MATH0008 (Applied Mathematics)

Year: 2020–2021
Code: MATH0008
Level: 4 (UG)
Normal student group(s): UG: Year 1 Mathematics degrees
Value: 15 credits (= 7.5 ECTS credits)
Term: 1
Structure: 3 hour lectures, 1 hour problem class per week. Small group tutorials. Weekly assessed coursework.
Assessment: The final weighted mark for the module is given by: 90% examination, 10% coursework. The coursework mark is obtained from exercise sheet marks (5%) and the mid-sessional examination result (5%). In order to pass the module you must have at least 40% for both the examination mark and the final weighted mark.
Normal Pre-requisites: A* in A-level Mathematics and Further Mathematics
Lecturer: Dr A Manhart
Problem class teacher: TBC

Course Description

The course provides an introduction to methods and tools used in applied mathematics to develop simple models of mechanical, biological and other systems of interest. The main tools introduced are qualitative and analytic approaches to differential equations, stability, waves and oscillations. A brief introduction to discrete dynamical systems will also be given.

Recommended Texts

P Smith and R C Smith, Mechanics (Wiley); P Blanchard, R L Devaney and G R Hall, Differential Equations (Brooks/Cole); N J Higham et al., The Princeton Companion to Applied Mathematics (Princeton University Press).

Detailed Syllabus

Elementary mathematical modelling: Applications including the pendulum, population models, predator-prey equations, wave motion and other models of interest.

Newton’s laws: motion in one dimension, energy and momentum, simple harmonic motion, particle collisions (covered in some years).

Waves and oscillations: oscillators with damping, resonance, examples of Fourier series.

Qualitative methods: phase plane analysis, bifurcations, stability.