MATH0039 (Differential and Integral Calculus)

Year:	2019–2020
Code:	MATH0039
Old code:	MATH6103
Level:	4 (UG)
Normal student $group(s)$:	UG: Students outside Mathematics
Value:	15 credits $(= 7.5 \text{ ECTS credits})$
Term:	1
Structure:	3 hours and 1 hours of problem class per week. Weekly assessed coursework.
Assessment:	90% examination, $10%$ coursework
Normal Pre-requisites:	A-level Maths or strong GCSE
Lecturer:	Ms E Doman
Problem class teacher:	Ms C Carbrera Arnau

Course Description and Objectives

This course provides a fairly rapid introduction to calculus. Calculus underlies almost all areas of mathematics and a great deal of science and engineering. The aim of the course will be to provide a solid grounding in this fundamental branch of mathematics for students who have a limited mathematical background.

Most of the course material occurs in A-level mathematics: the treatment here will be slightly more advanced. The course is suitable for students with good GCSE mathematics (or a weak A-level pass).

Recommended Texts

Croft, Davison and Hargreaves, Introduction to Engineering Mathematics (Addison-Wesley)

Detailed Syllabus

1. Functions and graphs.

- (a) Polynomials.
- (b) Indices and algebraic functions.
- (c) Trigonometric functions. Revision of basic trigonometry. Quadrants. Angles of any size. Graphs of $\sin \theta$, $\cos \theta$.
- (d) Circular Measure. Radians. Small angles.
- (e) Coordinates. Cartesian, polar.
- 2. Differentiation: Rates of change. Gradients.
 - (a) Differentiation of x^n from first principles.
 - (b) Rules for differentiation. Chain rule. Product rule. Quotient rule.
 - (c) Differentiation of trigonometric functions.
 - (d) 2nd differentials. Velocity, acceleration. Stationary points. Maxima. Minima.
- 3. Exponential functions: Growth and decay.
- 4. Logarithmic functions: Rules for logarithms.

5. Integration

- (a) Opposite of differentiation.
- (b) As an area.
- (c) As a summation. Standard forms. Methods of changing integrals into standard form.
- 6. Approximate or numerical integration. Trapezoidal approximation.
- 7. Simple differential equations and applications.

June 2019 MATH0040