MATH0036 (Elliptic Curves)

Year: 2018–2019
Code: MATH0036
Old code: MATH3705
Level: 6 (UG)
Normal student group(s): UG Year 3 Mathematics degrees
Value: 15 credits (= 7.5 ECTS credits)
Term: 1
Structure: 3 hour lectures per week
Assessment: 100% examination
Normal Pre-requisites: MATH7202 and MATH7701
Lecturer: Prof Y Petridis

Course Description and Objectives

This is a course in number theory. An elliptic curve is an equation of the form \(y^2 = x^3 + ax^2 + bx + c \), where \(a, b, c \) are given rational numbers. The aim of the course is to be able to find the solutions \((x, y)\) to this equation with \(x \) and \(y \) rational numbers. The methods used are from geometry and algebra.

The study of elliptic curves is an important part of current research in number theory and cryptography. It was central to the proof of Fermat’s last theorem. There are still many unsolved problems in this area, in particular the Birch–Swinnerton-Dyer conjecture, for which there is a $1 million prize offered by the Clay Institute.

Recommended Texts

Detailed Syllabus

Chapter 1

Chapter 2
Elliptic functions. Parametrization of the complex points of an elliptic curve using Weierstrass’ elliptic functions. Correspondence between the group laws on the curve and on the complex torus.

Chapter 3

Chapter 4
Heights of points on an elliptic curve. Mordell’s Theorem. Calculating the rank of some curves.