MATH0065 Advanced Modelling Mathematical Techniques

Year:	2024-2025
Code:	MATH0065
Level:	$7(\mathrm{UG})/7(\mathrm{PG})$
Normal student $group(s)$:	UG Year 4 Mathematics degrees
	PG MSc Mathematical Modelling
Value:	15 credits (= 7.5 ECTS credits)
Term:	1
Assessment:	100% examination
Normal UG Pre-requisites:	MATH0010, MATH0011, and MATH0013
	Some knowledge of 2D fluid mechanics useful, but not essential.
Lecturers:	Dr S Timoshin and Prof T Betcke

Course Description and Objectives

This module aims to ensure that students possess knowledge of the analytical techniques used in mathematical modelling.

Recommended Texts

- (i) Hinch, Perturbation methods, Cambridge Texts in Applied Mathematics.
- (ii) Kevorkian & Cole, *Perturbation methods in applied mathematics*, Applied Mathematical Sciences, Springer.
- (iii) Bender & Orszag, Advanced mathematical methods for scientists and engineers, Asymptotic Methods and Perturbation Theory: v.1, Springer.
- (iv) Churchill and Brown, Complex variables and applications, McGraw-Hill.
- (v) Nehari, Introduction to complex analysis, Allyn and Bacon.
- (vi) G. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2014.

Detailed Syllabus

- Partial differential equations (PDEs): Revision of main solution techniques for elliptic and parabolic PDEs (separation of variables, Fourier transforms, similarity variables, Green's functions).
- Introduction to applied stochastic methods: Brownian motion and stochastic differential equations. Connection to PDEs: Fokker-Planck and backward Kolmogorov equation. Exit time problems.
- Perturbation Methods. Introduction to modelling concepts, dimensional analysis, perturbation techniques, matched asymptotics.
- Application of Complex Variables. Conformal mapping and applications. A selection from:

- (a) Hodograph and potential-plane techniques
- (b) Schwartz functions and vortex equilibria
- (c) Hele-Shaw free boundary problems
- (d) Two-dimensional freezing/melting problems

June 2024 MATH0065