (over the
complex numbers) has complex multiplication if its endomorphism ring is larger than just
the integers. The first main theorem of complex multiplication of elliptic curves is that
the j-invariant of such an elliptic curve is an algebraic integer. The aim of the project is
to understand a proof of this theorem which relies on the study of the so-called ‘modular
polynomial’.

Prerequisites: the Algebraic Number theory module and the Elliptic curves module.

6 Geometry and topology

• Dr Costante Bellettini c.bellettini@ucl.ac.uk

1. Minimality of the Simons cone
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Discovered to be a stable minimal hypersurface by J. Simons, this 7-dimensional cone in
R8 was proved to be a minimizer of the area by Bombieri, De Giorgi and Giusti (about 50
years ago). The discovery of this area-minimizer with a singular point indicates that the
minimizing problem has to be posed in a class of non necessarily smooth hypersurfaces (sets
of finite perimeter in geometric measure theory, a field where measure theory and differential
geometry merge). A singularity formation of this type does not arise in dimensions up to 6
and it is still mysterious nowadays what makes dimension 7 so special.

2. Allen-Cahn energy and minimal surfaces

The Allen-Cahn equation is a second order elliptic semi-linear partial differential equation
used to describe phase separation of a two-phase liquid (two components of a binary fluid
spontaneously separate and form domains that are pure in each component). In recent years
this PDE has had striking impact on geometric problems and active research is ongoing in
this direction. The connection with geometry lies in the fact that the interface of separation
between the two phases of the liquid tends to be locally area minimizing: the liquid tries
to use as little area as possible to transition from one phase to the other. This feature of
the Allen-Cahn energy has prompted, for example, a new and rather straightforward proof of
the following fundamental result (originally proved in the 80s): in every closed Riemannian
manifold there exists a closed minimal hypersurface. Minimal means that the mean curvature
is everywhere zero - this is the geometric counterpart of the area minimization property. The
lowest-dimensional example of a minimal hypersurface is a geodesic on a surface (e.g. an
equator on a sphere).

3. Other topics in geometric measure theory and in elliptic partial differential equations (Monge-
Ampere equation, harmonic maps, etc).

Pre-requisites for these projects: Analysis 4 (MATH0051). Any of Measure Theory (MATH0017),
Linear Partial Differential Equations (MATH0070) and Differential Geometry (MATH0020) would
be helpful.

• Dr Dario Beraldo d.beraldo@ucl.ac.uk

Examples of projects (the actual project will be decided together with interested students):

1. Introduction to algebraic curves We study algebraic curves and some fundamental formulas
(Riemann-Hurwitz, Riemann-Roch, Hurwitz’s automorphisms theorem). Alternatively, we
could study the moduli space of curves.

2. Tsen’s theorem, rationally connected varieties, Graber-Harris-Starr’s theorem We could study
the several beautiful properties of rationally connected varieties and Mori’s bend-and-break
method.

3. Oriented cobordism theory and elliptic genera Here we study Thom’s theorem which identifies
the oriented cobordism ring with a polynomial ring on the classes of even projective spaces.
We will use it to describe elliptic genera and the modular form that goes with them.

4. A project in (geometric) representation theory: e.g., an introduction to modular representa-
tion theory, or the Borel-Weil theorem.

5. Milnor fibration theorem and generalizations For instance, the Deligne-Milnor formula in
mixed characteristic, or the study of monodromy, b-functions, Igusa’s zeta functions.
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Prerequisites for all: a solid foundation in algebra and/or geometry. For example: algebraic
geometry, algebraic topology, representation theory, smooth manifolds, topology and groups.

• Dr Aleksander Doan. a.doan@ucl.ac.uk

General comments

I will be happy to supervise a variety of projects on differential geometry and topology, as
well as complex analysis, partial differential equations, and relationships between geometry
and physics, depending on the student’s background and interests. Below are some examples.

1. Differential forms and cohomology

The goal of this project is to learn about smooth manifolds, higher-dimensional analogues of
curved shapes such as curves and surfaces, and the calculus of differential forms, which is a
generalization of classical vector calculus. Differential forms appear in many contexts in ge-
ometry, analysis, and physics, and a classical theorem of de Rham relates them to cohomology
groups, important topological invariants of manifolds.

Prerequisites: MATH0051 Analysis 4, MATH0019 Multivariable Analysis

Related modules: MATH0020 Differential Geometry, MATH0023 Algebraic Topology, MATH0072
Riemannian Geometry

2. Invariants of knots

A knot is an embedding of a circle inside the three-dimensional space and knot theory studies
when one such embedding can be continuosly deformed to another. Basic tools for answering
such questions are invariants of knots, that is numbers or algebraic objects which do not change
under such continuous deformations. This project explores various classical invariants of knots,
such as the Alexander polynomial, Seifert form, and knot signature, and their applications.

Prerequisites: MATH0023 Algebraic Topology

Related modules: MATH0074 Topology and Groups

3. Vector bundles and characteristic classes

A vector bundle is a collection of vector spaces parametrized by points of a manifold, which can
twist in a topologically nontrivial way as we travel inside the manifold, like the Mobius band
which twists when we travel around it. Another example is the tangent bundle of a smooth
manifold. A basic question in topology is to classify vector bundles on a given manifold.
This project is about classifying spaces and characteristic classes which are powerful tools of
algebraic topology that help us solve this problem. They turn out to be related in a fascinating
way to differential forms known from analysis. The relationship between vector bundles,
characteristic classes, and differential form is the foundation of the geometric interpretation
of electromagnetism and other gauge theories in physics.

Prerequisites: MATH0051 Analysis 4, MATH0019 Multivariable Analysis, MATH0023 Alge-
braic Topology

Related modules: MATH0020 Differential Geometry, MATH0072 Riemannian Geometry

4. Elliptic operators on manifolds

Elliptic operators are differential operators on manifolds generalizing the well-known operators
known from vector calculus and complex analysis such as the Laplacian and the Cauchy-
Riemann operator. In this project we will study general analytic properties of elliptic operator
on manifolds, such as existence of parametric and elliptic regularity, which will force us to
abandon the realm of smooth functions and venture into the world of distributions and Sobolev
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spaces. The final goal is to understand the Hodge decomposition theorem, which is one of the
foundational theorems of modern geometry, relating analysis of partial differential equations
to topology.

Prerequisites: MATH0051 Analysis 4, MATH0019 Multivariable Analysis, MATH0018 Func-
tional Analysis

Related modules: MATH0020 Differential Geometry, MATH0072 Riemannian Geometry,
MATH0070 Linear Partial Differential Equations, MATH0090 Elliptic Partial Differential
Equations

5. Riemann surfaces and the uniformization theorem

Riemann surfaces lie at the crossroads of algebraic geometry, differential geometry, and com-
plex analysis. The goal of this project is to understand Poincare’s uniformization theorem.
This foundational results in the study of Riemann surfaces asserts that all only simply-
connected Riemann surfaces are equivalent to the disk, the complex plane, or the sphere.
An alternative statement of this theorem is that every Riemann surface admits a Riemannian
metric of constant curvature. The project will explore both the complex and Riemannian
sides of the theorem and the relationship between them.

Prerequisites: MATH0013 Analysis 3, MATH0051 Analysis 4, MATH0020 Differential Geom-
etry

Related modules: MATH0072 Riemannian Geometry, MATH0070 Linear Partial Differential
Equations, MATH0090 Elliptic Partial Differential Equations, MATH0036 Elliptic Curves,
MATH0074 Topology and Groups, MATH0052 Geometry and Groups

• Dr Lorenzo Foscolo. l.foscolo@ucl.ac.uk

1. Morse theory

The project is about understanding an instance of the deep interactions between analysis on
manifolds and the geometry and topology of the underlying space. We will consider a manifold
M and a smooth function f on M with non-degenerate (i.e. not saddle) critical points; for
example, we can let M be a surface in Euclidean space and f a height function. Morse theory
is about reconstructing the topological shape of M from the critical points of f .

Prerequisites: Multivariable Analysis (MATH0019), Differential Geometry (MATH0020); (co-
requisite) Algebraic Topology (MATH0023) or Topology and Groups (MATH0074)

2. The angle criterion

The Plateau Problem asks about the surface with minimal surface area amongst all surfaces
with a fixed boundary. For example, if you have a circle contained in a plane in Euclidean
space, then the disk is the area minimising surface with the given boundary. (All of this makes
sense not only for surfaces in 3-space but also n-dimensional submanifolds of Euclidean space
of arbitrary dimension.) In this project we want to answer the following question: when is the
union of two planes area minimizing? There is a complete answer to this question in terms of
the angles between the two planes.

Prerequisites: Measure Theory (MATH0017), Multivariable Analysis (MATH0019), Differen-
tial Geometry (MATH0020).

• Dr Nikon Kurnosov n.kurnosov@ucl.ac.uk
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I am happy to discuss potential projects in algebraic and differential geometry, not limited to the
list below.

1. Complex surfaces

There are many different complex surfaces and we will discuss the ways how one could classify
them.

Prerequisites: Multivariable Analysis (MATH0019), Differential Geometry (MATH0020), Al-
gebraic Topology (MATH0023) or Topology and Groups (MATH0074)

2. Pell’s equation and automorphisms

In this project we shall explore the automorphisms of certain class of manifolds. On the
geometric side we will think about ”rotations” of manifolds, on the algebraic point of view
we will work with the lattices and the solutions of certain kind of arithmetic equation - Pell’s
equation, which appears to be very important in many areas of mathematics.

Prerequisites: Differential Geometry (MATH0020), Algebraic Topology (MATH0023) or Topol-
ogy and Groups (MATH0074)

3. Group theory in physics and chemistry

The project is about understanding the deep interactions between group theory and the basic
chemical and physical properties of molecules and crystals. We will consider some applications
of representation theory to spectra and to the conducting properties of materials.

Prerequisites: Topology and Groups (MATH0074)

• Dr Edward Segal e.segal@ucl.ac.uk

Topics in Geometry, Topology and Algebra:

I’m happy to discuss potential projects in algebraic geometry, differential geometry, algebraic
topology or algebra. A couple of examples are below.

1. Principal bundles

Pre-requisites/related courses: Differential Geometry (MATH0020), Topology and Groups
(MATH0074), Riemannian Geometry (MATH0072).

• Prof. Michael Singer michael.singer@ucl.ac.uk

1. Geometry of Classical and quantum mechanics

In this project we shall explore geometric quantization: symplectic geometry is the correct set-
ting for classical mechanics. Geometric quantization is a recipe (though more of an art-form)
for constructing the Hilbert spaces of quantum theory starting from a symplectic manifold.

Pre-requisite: Multivariable calculus (MATH0019), desirable: Differential geometry (MATH0020).
Useful: Analytical Dynamics (MATH0054).

2. Other projects in differential geometry
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7 Analysis

• Dr Mahir Hadzic m.hadzic@ucl.ac.uk

1. Phase Mixing and Landau damping

The aim of the project is to rigorously describe the phase mixing mechanism which is at the
heart of the celebrated Landau damping phenomenon. Landau damping refers to the tendency
of plasmas, as described by the Vlasov-Poisson system to equilibrate asymptotically in time.
This is a mathematically interesting feature of the problem, as he equation has no manifest
dissipation built in. The responsible mechanism is phase mixing. The project requires a good
background in analysis.

2. Wave equations outside obstacles

We consider the wave equation outside a compact obstacle. The goal is to understand the
decay-in-time properties of the solution assuming suitable boundary conditions on the bound-
ary of the obstacle. We shall consider the Dirichlet, the Neumann, and the Robin boundary
conditions. Our starting point is the seminal work of Morawetz from 1960’s which relies on
the so-called multiplier / vector-field method.

Prerequisites: Analysis 4 (MATH0051), Recommended: Multivariable Analysis (MATH0019).

• Dr Ilia Kamotski i.kamotski@ucl.ac.uk

1. Topics in homogenisation theory

Prerequisite: Linear Partial Differential Equations (MATH0070)

• Dr Mikhail Karpukhin m.karpukhin@ucl.ac.uk

I am happy to discuss any projects on functional analysis, differential geometry or spectral theory.
Some examples are below:

1. Eigenvalues of the Laplace operator

The Laplace operator is a fundamental operator acting on an infinite-dimensional space of
functions, but in many situation it has eigenvalues and eigenvectors just like any self-adjoint
operator in linear algebra. We can look at various properties of Laplace eigenvalues, e.g.
isoperimetric inequalities (which answer the question: which shape optimises a certain eigen-
value among all shapes of the fixed volume?), heat kernel (given an initial distribution of
temperature in a room, how does it change over time?) or Weyl‘s law (how do eigenvalues
distribute on the real line as they become large? Is there an approximate formula for the kth

eigenvalue?)

Prerequisites: at least one of Functional Analysis MATH0018 or Measure Theory MATH0017

• Dr. Beatriz Navarro Lameda beatriz.navarro@ucl.ac.uk
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1. Discrete Dynamical Systems: Different Definitions of Chaos

There are many different definitions of chaos; i.e., of what it means for a function f : X → X
from a compact metric space to itself to be chaotic. These definitions are not equivalent in
general but they all capture the same basic idea of unpredictability or instability: it is not
enough to know the trajectory of one point in order to predict the trajectories of other nearby
points. In this project we will study several commonly encountered definitions of chaotic
systems and their properties, and how these different notions are related to one another.

Pre-requites: MATH0051 Analysis 4: Real Analysis

• Prof. Leonid Parnovski l.parnovski@ucl.ac.uk

1. Periodic operators and lattice points counting

2. Variational approach to spectral theory

Pre-requisites: Functional Analysis (MATH0018), Multivariable Analysis (MATH0019). Concur-
rent enrolment in Spectral Theory (MATH0071) would also be desirable.

• Prof. Alex Sobolev a.sobolev@ucl.ac.uk

1. Pseudo-differential operators

Pseudo-differential operators (PDO’s) are generalisations of the familiar differential operators.
Theory of PDO’s forms a tremendously important part of modern Analysis. PDO’s are used in
Differential Equations, Mathematical Physics, Differential Geometry and many other domains.
The aim of the project is to understand the basics of the PDO theory starting with the Fourier
transform, PDO calculus and ending with the conditions that guarantee the boundedness of
PDO’s as linear operators.

Prerequisites: Analysis 4 (MATH0051), Functional Analysis (MATH0018), Measure Theory
(MATH0017) is helpful but not critical.

2. Mathematical theory of wavelets

The goal of the theory is to find a function on the real line such that the set of its translates
and its rescaled copies forms a basis of L2(R), the space of square integrable functions. Such
a function is called a wavelet. The aim of the project is to work through the Multiresolution
Analysis which constitutes the basis of the whole approach, and to understand some known
examples of wavelets.

Prerequisites: Analysis 4 (MATH0051), Functional Analysis (MATH0018).

8 Combinatorics

• Dr Samuel Coskey s.coskey@ucl.ac.uk

I am happy to discuss projects in set theory, logic, and combinatorics. Here are some suggestions
related to my most recent interests.
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1. Learn topics in Borel equivalence theory. This area of set theory seeks to compare the complex-
ity of equivalence relations. The equivalence relations can represent classification problems
in mathematics, such as the isomorphism equivalence relation on a class of objects. The field
involves methods from analysis, topology, set theory, and more.

Reference: Gao, Su. Invariant Descriptive Set Theory. Chapman and Hall/CRC, 2008

Reference: Kanovei, Vladimir. Borel Equivalence Relations: Structure and Classification.
AMS University Lecture Series, 2008

Useful experience: Analysis, Logic

2. Study conjugacy in automorphism groups. When studying the automorphism group of a
structure, it is natural to classify the automorphisms up to conjugacy. One may study the
conjugacy equivalence relation on the automorphism group of countable graphs, groups, and
other structures. Apply tools from Borel equivalence theory to draw conclusions.

Reference: https://arxiv.org/abs/1406.6411

Useful experience: Algebra, Graph Theory and Combinatorics

3. Study Tukey morphisms between binary relations. Many problems in set theory have finite
versions. One example is Tukey morphisms, which are used in algebra, topology, and set
theory to compare infinite structures such as filters. The finite version poses challenges of a
combinatorial nature.

Reference: https://arxiv.org/abs/2302.02772

Useful experience: Graph theory and Combinatorics

4. Suggest other topics in set theory, logic, and combinatorics.

• Dr Mikhail Karpukhin m.karpukhin@ucl.ac.uk

I am happy to discuss any projects on functional analysis, differential geometry or spectral theory.
Some examples are below:

1. Geodesic nets and eigenvalues of graphs

In this project we explore relation between two seemingly unconnected fields. First is spectral
graph theory, widely used in computer science to efficiently encode various properties of
large graphs. Second is geodesic nets, a geometric notion describing the shortest way to
connect together a collection of points on a surface. It turns out that graphs optimising
certain functionals from spectral graph theory have a canonical realisation as geodesic nets on
spheres. In this project we will investigate this connection starting from the simplest graphs.

Prerequisites: Algebra 3 (MATH0014), Differential geometry (MATH0020).

• Dr Lars Louder l.louder@ucl.ac.uk

1. Stallings’ theorem on groups with infinitely many ends and groups of cohomological dimension
1

2. Diophantine problems in the free group, or 10,000 ways to write a commutator

The word w = uuvuvvUUV UV V in the free group < u, v > can be written as a commutator
in two essentially distinct ways: w = [uuvuv, vUU ] = [uuvu, vvU ] (check it!). It turns out
that any commutator can be written, up to some natural equivalence which comes from the
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topology of compact surfaces, in only finitely many ways, and up to a slightly coarser, but
still natural, equivalence, in at most 10,000 ways.

The aim of the project will be to use this as an introduction to studying equations over the
free group. A more geometrically inclined student could push this project in the direction
of algebraic geometry over groups, and a student who leans towards computer science and is
already a capable coder could feasibly attempt to reduce the bound of 10,000, possibly all the
way down to 2 (I hope!), using linear programming and branch and bound techniques a la the
proof of the Kepler conjecture.

Pre-requisites: Topology and Groups (MATH0074). Recommended: Geometry and Groups (MATH0052).

• Dr Alexey Pokrovskiy a.pokrovskiy@ucl.ac.uk

1. Cycles in graphs

Dirac’s Theorem is a classic result in graph theory and says that in any graph where each
vertex is connected to more than half the other vertices, there is a cycle passing through all the
vertics. This project is about looking at various cousins of this theorem e.g. understanding
pancyclic graphs - graphs in which there are cycles of all possible lengths.

2. Sublinear expanders

Recently a tool called“sublinear expanders” has been used to prove a variety of old conjectures
from graph theory. Roughly speaking, the tool says that all graphs with a lot of edges contain
a large“pseudorandom” chunk. This project will be about understanding the proof of this
result and also some applications e.g. to the conjecture of Thomassen about finding cylinders
in graphs.

3. Other problems about extremal combinatorics and graph theory

Other projects similar to the above are possible, for example on the topics of “twin-width of
graphs” or “hat games on graphs”.

These projects are all suitable to students who have taken Graph Theory and Combinatorics
MATH0029 or Combinatorial Optimization MATH0028.

• Prof. Alan Sokal a.sokal@ucl.ac.uk

Continued fractions in enumerative combinatorics

Continued fractions arise in number theory as representations of irrational numbers. Here we
are concerned, by contrast, with continued-fraction representations of (possibly divergent) power
series. For instance, Euler proved in 1746 that

∞∑
n=0

n! tn =
1

1−
1t

1−
1t

1−
2t

1−
2t

1−
3t

1−
3t

1− · · ·

.
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This identity makes sense as a formal power series, even though the left-hand side is divergent
for all t 6= 0. Since n! counts the permutations of an n-element set, it is natural to want to refine
this continued fraction by counting permutations with respect to some combinatorially interesting
statistics (for instance, the number of cycles). Many such formulae have been found by enumerative
combinatorialists in the last few decades. This project would involve learning about this work, and
possibly finding new examples by computational exploration.

Prerequisites: Complex Analysis (MATH0013) and the elementary theory of polynomial and
formal-power-series rings (MATH0014) all come in. Some knowledge of combinatorics (e.g. MATH0029)
would also be useful. A good background reference in enumerative combinatorics is Wilf’s Gener-
atingfunctionology . Finally, a good knowledge of Mathematica will be essential to the computa-
tional side of this project.

• Dr John Talbot j.talbot@ucl.ac.uk

1. Counting cliques in graphs

How many triangles must a graph of given order and size contain? Recently [3] a very general
version of this question was answered. This highly technical result was the culmination of
many decades of progress on this topic starting with Rademacher in 1941. A project in
this area could take many different directions, including looking at special cases and related
algorithmic questions.

[1] Nikiforov, Vladimir. The number of cliques in graphs of given order and size. Trans Am
Math Soc. (2007) 363. 1599-1618

[2] Razborov, Alexander. On the Minimal Density of Triangles in Graphs. Combinatorics,
Probability and Computing, 17(4), (2008), 603-618

[3] Reiher, Christian. The Clique Density Theorem. Annals of Mathematics, vol. 184, no. 3,
(2016), pp. 683–707. Second Series.

Prerequisites: MATH0029 (Graph Theory and Combinatorics).

2. Formalising extremal and probabilistic combinatorics in the Lean Proof Assistant

This project would involve choosing a recent result in combinatorics, understanding its proof
and then formalising the result in Lean.

For an introduction to Lean see the Natural Numbers Game.

Please contact me directly to discuss possible choices of result to formalise.

9 Algebra

• Prof. Francis Johnson f.johnson@ucl.ac.uk

I offer a wide variety of projects in and around the areas of Algebraic Topology, Homological
Algebra, Group Representation Theory and Discrete Subgroups of Lie groups. Typically these
might include :

- Fibre bundles and spectral sequences;

- Lefschetz complexes and Poincaré duality;

- Projective modules and Algebraic K-Theory;
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- Projective resolutions and the syzygetic approach to module cohomology;

- Representation theory of finite groups over Q and Z;

- Borel density and Mostow rigidity.

• Dr Yusra Naqvi y.naqvi@ucl.ac.uk

Positivity properties of symmetric polynomials

Symmetric polynomials play an important role in the representation theory of symmetric groups
and Lie groups. In this project, we would explore a specific family of polynomials (such as Schubert
polynomials or Macdonald polynomials) and explain observed positivity of their coefficients relative
to a fixed basis by describing them through combinatorial means. This would build on popular
models in combinatorics such as Young tableaux, crystals bases and folded alcove walks.

Prerequisite: Algebra 4 (MATH0053). Recommended: Representation Theory (MATH0073).

• Dr Ruth Reynolds ruth.reynolds@ucl.ac.uk
This year I will be offering projects in abstract algebra, in particular projects in noncommutative
ring theory. Many of the concepts from commutative algebra become more complicated, and
therefore more interesting, in this noncommutative world, which forms an active area of current
research with applications to other areas of maths. If you are curious about this area in general, I
highly recommend the following introduction written by Professor Chelsea Walton, which gives an
excellent primer to the subject: https://arxiv.org/abs/1808.03172 with accompanying video:
https://www.youtube.com/watch?v=G2ZX0ZqOBxM.

If you have taken modules such as Algebra 4 or Commutative Algebra, and are considering taking
Representation Theory, then you will find any of these projects interesting. Of course, the projects
can be tailored to suit your individual interests.

1. Skew Extensions and Noetherianity. A skew extension is a quick way to make a noncommuta-
tive ring by taking a commutative ring and building a noncommutative structure based on this
in a reasonably controlled way. Noetherianity, named after the famous mathematician Emmy
Noether, is a fascinating ‘finiteness’ property which many algebraic structures can possess,
but it can be very difficult to determine when an algebraic structure is Noetherian. In this
project, we will explore skew extensions of various forms and their associated noetherianity
properties.

2. AS regular Algebras. One of the first interesting examples of a commutative ring is a poly-
nomial ring. In this project, we will explore AS regular algebras which are thought of as
‘noncommutative’ polynomial rings. Our first aim will be to understand why they are viewed
this way, and to explore 2 dimensional AS regular algebras which turn out to have a very
elegant classification. There is a great deal of cutting-edge research involving AS regular al-
gebras, and there are a number of links to other areas of maths such as algebraic geometry
which may be explored.

3. Goldie’s Theorem. In commutative algebra, you have met the notion of a field of fractions
of a ring such as how Q = Frac(Z). One question you may be curious to answer, is how
one might extend this notion to a noncommutative setting. In this project, we will explore
what it means to be a noncommutative fraction and we will discover that this is a very subtle
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notion. For example, if your ring is a commutative domain then it is a fact that it has a field
of fractions, however if we generalise this to noncommutative rings then this fact no longer
holds. The first big step towards figuring out when noncommutative rings can have a field
of fractions was achieved by Goldie, and one aim of this project is to understand Goldie’s
theorem and its implications.

Suggested prerequisites: Algebra 4, Commutative algebra.

Suggested References:

Goodearl and Warfield, An introduction to noncommutative Noetherian rings.

D. Rogalski, An Introduction to Noncommutative Projective Geometry.

• Dr Mark Roberts m.l.roberts@ucl.ac.uk

Projects in non-commutative ring theory. Possible topics include:

1. Unique factorisation domains

You have seen examples of commutative unique factorisation domains (UFDs), starting in
Algebra 2 with Z and a few examples of algebraic rings of integers such as the Gaussian
integers Z[i], continuing in Algebra 3 with the polynomial ring k[x]. There are more examples
in MATH0021 Commutative Algebra and MATH0035 Algebraic Number Theory. There are
various ways of generalising the idea of unique factorisation to non-commutative rings and
this project looks at the method described in Cohn, Free Rings and Their Relations. (This is
a very tough read, so don’t get put off if you have a look at it!) There is a quite interesting
connection with embedding semigroups in groups and rings in fields (see second project) and
one could look at the question: if R is a (non-commutative) UFD, does R∗, the semigroup of
non-zero elements of R under multiplication, embed in a group?

2. Skew fields of fractions

This also generalises an idea familiar from commutative algebra: one can embed Z in its field
of fractions Q and k[t] in its field of fractions k(t). More generally any commutative integral
domain R there is a unique (up to isomorphism) field Q such that R embeds in Q and Q is
generated as a field by the image of R (constructed in almost exactly the way as one creates
Q from Z). Perhaps surprisingly, the corresponding results fails for non-commutative integral
domains: there exists non-commutative integral domains which do not embed in any (skew)
field and also non-commutative IDs which embed in non-isomorphic skew fields. The first
example of an ID without a skew field of fractions was given by Mal’cev. This project looks
at a way of analysing the embedding of rings in skew fields given in Cohn, Free Rings and
Their Relations (same comment as above), using ideas of matrix ideals.

The pre-requisites for both projects are Algebra 4 (MATH0053) and at least two further algebra
modules e.g. Commutative Algebra (MATH0021), Galois Theory (MATH0022), Algebraic Topol-
ogy (MATH0023), Algebraic Number Theory, (MATH0035), Representation Theory (MATH0073).
Commutative Algebra is particularly relevant.

Both projects involve reasonably abstract algebra but also involve quite a bit of algebraic calcula-
tions.

• Dr Edward Segal e.segal@ucl.ac.uk
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Topics in Geometry, Topology and Algebra:

I’m happy to discuss potential projects in algebraic geometry, differential geometry, algebraic
topology or algebra. A couple of examples are below.

1. Representations of quiver algebras

Pre-requisites/related courses: Homological Algebra (MATH0021), Representation Theory
(MATH0073).

• Dr Isidoros Strouthos i.strouthos@ucl.ac.uk

Projects involving topics related to abstract algebra and/or topology

Such projects may involve material covered in modules such as ‘Algebra 3: Further Linear Algebra’
and ‘Algebra 4: Groups and Rings’ (as well as, perhaps, some material involved in one or more of
the modules ‘Algebraic Topology’, ‘Commutative Algebra’, ‘Representation Theory’); please feel
free to contact me directly for more information regarding possible relevant projects.

• Dr Matthew Towers m.towers@ucl.ac.uk

1. Universal enveloping algebras

There is a ring U , called the ‘universal enveloping algebra’, associated to each Lie algebra L.
The project will study the universal enveloping algebras associated to the special linear Lie
algebra sl(n) for n = 2 or 3 over fields of characteristic 2. The specifics will depend on the
interests and the background of the student undertaking the project: for example, we might
look at the centres of these algebras, their algebras of derivations, or their cohomology.

Pre-requisites: Algebra 4 (MATH0053), and some of Commutative Algebra (MATH0021),
Algebraic Topology (MATH0023), Representation Theory (MATH0073). Recommended con-
currently: Lie groups and Lie algebras (MATH0075).

2. Category theory and topology in functional programming

One possible project begins by giving an introduction to category theory in the context of
functional programming. After that it would investigate semantic approximation order, re-
cursive definitions as fixed points, or monads and their algebras.

Another idea would be to give an account of some remarkable work of Martin Escardo https:

//www.cs.bham.ac.uk/~mhe/.talks/popl2012/escardo-popl2012.pdf on decidable equal-
ity for function types.

Pre-requisites: some programming skills, and knowledge of or willingness to learn a functional
language, e.g. Haskell, Scheme.
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