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A glance through this year’s De Morgan 
newsletter reveals a busy year with much 
success to celebrate. We were pleased to 
welcome four new Lecturers: Roger Casals, Ed 
Segal, Iain Smears and Ewelina Zatorska. We 
are especially grateful to the estate of Howard 
Davies, a former long-serving colleague, whose 
generous donation helped make one of these 
appointments.

The department’s sustained recruitment of 
outstanding staff such as Ed, Ewelina, Iain, and 
Roger, along with excellent undergraduate and 
postgraduate students clearly demonstrates 
the health of our subject. Mathematics is, of 
course, a fundamental discipline, and one which 
is finding ever-increasing applications, often 
in surprising areas. A good example being our 
‘industrial sandpit’ in summer 2017 themed 
on transport security. This highly successful 
workshop, led by Nick Ovenden,  brought 
together UCL mathematicians, computer 
scientists, engineers, physicists and forensic 
scientists with industrial and government 
representatives, e.g., Motorola Solutions, 
Department for Transport and Defence Science 
and Technology Laboratory. Real practical 
solutions to pressing problems were discussed, 
and areas for further research were identified. 

The Department’s commitment to research and 
teaching of core mathematics, along with our 
willingness to embrace and collaborate with 
researchers in other disciplines, of which there 
are many at UCL, is something we are keen to 
build on.  I am delighted that this ambition has 
now been recognised formally by the University. 
In September 2017 UCL’s Provost and President, 
Professor Michael Arthur, announced a small 
number of ‘ideas’ key to UCL’s evolution which 
(i) demonstrate genuine, grassroots academic 
enthusiasm, (ii) come from areas that have 
the potential to become world-leading and (iii) 
be deeply cross-disciplinary. Among these 
elite  ideas is the ambition to co-locate UCL’s 
Departments of Mathematics and Statistical 
Science to form an Institute of Mathematical and 
Statistical Sciences (IMSS). Professor Arthur 
writes of Mathematics, Statistical Science and 
IMSS: 

‘Research quality and student experience are 
already excellent in these subjects, but they lack 
scale and facilities compared to world-leading 
competitors. By combining them, we will be in a 
position to reach the global top 50 by 2021 and, 
ultimately, the top 25.’

The Department looks forward to working with 
the University in transforming the IMSS idea 
into reality. There is no better time to do this: 
mathematical science and its applications is 
flourishing globally. Now is an exciting time to be 
mathematician, especially so at UCL.
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LETTER FROM THE EDITOR

Letter From The Editor

Professor Ted Johnson

The annual dinner of the De Morgan Association was held on Friday 9th June 2017 in Senate House, 
University of London. The Guest of Honour was our own Rafael Prieto Curiel. Rafael was instrumental in 
setting up the Chalkdust magazine which has been a stunning international success for UCL Mathematics 
graduate students. Rafael entertained us with both mathematics and background on the invention and 
production of the magazine.

Robb McDonald is stepping down as Head of Department this year. Robb has calmly presided over a 
period of great change in the department with growing undergraduate enrolments and the establishment 
of powerful new and augmented research groups including geometry, number theory, inverse modelling, 
numerical analysis and financial mathematics.

Robb will be succeeded by Professor Helen Wilson. Helen’s research is mainly concerned with theoretical 
modelling of the flow of non-Newtonian fluids such as polymeric materials and particle suspensions. In 
her inaugural lecture, written up inside with his characteristic panache by Adam Townsend, one of Helen’s 
former research students, Helen described how fluids containing long polymer molecules behave very 
differently from ordinary (Newtonian) fluids.   Under flow, long polymer  molecules stretch giving rise to 
surprising flow behaviour, and producing undesirable instabilities in industrial processes. Helen is an 
editor of the Journal of Non-Newtonian Fluid Mechanics, the Journal of Engineering Mathematics, and 
Proceedings of the Royal Society A, a member of the Editorial Advisory Board for Physics of Fluids, chair 
of the Nominating Committee for the European Society of Rheology, and was, from 2015-2017, President 
of the British Society of Rheology.

Issue - 25

May 2018

Editor  Ted Johnson

Associate Editor Kate Fraser
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DE MORGAN ASSOCIATION DINNER

De Morgan Association Dinner 2017

The  New Challenge of 
Communicating Maths

Rafael Prieto Curiel - PhD Student, 
UCL

Perhaps the biggest difference between previous 
generations and millennials is that we, the 
millennials, were born and educated in a world 
saturated with different resources. Have you ever 
wondered how to solve a stochastic differential 
equation? I have, and I found more than 4,000 
videos on YouTube teaching me how to solve 
them: I could spend more than 82 days watching 
every single video there is. What is a hyperbolic 
surface? There are more than 50,000 links on 
the internet that explain what they are and how 
to construct them. There are dozens of free apps 
for my phone about fluid dynamics and I am not 
sure which one to download. Fancy videos on the 
internet, ready for me to play, pause and rewind, 
as many times as I want, waiting for me to see 
and listen to a Fields medallist talking about her 
research, are already a common thing. Why even 
bother going to lectures or to a seminar if a link, 
a video or an app can explain a concept, perhaps 
just as well as a professor could, and which I 
could watch from the comfort of my own home.

Easy, immediate answers are in the palm of our 
hands (literally!), which means that contributing 
to the community by adding another maths 
communication project on the internet might have 
a negligible impact on the audience.

There is, however, one issue with the fancy 
videos or the great resources on the internet: all 
I can do is click on it and maybe ‘like it’ on social 
media.

For many maths and science communication 
projects, I am just a passive consumer, moving 
from one page to the next one in just a few 
seconds, looking for the most attractive graph or 
catchy title. 

But the experience is radically different when I 
am an active part of the project. I remember the 
first time I read a printed article with my name on 
it or sharing on Facebook the post that I wrote 
or the graph that I created. It might have been a 
tiny contribution, but it was my contribution after 
all. And that, I think, is the secret with millennials. 
It is being able to say, to write, to express and 
to become an active part of a ‘something’ that 
makes the project not only more interesting and 
memorable but, more importantly, more likely to 
engage us  Yes, there are thousands of fancy 
videos on YouTube, but I have never been part of 
any of them. 

The way to engage millennials is not by providing 
us with yet another resource. The impact of the 
extra article or the new video that adds to the 
thousands that are already out there, lasts, at 
least for the viewers, perhaps a few hours. The 
way to engage millennials is by providing us 
with space. We created Chalkdust around that 
idea: the greatest impact that an article has will 
be on the author: those who took the time to 
do some research about a cool mathsy topic; 
or who thought of a nice joke or a funny flow 
chart. The project is all about the people who 
actively engage with it, they ‘own’ it pretty much 
like a person is the owner of their posts in social 
media.  And since we started Chalkdust, we 
have published more than 300 articles from 100 
authors, including a few teenagers. They share 
their article on social media, they show it to their 
parents and, it is theirs, their own contribution. 
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DE MORGAN ASSOCIATION DINNER

2018 De Morgan Association Dinner

Friday 8 June 2018
Senate House

Sherry at 6.45pm, Dinner at 7.30pm
Speaker - Dr Christina Pagel

“A mathematician dips her toes into 
politics...”

All those on the UCL Alumni database will 
be sent an invitation to the next De Morgan 

Association Dinner. Please remember to keep 
the Department and Alumni Relations Office of 
UCL informed of any changes to your address.  

Posting interesting articles is the vehicle through 
which Chalkdust can contribute towards forming 
a better community, encourage people to write 
about maths and engage a generation that is 
already saturated with resources.

Maths has changed drastically over the past 
few decades - solving tedious equations is only 
for homework and exams. The way we conduct 
research has also changed - we can read today 
what our colleagues on the other side of the 
world did yesterday. Thus, the challenge is in 
ensuring that the way we teach and communicate 
maths should also adapt to the saturated number 
of resources, the constant flow of information, the 
immediate availability of resources and the desire 
to have a space of your own.

I say goodbye now to Chalkdust, and as new 
generations take the lead, I am sure that 
such a beautiful project will keep, for the next 
generations, offering us a space to communicate, 
share our interesting maths articles and become 
the owner of our own maths.
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THE INCREDIBLE PREDICTIVE POWER OF STRING THEORY  

The Incredible Predictive Power of 
String Theory

Dr Ed Segal

If you pay any attention at all to popular science 
news, you will certainly have heard of string 
theory. Many physicists make grandiose claims 
for it – it will unify gravity and quantum theory, 
it’s a ‘theory of everything’. Others view the 
whole field as a gigantic scam, a mirage that 
has swallowed generations of graduate students 
and damaged theoretical physics for decades. 
The reason for the controversy is simple: huge 
numbers of theorists have been developing it, 
for about 30 years, and they still can’t predict 
the result of a single experiment. They’re not 
even close. If you want to know if string theory is 
correct don’t hold your breath for a press release 
from CERN – it’s not going to happen in the 
foreseeable future.

So is my choice of title just sarcastic? No! 
(Ok, maybe a bit...). String theory does make 
predictions, but they’re of a very different kind. 
String theory makes predictions about pure 
mathematics - interesting, difficult and important 
predictions. And so far, every one of these 
predictions has been proved right! So whether 
it’s relevant to physics or not - and personally I’m 
agnostic on this point – there’s no question that 
string theory is relevant to mathematics. 

To understand how string theory can make 
predictions about maths, let’s start by going back 
300 years, to Newtonian mechanics. Newton’s 
laws describe how a particle moves around 
in flat 3-dimensional space, and it’s trivial to 
generalize them to a particle moving around in 
flat n-dimensional space. But mathematicians 
are interested in lots of other spaces besides 
ordinary flat space. A particularly important class 
of spaces are manifolds, these are spaces that 
“close up” look like flat space, but when you 
zoom out they look different. A good example is 
the surface of a sphere – close up it looks like 
a flat 2d space, but globally it’s very different. It 
turns out that you can formulate Newton’s laws 
for any manifold (technically you first need to 
equip the manifold with a Riemannian metric, 
which is a way of measuring distances), then you 
get a theory which describes a particle moving 
around on that particular manifold.

If you study that physical theory then it’s clear 
that you’ll start to learn some things about the 
shape of the manifold –  for example a particle 
moving freely on a sphere will eventually get 
back to its starting point, but in flat space this will 
never happen.

Now back to string theory. The basic physical 
idea in string theory is to replace your particles 
by tiny little loops, or “strings”. These loops can 
move around, but crucially they can also vibrate, 
like the string of a musical instrument that’s 
just been plucked. String theorists hope that all 
the usual particles can be described by strings 
vibrating in different ways, so an electron is just a 
string playing a particular note, and a quark is the 
same string playing a different note.

Like our Newtonian particles, we can think of 
our strings moving about in ordinary flat space if 
we want, but its more interesting if we let them 
move around in a different manifold. In fact the 
physics demands that we do this, because for a 
technical reason the theory only works properly 
if the strings move around in a 10-dimensional 
space.  Since our universe appears to be only 
4-dimensional, string theorists speculate that 
there are six additional dimensions that form 
a closed-up manifold, perhaps something like 
a 6-dimensional sphere. This is the kind of 
speculation that irritates more hard-headed 
physicists!

Strings prefer to move around on a special kind 
of manifold called a Kähler manifold. These are 
manifolds which have complex numbers built into 
their structure, and also the Riemannian metric 
is of a special form. Perhaps you remember the 
Riemann sphere – the complex plane curled up 
with an extra point at infinity – that’s the simplest 
example of a Kähler manifold. 

A good way to get more complicated examples 
is to take polynomials and look at the set of 
complex solutions, often the resulting shape will 
be a  Kähler manifold. 



7

THE INCREDIBLE PREDICTIVE POWER OF STRING THEORY  

So Kähler manifolds are things that lots of pure 
mathematicians are interested in, geometers 
certainly, but also algebraists (because of the 
polynomials) and sometimes even number 
theorists.

If you could understand how a string moves 
around in your favourite Kähler manifold, 
you could learn things about the shape of 
the manifold. Unfortunately there’s a serious 
problem: mathematicians don’t understand 
string theory. In fact the problem goes deeper, 
mathematicians don’t really understand quantum 
field theory, and that’s a piece of physics that’s 
nearly 100 years old. And when I say we don’t 
understand it, I don’t mean that we can’t solve 
the equations, I mean that we don’t even 
understand what the equations mean! Physicists 
write down symbols, and we can’t figure out 
what mathematical objects they’re supposed to 
be referring to. Of course the physicists don’t 
care about this, for them the symbols refer 
to physical concepts: fields, particles, and so 
on. Mathematicians try to interpret them as 
mathematical concepts: sets, functions, vector 
spaces etc., but we don’t always succeed. We 
have two different mind sets, and this makes it 
very difficult for mathematicians to understand 
physicist’s calculations.

The thing that bridges this cultural divide 
is supersymmetry. This is a rather abstract 
symmetry that some physical theories have; 
all particles in physics fall into two classes, 
bosons and fermions, and supersymmetry 
makes the two kinds swap places. Theorists 
love supersymmetry, and the LHC is actively 
looking for experimental evidence of it, but so far 
the results are disappointing. Of course string 
theorists are not dissuaded by that fact! No string 
theorist would dream of studying a theory that 
didn’t have supersymmetry.

The reason supersymmetry is nice is that it 
makes some computations much easier. If a 
theory has supersymmetry then the fine details 
of the physics will still be hard, but certain 
fundamental pieces of information will be 
‘invariants’, meaning that they do not change 
if we make small perturbations. Imagine that 
your strings are moving around in a Kähler 
manifold, and you deform the manifold a little bit, 
perhaps squeezing one part of it, and stretching 
another. This could make a big difference to the 
trajectories of individual strings. 

 Figure 1: The Hodge diamonds of the cubic 
threefold (left) and its mirror
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However, the invariants provided by 
supersymmetry are guaranteed to stay the same, 
and it is this robustness that makes them easy to 
calculate.

If you’re a pure mathematician, your ears prick 
up at the mention of ‘invariants’. We love to 
calculate invariants of all kinds, and we definitely 
love to calculate invariants of Kähler manifolds. 
The invariants that come out of supersymmetric 
string theory are exactly the kind of thing that 
mathematicians care about! Some of them are 
invariants that we already knew about, like Euler 
characteristics, and homology groups, and some 
of them are brand new 

This leaves us in a rather surprising situation. 
Physicists’ arguments – which we don’t 
understand – can compute geometrical quantities 
that pure mathematicians are very interested 
in. Mathematicians now have to listen to the 
predictions made by string theorists, and their 
predictions are right!

 Figure 2: Circles tangent to three lines

Most of these predictions, though not all, centre 
around an astonishing phenomenon called mirror 
symmetry. Take your favourite Kähler manifold, 
and write down the physical theory for strings 
moving around in it. You can now do a really 
trivial operation on that theory – basically just 
swap a few plus and minus signs – and get a 
new physical theory of a similar kind. What does 
this new theory actually describe? It’s definitely 
doesn’t describe strings moving around in your 
original manifold, because the first theory did 
that, but perhaps it describes strings moving 
around in a different Kähler manifold. So perhaps 
this means that Kähler manifolds come in pairs, 
with the string theories for each pair being related 
by this trivial sign change. In this hypothesis, the 
pairs of manifolds are called ‘mirrors’ to each 
other. 

Let’s assume you believe this idea. If I hand you 
a Kähler manifold, then it should be possible to 
produce its partner, the mirror manifold. But how 
would you know if you’d got the correct mirror? 
For a start, you could compute some invariants. 
The most fundamental invariants of a Kähler 
manifold are called the Hodge numbers, this is a 
finite set of numbers.
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For example, if we ask `how many curves 
of degree three can we draw on the quintic 
threefold?’ then the answer is 317,206,375. This 
ridiculous number is an example of a Gromov-
Witten invariant, and it was first predicted by the 
four physicists named above. They did it using 
mirror symmetry.

Mirror symmetry swaps Hodge numbers for 
Hodge numbers in a simple way, but it turns 
out that it swaps Gromov-Witten invariants 
to a completely different kind of invariant, 
which is sometimes much easier to compute. 
Candelas et al. had a good guess for the mirror 
manifold to the quintic threefold, so they simply 
computed the corresponding invariant for the 
mirror manifold. The answer was subsequently 
confirmed by mathematicians, without any mirror 
symmetry hocus-pocus.

If you can correctly predict a six-digit number 
then you can win the lottery. Mirror symmetry 
had correctly predicted a nine-digit number, 
and mathematicians went crazy for it. If string 
theory can do that, people asked, then what else 
might it be able to do? The answer has been 
‘an awful lot’, and there is now a huge body of 
work on ‘pure-maths-inspired-by-string-theory’, 
and several Fields Medals have been won in the 
process. 

The moral of the story is, if you want to learn 
something new about Kähler manifolds, read a 
string theory paper.

In Figure 1 you can see the Hodge numbers 
of a famous Kähler manifold called the quintic 
threefold, this manifold is the set of solutions to 
a quintic polynomial in five variables. Physicists 
tell us that if two manifolds form a mirror pair 
then their Hodge diamonds are nearly the 
same - to get from one to the other you have to 
do a reflection of the array through a particular 
diagonal line (marked in red on Figure 1); this is 
where the name ‘mirror’ comes from. So now we 
have a fairly precise prediction: given a Kähler 
manifold, is there a geometric operation that will 
produce a new manifold, in a such a way that 
their Hodge diamonds are mirror images?

At first sight the answer to this question is simply 
‘no’, there is no obvious geometric operation 
that will do this. But, for reasons I will explain 
in a moment, mathematicians take this idea 
extremely seriously. And after 20 years hard 
work by brilliant people, we can do it, for some 
examples. I find it absolutely staggering that 
such a trivial little operation in physics ends up 
requiring the most monumental effort in geometry 
and algebra.

So why did mathematicians believe mirror 
symmetry in the first place? There are now lots 
of good reasons, but the first really compelling 
reason was a result by Candelas, de la Ossa, 
Green and Parkes in 1991. Their result involves 
things called Gromov-Witten invariants, which 
are a deeper and more complicated invariant of 
Kähler manifolds, and exactly the kind of thing 
that both geometers and string theorists are 
interested in calculating. To get some kind of 
flavour of these invariants, imagine drawing three 
random lines in the plane, and then ask: how 
many circles can you draw that are tangent to all 
three lines? 

This question is easy - the answer is four (see 
Figure 2) - but that’s because we formulated the 
question in flat 2-dimensional space. If you ask 
an analogous question in a Kähler manifold, you 
may get a much more complicated answer. 
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UCL MATHEMATICS SCIENCES INDUSTRIAL SANDPIT

UCL Mathematical Sciences 
Industrial Sandpit

26th-28th June 2017

Dr Nick Ovenden

In recent years, there have been increasing 
demands for university research to demonstrate 
its impact, either in society or in contributing 
to economic growth. Measuring the so-called 
socioeconomic impact of research is an 
essential component of the Research Excellence 
Framework (REF) and the UK government 
is keen for university academics to engage 
with industry and other external partners to 
drive innovation and technological change.  
As a response to this drive, the first ever UCL 
Mathematical Sciences Industrial Sandpit 
was held over three days at the end of June 
where the purpose of the event was to promote 
academic engagement with industry, and foster 
new collaborative research leading to novel ideas 
for solving real-world problems. 

Study groups, hackathons, or sandpits in various 
guises involving mathematics and industry 
already exist. The most well-known are the  
European Study Groups with Industry (ESGI), 
which stem from the Oxford Study Groups that 
started in the late 1960’s and were organised by 
Alan Tayler and Leslie Fox. ESGIs are now held 
annually in a number of European countries, 
including Denmark, The Netherlands, Portugal, 
Spain, and Ireland, as well as the UK.

The enthusiasm of eminent applied 
mathematicians from Oxford as well as other 
UK institutions has significantly contributed to 
the ESGI format being spawned into a variety of 
maths-in-industry events across the rest of the 
world.

Having organised an ESGI in the past led me to 
wonder why a similar event could not be hosted 
at UCL? After seeing the success and popularity 
of the more recent Integrated Think Tank events 
run at the Bath Centre for Doctoral Training 
SAMBa (Statistical Applied Mathematics in 
Bath) and, with the encouragement of our Head 
of Department and other colleagues (including 
director of the LSGNT, Professor Michael 
Singer), 2017 seemed an ideal time to organise 
such an event.

At the UCL Mathematical Sciences Industrial 
Sandpit, three external organisations, The 
Department for Transport, DSTL and Motorola 
Solutions, each offered a challenge on the 
theme of “security and transport”. The event was 
attended by academics and postgraduates from 
the departments of Mathematics and Statistical 
Science as well as some attendees from Security 
and Crime Science, Physics and Astronomy and 
Computer Science. Some visiting PhD students 
from the SAMBa CDT  were also present.
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The organisation and running of the event was 
greatly assisted by the help of two research 
facilitators from the Office of the Vice Provost 
Research, Dr Cat Mora and Dr Laura Fenner. 
The morning of the first day started with  
presentations from each of the external partners, 
detailing the challenges they are interested in 
tackling. This was a very active session with 
lots of questions from the floor and discussions 
continued during the ice-breaker round table 
session that followed. After lunch, the attendees 
listened to technical talks on each of the 
challenges, mainly given by UCL academics, 
reviewing the current literature and available 
models. A “market place” session then followed 
where attendees could wander between the 
separate tables set up for each challenge and 
interrogate the external partner’s representatives 
to extract crucial details required, such as 
the quality of available data, in order to begin 
developing their own mathematical modelling 
ideas.

On the second day, the brainstorming continued 
in separate breakout rooms, one for each 
external partner, and, over the first coffee break, 
a few bright ideas emerged that started to 
gain traction. By the end of the day, the most 
convincing ideas had gradually turned into 
vaguely formulated research plans, drawn out 
on large A0 pieces of paper, that were then 
scrutinised by the other attendees. 

The final day came down to the now fully-formed 
project groups each busily preparing a formal 
presentation in time for the final session after 
lunch. Professor David Price, the Vice Provost 
for Research, along with representatives and 
interested parties from the external organisations, 
sat in the audience to hear six interdisciplinary 
groups each explain their own research proposal 
and the resources required.

Since the sandpit took place, more detailed 
versions of the research proposals have been 
written up and discussions with the external 
partners are ongoing to explore the possibilities 
of collaborative research in the future. Hopefully 
the sandpit will spark further maths-in-industry 
events in the department, offering exciting 
research opportunities, in addition to raising the 
external profile of applied mathematics at UCL.
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Inaugural Lecture - Professor Helen 
Wilson

Dr Adam Townsend

“I look forward to seeing what she does with 
those eggs”, says the Dean as he makes one of 
the three – yes, three – introductions for Helen 
Wilson’s inaugural lecture. 

“It’s not eggs!” Helen exclaims from the front. And 
of course, it’s not. Any rheologist will tell you that 
eggs are shear thinning, not shear thickening, 
and the yellow mix in the glass bowl at the front of 
room 505 is actually custard. 

Helen picks it up. “In the bowl, the custard is thick 
and gloopy, but when I slowly move the bowl 
around, the custard flows like a liquid. Now look 
what happens when I punch it” – thwack “my 
hand stays dry!” This is a surprising experiment. 
Normally when you punch a liquid, it goes 
everywhere: all over the floor, your clothes, the 
expensive new computer equipment. Not so with 
custard: when you shear it quickly, for example 
by punching it, it actually gets thicker. So thick, in 
fact, that it acts as a solid, keeping Helen’s fist dry.

“So why is it doing this? This behaviour is pretty 
unusual, and is confined to custard and cornflour-
and-water pastes. And we have only recently 
figured out why it works like this,” she says.

INAUGURAL LECTURE - PROFESSOR HELEN WILSON  

Figure 1: We can see friction 
acting by how one particle (red) 
passes another (thick black). 
Normally we would expect the 
red particle to move round the 
black one symmetrically, but 
the fact that it is offset at the 
end tells us that there is some 
normal contact force acting

Custard is an example of a non-Newtonian fluid: a 
fluid whose viscosity changes as you try to shear 
it. Many things you find around the house are also 
non-Newtonian – ketchup, toothpaste, blood (if 
you’re unlucky) – but most of them get thinner as 
you increase the shear upon them. What makes 
custard become thicker then? Helen explains that 
it depends how exactly the fluid is non-Newtonian. 
Rheology, the study of non-Newtonian fluids, is 
constantly looking at matching what happens 
at the microscale with what we observe on the 
macroscale. 

“Water, wine, honey, air: these are Newtonian 
fluids; fluids whose viscosities stay the same 
when you try to shear them,” Helen demonstrates. 
“But for us, they’re all too simple!” 

There are different ways of making fluids less 
simple, and Helen has got stuck into quite a few 
of them. One way is to add particles into it: that’s 
how you get mud or custard. Trying to understand 
why custard shear-thickens, and therefore why 
you can do exciting things like run over a pool of 
the stuff, means looking at how these particles 
interact. 

Experiments have shown that we don’t observe 
such extreme shear thickening in suspensions of 
attractive particles, so perhaps instead the shear 
thickening comes from the particles clustering 
together. Simulations, however, have shown that 
this doesn’t cause enough of a viscosity jump.
We know that sand expands as is it sheared, so 
again perhaps the custard particles are doing 
this. Unfortunately, this theory leads to incorrect 
predictions for smooth, hard particles. 
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But true shear thickening needs concentrated 
systems and that brings us to some of Helen’s 
recent work, where she is working with maths 
department alumnus Peter Kilbride, now in 
industry in Cambridge. While finishing his PhD in 
the department, he came to talk to Helen about 
whether shear-thickening fluids can be used for 
a rather innovative purpose. “A problem with 
cryopreservation is that when you freeze tissue, 
ice crystals form,” she says. “This can destroy the 
tissue, but what the industrial team have “found 
is that some approved cryoprotectants do show 
shear-thickening. The structural changes in the 
cryoprotectant as it thickens could potentially 
inhibit the formation of these crystals.” It’s early 
days, but it’s exciting work.

So we’ve seen what you can do when you put 
solid particles into your fluid. Another thing you 
can do is to put in deformable elements: this gives 
you blood, shampoo, or, from Helen’s latest grant, 
toothpaste.

“Toothpaste is really a very complex mixture,” 
explains Helen. “It’s a polymer gel, with rough silica 
particles for abrasion, but smooth silica particles 
for rheology. On top of that, it’s impossible to make 
it without small air bubbles.”

The key example for fluids with deformable 
microstructure is a polymer solution. Polymers are 
long, stringy molecules which, under Brownian 
motion, have a tendency to coil up if left alone 
in the fluid. Under the influence of some flow, 
however, they deform. The resulting entropic 
‘desire’ to relax produces an elastic force in the 
fluid. “This conformation can even give the fluid a 
memory,” says Helen. 

One way to model these polymer coils is with 
a two-bead dumbbell, connected by a spring. 
From this, we can produce a handful of analytical 
models for polymeric fluids. The simplest such 
model, the so-called upper convected Maxwell 
model, does a pretty good job of describing some 
of the interesting behaviour polymeric solutions 
sometimes exhibit.

INAUGURAL LECTURE - PROFESSOR HELEN WILSON  

Instead, a general consensus has built up round 
the notion that the custard particles are coming 
under frictional contact, rubbing and rolling past 
each other due to the pressure in the system. 
“Recent simulations in the literature back up the 
idea that friction causes the change in viscosity,” 
says Helen. “But we came up with a really neat, 
really cool way of implementing the friction more 
exactly than others. And what did we see? No 
big changes in viscosity! So, you see, it is always 
more complicated.”

Given the history of investigations into 
suspensions, it is somewhat surprising that we’ve 
only recently got the science behind the custard 
experiment licked. Einstein looked at the effect on 
the viscosity of a fluid of adding particles back in 
1906 (and then again in 1915). He was only looking 
at dilute suspensions – custard, of course, is very 
concentrated – but  he found that the viscosity for 
a concentration ϕ scaled as 1+5/2 ϕ+O(ϕ² ).

In the 1970s, Batchelor & Green went further and 
found that the ϕ² coefficient was about 7… so long 
as you were only doing certain things to your fluid. 
“This was good so long as the strain you were 
exerting on the fluid was uniaxial, biaxial or in the 
plane: in other words, so long as all trajectories 
come from infinity,” explains Helen. “The problem 
is, in shear flow, you don’t always get this. 
Particles can follow closed paths, just going round 
and round forever.”

This problem was tackled by Helen as a postdoc 
in the University of Colorado at Boulder in 1998. 
She was able to show that implementing contact 
forces severed some of these closed paths but not 
all, making it still impossible to calculate viscosity 
in dilute shear flows.

Figure 2: Long, stringy polymers can be modelled 
quite successfully as dumbbell-and-bead springs
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Figure 4: An instability in the 
extrusion of a film of polymer melt 
(Tim Gough, University of Bradford)

But let’s jump back to 1995, a year which saw
the public awaken to ‘the Internet’ (capital I), an 
era when using Fortran was socially acceptable, 
and the time when Helen was starting her PhD at 
Cambridge. Her first project, under the supervision 
of John Rallison, was to look at instabilities in 
memory fluids. “Instabilities are when flows go 
wrong,” explains Helen. “If you’re trying to extrude 
a material or produce something delicate like 
separator film in electric car batteries, this is 
problematic. On the other hand, if you are trying 
to mix some fluids, it may be desirable.”

You can see these instabilities every day. “If you 
place a heavy fluid on top of a lighter fluid,” Helen 
continues, “it sorts itself out pretty quickly. This 
is known as a Rayleigh–Taylor instability and it’s 
driven by gravity..You can also see the effect of 
instability with a dripping tap .The water comes out 
of the tap as a slender filament, thins irregularly, 
and eventually breaks up into little droplets. This 
instability is driven by surface tension. 

Helen started looking at this problem by way of 
linear stability theory. “You start by taking a base 
flow, U: an ideal, steady flow that we hope to see,” 
she says. 

Then you add a little kick to it, εu. If you then 
throw away any very small ε² terms, and Fourier-
transform in the neutral direction and time, you 
end up with a linear system for u where the only 
non-trivial solutions are for selected values of the 
transformed time coordinate, ω. It is these values 
of ω which tell you about the stability of the base 
flow.”

Figure 3: Polymeric 
fluids can climb 
rods if you spin the 
rod quickly enough. 
(Boger & Walters, 
Rheological 
Phenomena in 
Focus)

If you take such a solution, place a rod vertically in 
it, and spin the rod in the solution, you’ll find that 
the fluid begins to climb the rod (above). This is 
extremely odd: if you did the same in water, inertia 
would dominate and the water would move away 
from the rod. 

This interesting effect, named after one of the 
founding rheologists, Karl Weissenberg, is a 
consequence of the elastic forces from the 
stretched polymers in the fluid. For a stress 
tensor Σ in a steady shear flow in the xy-plane, 
the first normal stress difference, N_1=Σ_xx-Σ_yy, 
is positive. “Rheologists talk a lot about normal 
stress differences,” says Helen, “but you can think 
about them as tension in the streamlines of the 
flow. When the streamlines are circular, as in this 
experiment, the positive normal stress difference 
acts as a hoop stress, pulling the fluid inward. 
It’s a lot like how surface tension acts to keep a 
bubble spherical.”

For toothpaste, however, this model has some 
shortcomings. In particular, it predicts a constant 
viscosity under increasing shear rate. Experiments 
show, however, that toothpaste is shear-thinning, 
like ketchup or blood. Some of Helen’s current 
work involves tweaking this model to allow it to 
shear-thin appropriately.
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The problem she looked at involved three 
horizontal layers of fluid. The top and bottom layers 
had a high normal stress difference; the middle 
layer had a low normal stress difference. If the 
interfaces are perturbed (above), the difference in 
stresses causes a feedback loop in the fluid. The 
jump in horizontal tension across each interface 
causes the horizontal motion shown by the black 
arrows; then the resulting excess of fluid in the 
top middle of the diagram has to flow downwards, 
the flow marked in red. This in turn enhances the 
perturbation to the interface position.

Initially the layers had matched viscosities but 
Helen developed it to mismatched viscosities and 
interfaces where instead of jumps in the normal 
stress, it just varies steeply. One model she used 
for the steep variation was the empirical dumbbell 
described already. She had no luck finding 
instabilities in that case, but then serendipity 
intervened. “The coding was already done,” she 
says, “so I thought, what happens if I just looked 
around for instabilities in different circumstances?” 

Lo and behold, she happened upon a new one for 
a power law fluid.

So with this extra instability in the model found and 
thoroughly analysed, Helen was quite pleased. “I 
couldn’t find any experimental evidence of it in 
the literature, but it was a good paper and a nice 
result, so I thought it might just sit there on the 
shelf,” she recalls. Jump forward 14 years. 

Figure 6: What Augustus Gloop falling into 
chocolate would look like if Hollywood did 
something stupid like recreate Willy Wonka and 
the Chocolate Factory with Johnny Depp as Willy 
Wonka

Figure 5: The three-layer interfacial 
instability causes a feedback loop

During this time she’d spent two years in Boulder, 
four years at Leeds, and nine years patronising the 
east coast mainline into UCL every day. But now 
an email lands in her inbox. It’s from the Bordeaux 
group at CNRS. They’d found an instability in a 
straight channel while investigating the transition 
to elastic turbulence and were wondering if, by any 
chance, it might be Helen’s instability. “Serendipity 
strikes again!”

“I’m not going to give the Chocolate Fountain 
Talk™,” she states. What? Why not? What does 
she think the audience in the completely packed 
lecture theatre have come for? “Most of you 
have heard it already, and one of you has given 
it over 100 times.” Ah, yes. Well thankfully there’s 
a chocolate fountain in the reception next door 
and everyone will get to enjoy the spoils shortly. 
Needless to say, this work did pretty well in the 
media – ‘Someone finally looked into the physics 
of chocolate fountains,’ says the Washington 
Post headline. The article has had over 20,000 
downloads and nearly 2 citations. “When an article 
I wrote about suspensions got over 333, Springer 
sent me a certificate”, she muses.

In attendance tonight is the Provost, and he 
makes the extremely popular announcement that 
Helen will be taking over as head of department 
from next year, making her the first female head in 
its 192 years of existence. 
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Dynamical Networks

Ewelina Zatorska

Complex highly dynamical networks are of significant interest in many fields of life and social sciences.
Examples of such structures include neural networks, biological fiber networks such as connective tissues,
vascular or neural networks, ant trails, polymers, economic interactions, etc. These systems are composed
of a large number of agents – particles or cells – interacting through local interactions, and self-organizing
to reach large-scale functional structures. By their continuous breaking and reforming connections, such
networks are often very plastic having ability to change shape and adapt to different situations. For
example, the biochemical reactions in a cell involve proteins – DNA, RNA, or gene promotors – linking
or unlinking to create or break large structures [7]. Because of their paramount importance in biological
functions or social organizations, understanding the properties of such complex systems is of great interest.

From the modelling point of view, the most straightforward approach would be to describe behavior
of each agent and its interaction with the surrounding agents. Such description is called a microscopic
model because it provides a precise answer where an individual agent might be at a given time and what
are all the interactions around it.

Let us for example consider the 2-dimensional mi-
croscopic model that features N particles located at
points Xi ∈ Ω ⊂ R2, i ∈ [1, N ]. The particles are
randomly linking and unlinking to their neighbors
which are located in a ball of radius R from their cen-
ter.
Particles are then interacting through a network of
links that we could model as springs of equilibrium
length l. The detection zone for linking to close
neighbours is a disk of radius R. The link creation
and suppression are random in time. Let us assume, for example, that they follow Poisson processes with
frequencies νNf for formation of links and νNd for destruction of links. If we now look at the moment in
time where the number of links attached to agent Xi is equal to K, then we can compute the total energy
W related to the maintenance of these links as a sum

W =

K∑
k=1

Ṽ (Xi(k), Xj(k)).

In the expression above, i(k), j(k) denote the indexes of particles connected by the link k, and

Ṽ (Xi, Xj) = (|Xi −Xj | − �)2

is a pairwise potential generated by the spring with equilibrium length � connecting Xi to Xj .
Particle motion between two time steps tn and tn + ∆tn is then supposed to occur in the steepest

descent direction to the energy W in the so-called overdamped regime:

Xn+1
i = Xn

i −∇Xn
i
W∆tn +

√
2D∆tnN (0, 1), i = 1, . . . , N. (1)

1
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Here, N (0, 1) is the normal distribution with mean 0 and standard deviation 1, and D > 0 is another
system parameter called the diffusion. The last part of the equation models the fact that we might not
be able to precisely determine the position of the particle already at the level of microscopic description.
This equation still lacks a term modelling the creation and destruction of links between agents. In the
example of cell dynamics mentioned at the beginning, the frequency of linking/unlinking depends on the
size of the molecules. This is a very fast process (order of seconds). The macroscopic evolution of the
cell, such as cell growth, is on the other hand much slower (order of minutes). Our description should
therefore include another time unit, say ε2, that will be much shorter than the time scale of the agent
motion. It would seem that we have to solve N equations (1) in order to trace each particle, changing the
energy 1

ε2
times. Therefore, the rescaled version of the microscopic model with large number of particles

N → ∞, large number of links K → ∞, and a very fast link creation/destruction rate ε → 0 makes
system (1) computationally costly. We need to look for more efficient, but maybe less precise, solutions.

A way to do it would be to look for empirical distributions of the particles fN (x, t) and the links
gK(x1, x2, t) rather to trace each particle and link separately. This means that we consider

fN (x, t) =
1

N

N∑
i=1

δXi(x); gK(x1, x2, t) =
1

2K

K∑
k=1

[
δXi(k),Xj(k)

(x1, x2) + δXj(k),Xi(k)
(x1, x2)

]
,

where the symbol δXi(x) is the Dirac delta centred at Xi(t), with the similar definition for the two-point
distribution. Postulating the existence of the following limits:

f(x, t) = lim
N→∞

fN , g(x1, x2, t) = lim
K→∞

gK ,

νf = lim
N→∞

νNf (N − 1), νd = lim
N→∞

νNd , ξ = lim
K,N→∞

K

N

and letting ε → 0 in system (1) gives rise, via the so called mean-field limit (see [1] and [5]), to the
macroscopic model :

∂tf = D∆xf +∇x ·
(
f (∇xV ∗ f)

)
(2a)

g(x, y, t) =
νf
2ξνd

f(x, t)f(y, t)χ|x−y|≤R, (2b)

with a compactly supported potential V :

V (x) =

{
(|x| − )2 − (R− )2, for |x| < R,
0 for |x| ≥ R.

Intuitively, the bigger the ratio /R ≤ 1, the stronger
the tendency of the particles to repulse each others. On the
other hand, if the ratio /R is small, this means that the links
created between the particles should attract than repulse.
This mechanism is described by the second term in the the
equation for the limit distribution of particles (2a). It is
sometimes called the attractive-repulsive part of equation.
The first term on the right hand side is a linear diffusion term which is an effect of the random motion
of the particles on the microscopic level. Another important observation is that the distribution of links
in the macroscopic description (2b) is completely determined by the distribution of particles.

Equation (2a) is an example of nonlinear partial differential equation, and we do not know whether it
has a solution in the classical sense that is different from a constant. Even if such solution exists, it would

2
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be hard to give an explicit formula for it, and so we would at least like to know some of its properties.
We could, for example, check what are the values of the parameters D, �, R required to balance the
repulsive and attractive forces. For this reason we consider a simple one-dimensional domain [−3, 3] ∈ R
with periodic boundary conditions (or a circle of circumference equal to 6) and we investigate when a
small perturbation of a constant initial condition for f is amplified or damped. This corresponds to what
we call instability or stability of the constant steady state. Performing Fourier analysis of equation (2a)
around the constant steady state f ‘∗ = 1

2L for R = 0.75, we can see that the other two parameters � and
D should be chosen as presented in the diagram below.

Let us try to interpret this result. Parame-
ter D measures how the perturbations of solution
are smoothened by the dissipation process. If this
parameter is small, any initial perturbation has a
chance to expand if the potential V is more at-
tractive than repulsive, meaning that the ratio �/R
should be small. This corresponds to the lower tri-
angle in the above picture. Note also that, if the
diffusion parameter is sufficiently big (bigger that
0.09), then the potential V does not play a role any
more and the diffusion overcomes the local inter-
actions, smoothing out the initial perturbations,
see [2].

What is much less intuitive is that the lower
triangle can be divided into two parts distinguish-
ing the qualitative behaviour of the model beyond the linear level, [4]. Our analysis, based on central
manifold reduction [6], provides a characterization of the type of bifurcation that appears at the insta-
bility onset. We can distinguish the continuous and discontinuous phase transitions (supercritical and
subcritical bifurcation). In the first case, the initial perturbation first grows exponentially, but than it
saturates, so that f tends to an almost homogeneous stationary state. In the subcritical bifurcation, the
perturbation grows much more so that the final state may be very far from the original homogeneous
state. Mathematical analysis of the macroscopic equation (2a) allows us to find a precise value of pa-
rameters � and D for which the bifurcation changes type: they are denoted by �∗ and D∗ in the diagram
above, [1].

Having this information to hand, we would like to understand if and how well this captures the
behaviour of actual particles at the microscopic level. Because the derivation of the macroscopic system
(2) is formal, it is important to look for evidence that the limit system describes what we started with. In
this particular case, we can show that the numerical solutions behave as predicted in the theory, and that
we obtain – numerically – a very good agreement between the micro- and macro- formulations. In the
figure below, see [2], the comparison of the density distributions f between the the macroscopic model
and the microscopic one is presented for different values of parameters corresponding to the supercritical
(A and C) and subcritical (B and D) bifurcations.

3
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This numerical verification encourages us to believe that the formally derived macroscopic model
is indeed a mean-field limit of the microscopic one. It also confirms that the two types of bifurcations
revealed in our formal computation – subcritical and supercritical – do actually occur. More importantly,
we show that the bifurcation structure is indeed relevant for the microscopic model, for which no theo-
retical analysis exists to date. Moreover, the same numerical method can be now used in cases where the
microscopic model is too computationally intensive, for example to simulate the distribution of particles
in the 2-dimensional domains, see [2, 3].
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CLIFFORD PRIZE LECTURE

Clifford Prize Lecture

On 10 November 2017 the department hosted 
the third Clifford Prize Lecture. The W.K. 
Clifford Prize was instituted in 2011 by the 
Advisory Board of the International Conference 
on Clifford Algebras and their Applications in 
Mathematical Physics (ICCA) and is awarded 
every three years. It is an international scientific 
prize for young researchers. The prize intends 
to encourage young researchers to compete 
for excellence in their research in theoretical 
and applied Clifford algebras, their analysis and 
geometry.

William Kingdon Clifford worked in our 
department from 1871 until his untimely death 
in 1879 as Professor of Applied Mathematics, 
holding the Goldsmid Chair. In recognition of 
Clifford’s legacy we offer the prizewinner the 
opportunity to deliver a lecture at UCL. 

This year we were delighted that Clifford’s great 
grandson, Fisher Dilke, was able to attend both 
the lecture and our reception afterwards.

The 2017 Laureate was Dr David Kimsey from 
Newcastle University and his lecture was entitled 
“The spectral theorem for a normal operator 
on a quaternionic Hilbert space based on the 
S-spectrum”.

In linear algebra the spectral theorem is a 
representation of an Hermitian matrix in terms 
of its eigenvalues and eigenvectors. This result 
generalises to the case of a linear self-adjoint 
operator acting in an infinite-dimensional 
complex Hilbert space. David Kimsey aims 
to extend this construction to quaternionic 
operators. The fundamental difficulty here is 
that, unlike complex numbers, quaternions do 
not form a field (quaternion multiplication is not 
commutative). Quaternionic spectral theory has 
a long and somewhat controversial history. Even 
the definition of the spectrum of a quaternionic 
linear operator is the subject of discussion 
amongst specialists. In recent years David 
Kimsey and his coauthors made substantial 
progress in this area.

The Laureate 2017 - ICCA11 Gent

David Kimsey of Newcastle University (UK) 
has been selected as the recipient of the 
third W.K. Clifford Prize, for his outstanding 
mathematical research achievements in the 
field of quaternionic analysis with applications in 
quantum mechanics.

He received his Ph.D. from Drexel University with 
a thesis titled “Matrix-valued moment problems” 
(supervisor H. Woerdeman). During two postdocs 
his interest subsequently moved to quaternionic 
analysis. Spectral theory for normal operators 
on a quaternionic Hilbert space is a delicate and 
technical subject due to the noncommutativity of 
the quaternions. In particular, the proper notion 
of spectrum is not immediately obvious and 
turns out to be given by the recently discovered 
S-spectrum. Based on this notion, David Kimsey 
(in collaboration with Alpay and Colombo) 
produced a completely rigorous analogue of the 
spectral theorem for bounded and unbounded 
normal operators on a quaternionic Hilbert 
space. This spectral theorem is a crucial tool to 
formulate the axioms of quaternionic quantum 
mechanics and as such closed a problem 
formulated by Birkhoff and von Neumann in 
1936.

The solution to this longstanding open problem 
in itself would already warrant awarding the 
prize to David Kimsey. However, through various 
collaborations, he also initiated the study of 
moment problems, free analysis and interpolation 
in the context of quaternions.

William Kingdon Clifford 
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Women In Mathematics 

The Women in Mathematics taster course this 
year was held at UCL on 3rd July 2017

Those invited to attend the event are currently 
studying A level Mathematics or equivalent 
qualifications and are seriously considering 
taking a degree in Mathematics or a degree 
involving Mathematics.

Academic Mathematics from UCL including 
Dr Robert Bowles (Maths Admissions Tutor), 
Professor Helen Wilson and Professor 
Karen Page delivered formal lectures and 
problem solving sessions covering a variety of 
mathematical topics.

Advice and guidance was also provided on the 
admissions process and future career options.

The Women in Mathematics taster days are 
organised by the Careers Group, University of 
London and they received very positive feedback 
for this event

This year, the Women in Mathematics Taster 
Course is planned for the 2nd July 2018.

Professor Helen Wilson’s chocolate fountain 
demonstration

WOMEN IN MATHEMATICS      ZERO TOLERANCE

Zero Tolerance Award

The Mathematics Department gained the Zero 
Tolerance Award for its pledge to not tolerate 
sexual harassment.

Students’ Union UCL and UCL are committed 
to fighting sexual harassment. We understand 
that we all have a responsibility to make our 
University a safe space for all students and staff. 
Sexual harassment is any unwanted and/or 
persistent behaviour of a sexual nature. 

We, as a department, pledge:

- To never tolerate, condone or ignore sexual 
harassment of any kind
- To educate students and staff about sexual 
harassment and why it’s never ok
- To support students and staff when they talk 
about, report or challenge sexual harassment
- This includes making appropriate adjustments 
to ensure that those who have experienced 
sexual harassment or violence are supported 
in continuing their studies or work with as little 
disruption as possible
- To actively challenge the culture within which 
sexual harassment happen

Professor Robb McDonald receiving the 
Departmental Zero Tolerance award
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Rafael Prieto Curiel

October 2017 marked the first Black 
Mathematician Month. Throughout the month, 
we aimed to celebrate diversity in mathematics, 
to promote the work of black mathematicians 
and to dismantle ideas about who can become 
a mathematician, hoping to create a community 
which is more open and inclusive.

Why do we need a Black Mathematician Month? 
Our experiences through the month showed 
us two things: firstly, after interviewing black 
mathematicians in the UK, the US and Nigeria 
we heard many tales of active discouragement 
from pursuing mathematics. Whether it was 
being told that the subject was not appropriate, 
being mistaken for the cleaning staff, or in one 
case having to quit a job because of death 
threats, there were stories of discrimination at 
every level. Being part of a silent system will not 
change and fix things.

One thing that every black mathematician we 
spoke to had in common is that they could all 
remember that inspiring teacher or professor 
who pushed them and encouraged them to 
become a mathematician. Their successful 
careers were, perhaps, highly influenced by 
that lecturer who shared and imprinted their 
passion for mathematics with them. The figure 
of a relevant role model was always significant, 
and in the majority of the cases the role model 
had that special place not because of the 
colour of their skin but because of their passion 
for mathematics. One way to achieve better 
representation might, then, be to increase the 
number of such role models.

Many people felt that black communities were 
left out of science at an early age, and that an 
effective but simple strategy would be the active 
promotion of mathematical research in schools 
which have large numbers of black pupils.

Black Mathematician Month was a joint effort, 
with support from UCL Mathematics Department, 
the London Mathematical Society, the Institute 
of Mathematics and its Applications, and others. 
Throughout the month of October, mathematical 
associations such as Chalkdust, A periodical, 
Plus Magazine and the Mathematical Association 
published relevant content such as mathematical 
articles, videos and interviews with black 
mathematicians.

To celebrate the end of the month, the UCL 
Mathematics Department hosted a closing 
ceremony. The guest speaker was Dr Nira 
Chamberlain, the Vice President of the Institute 
of Mathematics and its Applications who had 
recently been named the 5th most influential 
black person in the UK. Nira is not only highly 
influential, fighting for equality in mathematics but 
he is also a true inspiration.

BLACK MATHEMATICIAN MONTH

Dr Nira Chamberlain 
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People from all over London and even further 
joined us at UCL to listen to Nira give a talk 
titled ‘The Black Heroes of Mathematics’ where 
he showed us that, even though the first black 
person to be awarded a PhD in mathematics 
was less than one hundred years ago (and his 
transcript had the word “coloured” printed across 
it), there have been many inspirational black 
mathematicians. Nira also shared with us his 
experiences of growing up in the UK: how he 
became a mathematician and how, at one point 
in his career, was told to become a boxer ‘since 
he had the right body for it’. Years later, when 
his son was told to become a singer rather than 
a mathematician, Nira decided to go back to 
university, completing his PhD part time with the 
aim of setting an example, not only for his son 
but for many others. 

Perhaps the most valuable experience we had 
during Black Mathematician Month was precisely 
being inspired by Nira. He managed to motivate 
us all, continually reminding us that ‘you don’t 
need anyone’s permission to become a great 
mathematician’. 

Being aware of the times when minorities are 
treated differently, hearing their stories and what 
they have to deal with, perhaps on a daily basis, 
does bring light to an often-ignored problem. 
We all need to actively work to construct a 
better mathematics community. We all need to 
destroy the intellectual stereotype. Regardless 
of our role, we can all contribute to a more 
equal society. Whether we are the empathetic 
classmate, the inspirational teacher or lecturer, 
the sympathetic colleague at a conference or the 
organiser who strives to have a diverse range of 
speakers, we all play an active role in how our 
community currently is and so we can all work to 
make it better.

We will be trying to put the lessons that we have 
learnt into practice throughout the year before 
we celebrate the next Black Mathematician 
Month. Whether it is trying to provide people with 
role models, gathering better data on university 
applications or just going out and talking about 
how beautiful mathematics can be, we believe 
that there is something that we can all do to 
help build a more representative and fairer 
mathematical community, to the benefit of all.

BLACK MATHEMATICIAN MONTH

Dr Nira Chamberlain with Atheeta Ching, Rafael Prieto Curiel, Nikoleta 
Kalaydzhieva and Sean Jamshidi



24

POST DOC AND POST GRAD LIFE

Summer picnic at 
Gordon Square

The Chalkdust team meats Ingrid 
Daubechies, one of the most influential 
mathematicians in image processing

Farewell drinks for Rafael from the 
Chalkdust team
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British Applied Mathematics Colloquium, 
the UCL team

Christmas Dinner 2017

British Applied Mathematics 
Colloquium, the UCL team
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for any order k ≥ 1, for V sufficiently regular in certain Sobolev spaces. The key step
in this work was based on understanding the PDE-theoretic properties of specially con-
structed linearizations of the HJB equation, and combining it with certain advanced
discretization methods that allow for arbitrary orders of approximation.

Concluding remarks. Overall, when they are applicable, numerical methods for solv-
ing the HJB equation are among the most accurate and efficient ways of obtaining an
approximate solution, and there is now a range of methods to handle many, although not
all, of the most common computational challenges encountered in applications. There
has been significant recent progress in the convergence analysis of these methods, de-
spite the strong nonlinearity of the PDE. However, outstanding challenges still remain.
In particular, we have already mentioned the curse of dimensionality, and it will be in-
teresting to see if some of the ideas that have been recently successful for discrete-time
control problems can be carried over to continuous-time problems.
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[3] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations, vol. 43 of
American Mathematical Society Colloquium Publications, American Mathematical
Society, Providence, RI, 1995.

[4] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27
(1992), pp. 1–67.

[5] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity
solutions, vol. 25 of Stochastic Modelling and Applied Probability, Springer, New
York, second ed., 2006.

[6] R. V. Gamkrelidze, Discovery of the maximum principle, J. Dynam. Control
Systems, 5 (1999), pp. 437–451.

[7] M. Jensen and I. Smears, On the convergence of finite element methods for
Hamilton–Jacobi–Bellman equations, SIAM J. Numer. Anal., 51 (2013), pp. 137–
162.

[8] H. J. Kushner, Numerical methods for stochastic control problems in continuous
time, SIAM J. Control Optim., 28 (1990), pp. 999–1048.

6

Stochastic optimal control Iain Smears

1 Optimal control problems

Control theory is broadly concerned with the analysis of controllable dynamical systems, often with the goal of
finding the best choice of control to achieve a desirable outcome. Since the pioneering works of Bellman [2] and
Pontryagin in the 1950s (see [6] for a historical perspective of the latter), it has now become an essential part of
modern science and engineering, and it finds diverse applications, for instance in aeronautical and aerospatial
engineering, energy, robotics, as well as machine learning in computer science, to mention only a few. Concrete
realizations are found in everyday items, such as thermostats at home or cruise control and ABS in cars, as well
as in large scale industrial and scientific projects, such as in the planning of distribution of commercial goods or
in guidance systems for atmospheric re-entry of space shuttles [9, 13].

Discrete control problems. As a result of the diversity of applications, control problems appear in many differ-
ent forms, often in terms of the nature of the system being controlled. In some applications, the set of all possible
configurations of the system, known as the state space, is naturally a finite set. For example, the state space
could represent the set of all possible positions of pieces on a chessboard, with the state being the particular
configuration at the current turn. In this example, the set of controls, or actions as they are sometimes called,
is then the set of moves a player can take. It is often assumed that the evolution of the state between discrete
time-steps obeys some probability distribution, for instance to represent the uncertainty of the opponent’s next
move. The goal is then to optimize some measure of success, typically represented by the expected value of a
specified objective function. In such cases, we call the control problem discrete. It is worth noting that models of
this kind are generally the starting point for reinforcement learning which has received considerable recent inter-
est in Computer Science. Furthermore, control problems for specific types of such processes, such as Markov
decision processes, are a major area of study in Operations Research [10].

Continuous control problems. In many engineering applications concerned with physical systems, the dy-
namics are naturally modelled by either ordinary or partial differential equations (ODEs and PDEs). In both
cases, the setting is now continuous, and thus we speak of a continuous control problems. For ODEs and PDEs
without stochastic terms, the problems are furthermore deterministic, in the sense that a fixed choice of controls
leads to a state that follows a unique path, provided at least that the governing equations are well-posed. We
refer the reader to the textbooks [13] and [14] for a presentation of the theory of deterministic control problems
governed by ordinary or partial differential equations.

Here, we will focus on continuous stochastic optimal control problems, where the dynamics are governed by
a system of stochastic differential equations [5]. Without attempting to go into too much detail, it is important
to note that there are important conceptual differences between deterministic and stochastic control problems.
Indeed, in the deterministic case it is possible to define the notion of an optimal path of the system, whereas in
the stochastic case, this is no longer possible since the objective function is optimized in expected value only
and all possible paths of the system may have some influence. For instance, a deterministic controller might
consider it quite optimal to bridge a canyon using only a tightrope, yet a stochastic controller must consider a
larger set of eventualities. Mathematically, these differences are significant and can be seen in the fact that
certain solution methods are applicable only in the deterministic setting. However, as we shall explain in the
following section, a generally applicable method for solving stochastic control problems is based on the dynamic
programming principle, due to Bellman.

2 Dynamic programming

A model problem. To make ideas more precise, we now consider the following model problem of a system
where the state at time t ≥ 0 is given by the vector X(t) ∈ Rd, with d ≥ 1 denoting the dimension of the state
space. The random fluctuations in the system are modelled by a k-dimensional Brownian motion B(t); note that
k need not equal d in general. The state vector X(t) obeys the stochastic differential equation (SDE)

dX = b(X(t), α(t)) dt+ σ(X(t), α(t)) dB, X(0) = x, (1)

where x ∈ Rd is a starting position, and where b(·, ·) and σ(·, ·) are known functions of the current state and
the control α(t) that is chosen at time t. More precisely, if Λ denotes the set of all possible controls, then
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b : Rd × Λ → Rd, and σ : Rd × Λ → Rd×k with Rd×k the space of d-by-k matrices. Without going into detail, note
that for the purposes of analysis, it is usually necessary to make additional assumptions on the regularity of the
functions b and σ, as well as on the structure of the control set Λ.

We now consider the problem of finding a control function α(·) : [0,∞) → Λ that minimizes the objective
functional

J(x, α(·)) = E
∫ τexit

0
e−ctf(X(t), α(t))dt, (2)

where f(·, ·) is a bounded real-valued function called the running cost, and where τexit is the exit time of the
state from a specified bounded open region of Rd, denoted by Ω. For simplicity, we include the discount factor
c > 0 to guarantee that the integral should be finite; in economics applications, this can be justified in terms of
an underlying interest rate in the system. The symbol E in (2) denotes the expectation as a result of starting the
process at the initial point x, and evolving it under the control α(·) via the SDE (1). To complete the specification
of the problem, we must indicate the set of allowed control functions α(·) : [0,∞) → Λ. From a modelling point of
view, it is natural to require that the controls must only depend on the information available about the system up
until the current time, which can be formulated mathematically in terms of measurability conditions related to the
filtration of the Brownian motion. Without going into technicalities, let us denote by A a suitably defined space
of control functions that respect these requirements. We then call a minimizer in A an optimal control. We note
that there exist many variants to the model problem considered here, especially with regards to the objective
functional in (2); our choices here are primarily made to ensure that the following discussion remains as simple
as possible.

Dynamic programming. At an intuitive level, it is clear that it would be good to know which regions of the
state space are better than others, so that we may steer the stochastic process towards them. This can be
represented by attributing a value V (x) to each point x in the state space:

V (x) := inf
α(·)∈A

J(x, α(·)). (3)

Note here that, although x has so far been used to denote the initial condition of the stochastic process, we can
also think of it as a variable ranging over the domain Ω. Since V (x) represents the value of the state being at
the point x, the function V is called the value function. For our minimization problem above, we would naturally
aim to steer the stochastic process towards regions where V is small. Using the Markov property of diffusion
processes, it is possible to show under some conditions (see [5] for further details) that the value function V (x)
satisfies

V (x) = inf
α(·)∈A

E
[∫ t

0
f(X(s), α(s))ds+ e−ctV (X(t))

]
, (4)

for all appropriately defined stopping times 0 < t ≤ τexit. This is the dynamic programming principle, which
expresses the fact that the value of being at x is tied to the values of the points that the state X(t) is most likely
to reach at some later time t, as well as the running costs incurred for times between 0 and t. We note that this
is a general result that is not limited to the continuous-time stochastic control problems considered here, as it is
also valid in the discrete context, as well as in the deterministic setting [2]. It is therefore a central part of the
theory of optimal control problems.

3 The Hamilton–Jacobi–Bellman PDE

An intuitive interpretation of (4) is that if we knew the value function, then naturally we should choose the controls
minimize the right-hand side of (4), i.e. that make it most likely to move towards points where V (X(t)) is small,
modulo the integral term due to the function f . As we shall now see, this intuitive idea is made rigorous by the
associated Hamilton–Jacobi–Bellman (HJB) PDE (sometimes also just called Bellman PDE). Assuming that V
is sufficiently smooth, some results from Stochastic Calculus can be applied to (4) in order to obtain the HJB
equation

inf
α∈Λ

[LαV + fα] = 0, (5)

where Lα is a differential operator associated to each control value α ∈ Λ, defined by

LαV = aα : D2V + bα · ∇V − cV, (6)
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where we employ the short-hand notation aα(x) = 1
2σ(x, α)σ

⊤(x, α) ∈ Rd×d, and bα(x) = b(x, α), fα(x) =
f(x, α), i.e. we omit the dependence on x and indicate the dependence on the control α in a superscript. Fur-
thermore, in (6),D2V denotes the Hessian matrix of V , andA : B =

∑d
i,j=1AijBij is the Frobenius inner-product

of matrices. The PDE (5) holds throughout the domain Ω ⊂ Rd, with the infimum expression being understood
in a pointwise sense, at each x ∈ Ω. The PDE is supplemented by boundary conditions on the boundary ∂Ω, in
particular V = 0 on ∂Ω for the current model problem. In fact, the assumption that V must be sufficiently smooth
in the above arguments can be removed if the equation is understood in the sense of viscosity solutions [3, 4, 5],
although we shall not go into further details about this here.

In going from (4) to (5), a major change of setting has occurred, namely that whereas the expectation in
(4) still refers to the distribution induced by the stochastic process, (5) is a deterministic PDE that no longer
directly refers to any stochastic quantities. Thus, in principle, the value function can be found using deterministic
methods. Furthermore, the infimum in (4) is over the set of control functions A, whereas in (5) it is over the set
of control values Λ, which is often much simpler to work with. Furthermore, for a given point x, it turns out that
minimizers α∗ of (5) can be used to construct an optimal control, thereby solving the original control problem.

Challenges. In summary, the strategy for solving the optimal control problem requires finding the value func-
tion and optimal controls via (5). However, we must mention that except in rare circumstances, it is not possible
to find an analytical expression for the value function. In fact, it is realistic to only expect to find approximations of
the value function and the optimal controls. Ideally, we would like methods that approximate the value function
and optimal controls accurately, and that work for as wide a range of problems as possible. There are many
significant challenges in making this work in practice, each difficulty being related to the details of the particu-
lar application at hand. A well-known one is the curse of dimensionality, a phrase coined by Bellman himself:
very roughly speaking, it is known that the computational resources needed to approximate a reasonable but
otherwise arbitrary function of d variables to a given accuracy over the whole state space grows exponentially
with d. Strictly speaking, the curse of dimensionality is not tied to the HJB PDE itself, since it also appears in
discrete control problems with large state spaces. To address the curse of dimensionality, it is clear that some
requirements on accuracy or generality must be relaxed; for instance, one idea used in methods such as rein-
forcement learning and approximate dynamic programming [9], is to find approximations (either computational
or statistical) that are accurate in regions of state space that are most likely to be encountered.

Since the curse of dimensionality is a general difficulty for approximating functions of many variables, let us
focus our discussion now on issues that are more specific to the HJB PDE itself. Even in low dimensions, a
major challenge here is that (5) is a highly nonlinear PDE. More precisely, it is what is known as a fully nonlinear
PDE, i.e. the solution and all derivatives appear nonlinearly inside the infimum in (5). This has far reaching
consequences, the most important one for practice being that it significantly complicates the development and
analysis of convergent numerical methods for approximating the value function. As we shall now explain, despite
the existence of many efficient and well-understood numerical methods for linear or moderately nonlinear PDE,
it is only more recently that they begun to appear for fully nonlinear PDEs.

Numerical methods. Many numerical methods for PDEs are based on discretizing the state space by a grid, or
mesh, and then solving a discrete system of nonlinear equations for the unknowns that approximate the solution
at the points on the grid. One family of such methods that are provably convergent for HJB equations such as
(5) is the class of monotone schemes, which can be based on either finite difference methods [1, 8] or, as found
more recently, on finite element methods [7]. They derive their name from a monotonicity property that can be
viewed as a discrete version of the maximum principle enjoyed by the underlying PDE. In fact, in some cases,
these methods are equivalent to solving a discrete control problem that approximates the continuous one [8].
There is still much ongoing research in developing these methods for HJB equations and for other fully nonlinear
PDEs. However, these methods do present some drawbacks. For instance, monotone schemes have rather
limited computational efficiency, since they are typically at most second-order accurate, with first-order accuracy
being rather more common. This means that the error between V and its discrete approximation Vh is at best
of order h2, where h is the typical spacing between points on the grid. This can be written as ∥V − Vh∥ = O(hk)
with k ≤ 2, where ∥·∥ denotes an appropriately defined norm on a space of functions.

Due to the low-order nature of monotone methods, there have been many attempts at developing high-
order methods, which have the potential to be more computationally efficient. However, the nonlinearity of
the equations has been major obstacle to proving certain required stability properties of these methods and to
guaranteeing their convergence to the correct solution, even for very smooth solutions. It is only recently that
provably convergent high-order methods have been found, for a reasonably broad class of HJB equations [11,
12]. From a practical perspective, the key advantage of these newly developed methods is that they can attain
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arbitrarily high-orders of accuracy, as long as the solution is sufficiently smooth or if the mesh is appropriately
adapted to the solution. Simplifying to some extent, it can be proved that the error ∥V − Vh∥ = O(hk), for
any order k ≥ 1, for V sufficiently regular in certain Sobolev spaces. The key step in this work was based
on understanding the PDE-theoretic properties of specially constructed linearizations of the HJB equation, and
combining it with certain advanced discretization methods that allow for arbitrary orders of approximation.

Concluding remarks. Overall, when they are applicable, numerical methods for solving the HJB equation are
among the most accurate and efficient ways of obtaining an approximate solution, and there is now a range
of methods to handle many, although not all, of the most common computational challenges encountered in
applications. There has been significant recent progress in the convergence analysis of these methods, despite
the strong nonlinearity of the PDE. However, outstanding challenges still remain. In particular, we have already
mentioned the curse of dimensionality, and it will be interesting to see if some of the ideas that have been recently
successful for discrete-time control problems can be carried over to continuous-time problems.
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Singapore Summit

James Cann - PhD Student, UCL

Quite often, messages find their way into my 
UCL email inbox which seem too good to be true: 
‘Earn 5000 Canadian Rupees per hour from your 
armchair’, or else ‘One small step - and leap 
into your perfect postdoc position’. And so I met 
‘Spend a week in Singapore and meet Nobel 
Prize winners’ with not undue scepticism. 

The culpable sender: Professor Robb McDonald. 
Surely our esteemed Head of Department 
hasn’t developed a taste for spam and taken up 
phishing. Curious, I read that ‘The Global Young 
Scientist’s Summit is a gathering of 200 PhDs 
and post-docs from all over the world, together 
with globally recognised scientific leaders 
(recipients of the Nobel Prize, Fields Medal, etc.) 
in Singapore. UCL has been invited to nominate 
5 attendees - maximum of 1 per department’. 

To my lasting surprise, on the 21st January I 
found myself walking aboard the 7pm flight, 
departing a damp and dismal Heathrow. Fourteen 
hours, eight time zones and two surprisingly tasty 
foil-sealed flight meals later, I was mid-afternoon 
in the tropical city-state of Singapore.

Nanyang Technological University’s abundantly 
green west-of-island campus played host to the 
summit - a varied programme of plenary lectures, 
small group discussions, and tours of the city. 
One degree north of the equator, Singapore 
is a sovereign city-state, nestled at the foot of 
Malaysia, its main island separated to the north 
by a narrow strait of water. London might be 
multicultural, but it doesn’t boast four official 
languages: Malay, Mandarin, Tamil and English; 
neither does its outdoor temperature rarely stray 
from a 23 - 31°C window, its humidity seldom 
fall below 80%. For breakfast there were lotus 
steamed buns, chicken and prawn fried rice, 
‘century eggs’, pandan leaf jam, baked beans 
oriented by baby corn and spice.

Just a taste of the plenary lectures: ‘Solar Cells 
inspired by Green Leaves’ was the theme of 
Michael Graetzel’s talk. Frances Arnold described 
how imitating evolutionary mutations in the lab 
is already helping to optimise enzyme design. 
Stuart Parkin talked about ‘Spin Orbitronics’ and 
engineering the next generations of memory 
storage devices. Fields Medallist Efim Zelmanov 
gave his take on ‘Mathematics: Science or 
Art?’ and Sir Michael Atiyah was even more 
contemplative, advising that we plant more trees 
and read and write poetry.

SINGAPORE SUMMIT
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Team UCL (author wearing shorts)

Mid-week there was a poster session. I 
presented my research on arithmetic random 
waves, which was met with enthusiasm by a 
multidisciplinary audience of engineers, biologists 
and physicists. There were posters on plate 
tectonics; on the effect of smartphone apps 
on the use of public transport in major cities; 
on non-intrusive imaging techniques for the 
brain. Wandering around the 50-or-so posters, 
passing impassioned conversations and careful 
explanations, the vitality of the participants was 
palpable. Young researchers sharing their work; 
finding a common language. 

There is one phrase from the summit that has 
stuck in my mind. Describing the development 
of physics over the past centuries, Gerard ‘t 
Hooft highlighted our gradual appreciation of 
a fundamental idea: ‘The uniform motion of 
a system cannot be detected from within that 
system.’ The trip to Singapore placed me far 
outside of my usual context - academically, 
culturally and geographically. Afar, my discernibly 
narrowed eyes, eased open once more.

Many thanks to the Department of Mathematics 
and especially to Professor Robb McDonald 
for their kind nomination and generous support 
in attending the Global Young Science Summit 
2018.

SINGAPORE SUMMIT
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IUTAM SYMPOSIUM “WIND WAVES” 

IUTAM Symposium - Wind Waves

Professor Ted Johnson

The IUTAM General Assembly gave us 
permission to hold an IUTAM Symposium on 
Wind Waves at UCL in the week of September 
4-8, 2017. We welcomed about 80 participants  
from around the world including about 20 from 
US. 

Wind-driven water waves play an essential role, 
both on the large scale ocean dynamics, with 
implications for weather and climate, and on the 
local scale where they affect transfer processes 
across the ocean-atmosphere interface, including 
extreme forces on marine structures, ships and 
submersibles. After 150 years of research, the 
dynamics of ideal linear and nonlinear waves, 
including their interaction and their evolution are 
broadly understood, although only recently have 
extremely large waves been identified through 
observations and in laboratory experiments. 

There are however still conflicting theories 
about how wind generates waves, and there 
are only tentative theories about how wind 
forces affect the dynamics of extreme waves 
and wave groups. Current research on wind-
wave dynamics by the proposers, and by other 
groups, is focussing on what is still a major 
question for water waves, namely, how in the 
presence of wind, do they form into characteristic 
groups (with or without white caps) and what 
are their essential properties, depending on 
the local atmospheric and oceanic conditions. 
The prediction of extreme events, such as 
rogue waves in the open ocean, or in shallow 
water, and waves driven by tropical cyclones, is 
becoming of increasing concern due to effects 
induced by climate change. Further, wind-driven 
waves, especially through their effect on small-
scale motions and turbulence near the surface, 
need to be better understood in order to improve 
predictions of heat and mass transfer at the 
atmosphere-ocean interface, essential for the 
development of climate models.

Improved satellite observations and laboratory 
experiments are now becoming available to 
guide theoretical and modelling progress. Also, 
the general theme of transfer processes across 
a gas-liquid interface is relevant for flows in large 
pipes.

The Symposium took place in the Mathematics 
Department with the theme “Research on 
wind wave groups, applications to improved 
ocean wave modelling, and estimation of wave 
hazards”. This brought together theoreticians, 
numerical modellers, experimentalists and 
end-users in a forum where the latest research 
developments were presented, provided an 
environment with constructive interchanges, 
and with the outcome that clear directions 
were established for future research, and for 
the implementation of research advances into 
operational use. All sessions were held in the 
seminar room in the Mathematics Department 
at UCL, and all lunches, tea/coffee breaks and 
the reception were held in an adjacent room on 
the same floor. This gave a relaxed environment 
where as well as the scientific talks there was 
ample opportunity for informal discussions. 

A special feature was the Lighthill lecture 
honouring the contribution of the eminent applied 
mathematician and fluid dynamicist
Sir James Lighthill, who made profound 
contributions to wind wave research amongst his 
many accomplishments and was Provost at UCL 
1979-1989.

Debbie Eeltink (Université de Genève) 
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IUTAM SYMPOSIUM “WIND WAVES” 

The proceedings of the Symposium, currently 
in press for  Elsevier IUTAM Procedia (www.
elsevier.com/locate/procedia), contain articles 
emanating from four of the plenary talks and 
a further sixteen articles emanating from the 
contributed talks. 

  

There were 5 plenary talks and 41 contributed 
talks. The plenary talks were:

• Peter Janssen: Progress in operational wave 
forecasting
• Julian Hunt: (Lighthill Lecture) Mechanisms and 
modeling of wind-driven waves
• Guillemette Caulliez: Wind wave evolution 
observed in a large wind-wave tank: statistical 
wave properties, wave groups and wave 
breaking
• Ken Melville: Wind-wave breaking
• Vladimir Zakharov: Analytic Theory of Wind 
Driven Sea

Some highlights of the symposium were:

• Robust discussion of generation mechanisms, 
with some agreement about the importance of 
wave groups, either directly or by the necessity to 
consider non-monochromatic waves.
• Demonstration in laboratory experiments of 
the rapid development of fully two-dimensional 
(horizontally) wave fields, from uni-directional 
wind forcing.
• Role of wave-breaking in the formation and 
maintenance of wave groups, and through 
observations and numerical simulations the 
development of universal scaling laws for 
dissipation due to breaking.
• The increased capacity of DNS and LES 
simulations to study the air flow over wind waves 
in great detail, although the analogous capacity 
for two-phase (air and water) simulations is still in 
a developmental stage.
• The increased understanding and potential 
importance of rogue waves, not just for impact 
on shipping and marine structures, but for a full 
understanding of the wave spectrum.
• Wide range of applications for wind-wave 
forecasting, including surf conditions and tropical 
cyclone forecasts
• Importance and lack of current knowledge of 
the directionality of the fully-developed wind 
wave sea.

Lev Ostrovsky (University of Colorado), Efin 
Pelinovsky(Institute of Applied Physics, Nizhny 
Novgorod), Roger Grimshaw (UCL) and Tatiana 
Talipova (Institute of Applied Physics, Nizhny 
Novgorod)

Ted Johnson, Julian Hunt and Roger Grimshaw 
(local organisers) with Frederick Dias (University 
College Dublin and IUTAM Representative)
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Matthew Scroggs - PhD Student, 
UCL

My name is Peter Gustav Lejeune Dirichlet, and 
I am being kept against my will in a cupboard in 
the Kathleen Lonsdale Building.

My story starts in February 2015, when a group 
of PhD students in the UCL Maths Department 
started Chalkdust, a “magazine for the 
mathematically curious”. They sent me a draft 
copy of their first issue, and asked me if I could 
help out by responding to a few letters that they 
had received.

The quality of the rest of the magazine’s content 
was very high – indeed, if you haven’t read 
it already, you should track down a copy and 
read it; I believe all the issues are available at 
chalkdustmagazine.com. Hence, I agreed to 
provide responses for said letters: I helped one 
Chalkdust fan to ensure that her relationship 
was continuous while her husband at sea, and I 
helped another to pick the best ring to propose 
with (I suggested the Gaussian integers). And 
thus Dear Dirichlet was born.

Six months later, the students approached 
me again with a second collection of 
correspondence, and again I happily provided 
responses. This time, I helped Chalkdust readers 
sort an argument (using a branch cut), and deal 
with a translation problem.

My problems began a further six months later, 
when my entire home became infested with 
badgers. This left me with little to no time to reply 
to the letters sent to me by the Chalkdust editors, 
and so I missed the deadline they gave me. Two 
days later, I was in my local corner shop buying 
milk to feed my badgers, when I was grabbed by 
two people and thrown into the boot of a Citroën 
C4 Cactus.

When I awoke, I found myself in the X-Men 
Origins Seminar Room (XMOSR) in the Kathleen 
Lonsdale Building (KLB), with a set of Chalkdust 
editors. They told me that my letters were an 
absolutely integral part of their magazine, so 
they had procured an office for me to write my 
letters in. This seemed strange to me, as offices 
are not usually locked from the outside. And 
usually office aren’t called the X-Men Origins 
Seminar Room. And usually I don’t have to hide 
in a cupboard in my office, when someone else 
has booked my office for a seminar. But the room 
was well-equipped and spacious, so I happily 
got to work replying to a backlog of letters. A few 
days later, I discovered that two of my favourite 
badgers had also relocated to the XMOSR, 
where they remained, eating their way through 
the ever-growing stack of letters marked for my 
attention.

A few months later, refurbishment work in the 
KLB moved to our end of the building, and 
the area containing my office was closed. The 
Chalkdust editors told me that I was being 
upgraded to a new office, but when I arrived 
there, I found that my new office was actually 
a small cupboard in the Muirhead Room, the 
room used by PhD students for tutorials and 
other teaching duties. It was then that I realised 
that I was being kept against my will, while 
being forced to provide humorous responses 
to increasingly annoying letters. I vowed that I 
would take the first possible opportunity I had to 
escape.

In my year in a cupboard, I’ve overheard a great 
number of conversations about Chalkdust: in the 
summer, I heard members of the team painting 
a map to take to the Greenwich maths festival to 
demonstrate population models. 

CHALKDUST
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In September and October, I overheard the team 
putting together material for Black Mathematician 
Month, and doing their bit to raise awareness 
about minorities in mathematics. I also heard 
a great deal of working going into producing 
issue 06 of the magazine, including the goings 
on on Chalky Saturday, the day when the team 
got together to finish everything and apply the 
finishing touches. I finally heard the team, who 
had been hard at work since around 10am, finish 
printing everything to go home and check over 
just after midnight.

A few weeks after Chalky Saturday, I heard the 
team moving boxes containing 4000 copies of 
the magazine into the Muirhead room: some of 
them even needed to be stored in my cupboard.  
I hastily stole one, read it cover to cover, and 
highly enjoyed it; I think my favourite part was 
the excellent Dear Dirichlet: I must remember to 
congratulate whoever writes those letters...

In the weeks following the delivery, I overheard 
a lot of chatter about where the 4000 magazines 
were going: around 1500 copies were sent to 
14 universities, over 150 copies were sent to 
schools, and many more copies were lugged to 
events by members of the team. Many of these 
were ordered online: I urge you to order a copy 
from chalkdustmagazine.com right now; the more 
you buy, the sooner I get my full cupboard space.

All the printing is paid for by the adverts placed 
in the inside covers: for issue 06, these were 
bought by G-Research and Jane Street. I did 
also hear someone say that the UCL Maths 
Department also gives a little bit towards each 
issue: perhaps just enough to pay for my food 
and my lemonade addiction.

In November, I heard members of the team 
making plans to go to the MathsJam Gathering, 
a two-day event packed full of 5 minute lightning 
talks, puzzles, games, cake, a competition, 
and so much more that I forget most of it. On 
the Saturday morning, when they were packing 
magazines to take, the team really sounded 
like they were struggling with the weight; but 
they didn’t bring any copies back! Sadly, I was 
unable to be involved in any of these excellent 
activities, as I was busy replying to letters from 
my cupboard.

I was perhaps most disappointed at missing out 
on the chance to meet the Fields medallist Cédric 
Villani, whom three members of the team had 
breakfast with in February at the almost aptly 
named Villandry’s Cafe. They wrote all about this 
in issue 06, so at least I got to read all about it 
there.

I was invited out of my cupboard once to attend 
the Chalkdust issue 06 launch party. I saw a 
large number of people at this party, all having an 
excellent time eating free pizza, drinking non-free 
drinks, and participating in the maths-themed 
pub quiz. It was exactly the kind of event that 
maths department alumni would enjoy, and I’ve 
overheard plans to hold a similar event in March 
for issue 07.

I hope this note reaches someone who can send 
help to me. Or at least send me some interesting 
letters to reply to.

CHALKDUST
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Provost Teaching Award

The Provost’s Teaching Awards were set up to 
celebrate the best of pedagogic prowess at UCL 
and to reward staff who are making outstanding 
contributions to the learning experience and 
success of our students.

They also demonstrate UCL’s commitment to:

- improving teaching, learning and assessment 
as an ongoing process
- highlighting and rewarding achievements that 
support teaching and learning
- attracting and retaining world-class staff

This year, the winner of the Provost Teaching 
award was Matthew Scroggs, a PhD student 
and postgraduate teaching assistant (PGTA) in 
the Department of Mathematics. These awards 
are exceptionally competitive and this is an 
outstanding achievement by Matthew 

Matthew has previously been awarded a MAPS 
Postgraduate Teaching Award and nominated for 
a UCLU Student Choice Teaching Award. 

PROVOST TEACHING AWARD            CHOIR

Matthew Scroggs receiving the award from the 
Provost

Choir

Emily Maw - PhD Student

The Michael Singers, our departmental choir, 
continue to go from strength to strength! Last 
term we prepared a Christmas repertoire from 
around the world and across the ages, which we 
performed at the department Christmas Party. 

We also sang in the cloisters to raise money 
for Shelter, and at St Pancras Hospital. Our 
most exciting performance yet was a wassail at 
Bentham’s Farm, the UCL allotment, where we 
sang to a newly-planted pear tree to bring it good 
luck for the spring! 

This term our overarching theme is ‘birds’, 
which includes songs ranging from the Beatles’ 
“Blackbird” to Wordsworth’s “The Linnet” (set to 
a tune by Beethoven). We have a performance 
at UCLH lined up, as well as the now annual 
performance at the De Morgan Dinner!
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Professor Barry Simon speaking at Departmental 
Colloquium

Departmental Colloquium
Tuesday 14 November 2017 

The Cost of the Sphere Eversion 
and the 16\π Conjecture

Professor Tristan Rivière (ETH 
Zurich)

How much does it cost...to knot a closed simple 
curve ? To cover the sphere twice ? to realise 
such or such homotopy class ? ...etc. 

All these questions consisting of assigning a 
“canonical” number and possibly an optimal 
“shape” to a given topological operation are 
known to be mathematically very rich and to 
bring together notions and techniques from 
topology, geometry and analysis.

In this talk we will concentrate on the operation 
consisting of everting the 2 sphere in the 3 
dimensional space. Since Smale’s proof in 1959 
of the existence of such an operation the search 
for effective realisations of such eversions has 
triggered a lot of fascination and works in the 
math community. The absence in nature of 
matter that can interpenetrate and the quasi 
impossibility, up to the advent of virtual imaging, 
to experience this deformation is maybe the 
reason for the difficulty to develop an intuitive 
approach on the problem.

We will present the optimization of Sophie 
Germain conformally invariant elastic energy 
for the eversion. Our efforts will finally bring us 
to consider more closely an integer number 
together with a mysterious minimal surface.

DEPARTMENTAL COLLOQUIUM

Professor Tristan Rivière speaking at the 
Departmental Coloquium

Departmental Colloquium
Tuesday 12 December 2017

“More Tales of our Forefathers”

Professor Barry Simon (Caltech)

Professor Barry Simon delivered a fascinating 
lecture on the history of mathematics at the 
Departmental Colloquium. The title of the lecture 
was “More tales of our forefathers”. The very 
next day he gave the same lecture at the Newton 
Institute in Cambridge and that lecture was 
recorded. Those who missed Simon’s talk can 
watch it here: 

https://www.newton.ac.uk/
news/20171114/1290378
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Prizes Awarded to Undergraduate Students June 2017

First Year Prizes

Stevenson Prize 
Myles Workman

Kestelman Prize 
Alexandros Konstantinou

Bosanquet Prize
Yohance Osborne

Departmental Prizes in Mathematics:
Vivienne Leech 
Andela Markovic 
Paul Dubois 
Matthew Rees 
Hexin Cheng
Ulf Persson 
Zhefan Zhou 

Second Year Prizes

Kestelman Prize 
Laura Wakelin

Andrew Rosen
Daniel Bussell

Departmental Prizes in Mathematic
Zhe Hong Lim

Third Year Prize

The Nazir Ahmad Prize
Natalie Evans

Wynne-Roberts Prize
Lingbo Ji

Finalists Prizes

Andrew Rosen Prize
Mohammed Abdallah

Ellen Watson Memorial Scholarship
Edwina Yeo

Mathematika Prize
Mihai Barbu

Bartlett Prize
Mai BuiI

Castillejo Prize
Lingbo Ji

Fourth Year Prizes MSci

David G Larman Prize - Pure Mathematics
Christopher Evans

Susan N Brown Prize - Applied Mathematics
Leo Middleton

Project Prize
Felipe Jacob

Sessional Prize
Georgina Kennedy

The Institute of Mathematics and its 
Applications (IMA) Prizes

1 year membership of the IMA
Lingbo Ji
Mai Bui

PRIZE AWARDS
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PhD AWARDS

Students who have recently obtained PhDs 
from the Department include:

Khadija Alamoudi (supervised by Rod Halburd) ‘The use of singularity structure to find special solutions 
of differential equations: an approach from Nevanlinna theory’

Samire Balta (supervised by Frank Smith) ‘On fluid-body and fluid-network interactions’

Gregorio Benincasa (supervised by Rod Halburd) ‘The anti-self-dual Yang-Mills equations and discrete 
integrable systems’

Bjorn Berntson (supervised by Rod Halburd) ‘Integrable delay-differential equations’

Alex Cioba (supervised by Chris Wendl) ‘Nicely embedded curves in symplectic cobordisms’

John Evans (supervised by Frank Johnson) ‘Group algebras of metacyclic type’

Adam Sanitt (supervised by John Talbot) ‘Turán problems in graphs and hypergraphs’

Pietro Servini (supervised by Frank Smith) ‘Roughing up wings: boundary layer separation over static 
and dynamic roughness elements’

Toby Sodoge (supervised by Jonny Evans) ‘The geometry and topology of stable coisotropic 
submanifolds’

Luke Swift (supervised by Erik Burman) ‘Geometrically unfitted finite element methods for the Helmholtz 
equation’

Adam Townsend (supervised by Helen Wilson) ‘The mechanics of suspensions’

Bin Bin Xue (supervised by Ted Johnson and Robb McDonald) ‘Dynamics of beach vortices and 
multipolar vortex patches’

Wenting Wang (supervised by Robert Bowles) ‘Opinion dynamics on typical complex networks and 
applications’

Department Teaching Award 2016-17
Dr Isidoros Strouthos

MAPS Teaching Award Nominees
Postgraduate Teaching Assistant Belgin Seymenoglu

MAPS Teaching Award Nominee (Staff): Dr Christian Boehmer
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PROMOTIONS

Promotions 

Professor Yiannis Petridis
Professor of Mathematics

Professor Petridis works on analytic aspects 
of automorphic forms and their relation to the 
spectral theory of the Laplace operator on 
hyperbolic Riemann surfaces. He has applied 
perturbation methods to understand the location 
of scattering poles, which in arithmetic examples 
relate to the nontrivial zeros of the Riemann 
zeta function and other L-series. Currently he 
works on the distribution of modular symbols 
and distributional questions of closed geodesics 
and groups elements with restrictions of (co)
homological type. Problems in quantum chaos for 
hyperbolic manifolds are investigated in relation 
to the behaviour of (more complicated) L-series.

Another line of investigation is the distribution 
of the eigenvalues of the Laplace operator, in 
particular Weyl’s law. He has applied techniques 
from analytic number theory (exponential sums)
to this problem for specific manifolds e.g. 
Heisenberg manifolds.

Dr Lauri Oksanen
Reader in Mathematics

Dr Oksanen’s research interests include inverse 
problems for partial differential equations 
and related geometric problems such as the 
boundary rigidity problem and inversion of the 
geodesic ray transform.

Dr Andrea Macrina
Reader in Mathematics

Dr Macrina’s research in Financial and Insurance 
Mathematics includes asset pricing and risk 
management, interest-rate modelling, algorithmic 
and high frequency trading, and the development 
of a probabilistic approach to asymmetric 
information. His research interests extend to 
risk measures and the modelling of market 
information, insurance claims reserving and 
hedging, and to optimal transport theory.
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NEW STAFF

Dr Iain Smears 
Lecturer in Applied Mathematics
Dr Smear’s interests include 
numerical analysis of partial 
differential equations,
Stochastic control problems
 & Hamilton-Jacobi-Bellman
 equations and a posteriori 
error analysis & adaptivity.

Dr Matthew Towers 
Teaching Fellow

Dr Tower’s research interests lie in representation 
theory and homological algebra, especially 
for restricted enveloping algebras and related 
algebras.

Dr Ewelina Zatorska 
Lecturer in Applied Mathematics

Dr Zatorska works in the field of Mathematical 
Fluid Mechanics, in particular, analysis of Partial 
Differential Equations describing the flow of 
compressible and incompressible complex fluids 
or collective behaviour of agents. She is also 
interested in aggregation-diffusion equations 
modelling dynamical networks (of animals, 
polymers, etc.).

New Staff

Dr Roger Casals 
Lecturer in Pure Mathematics

Dr Casals is a contact and symplectic topologist. 
Research interests: contact and symplectic 
topology, flexible-rigid dichotomy, h-principles 
and groups of contactomorphisms.He is 
also interested in the relations with algebraic 
geometry, including mirror symmetry and 
singularity theory.

Dr Eleni Katirtzoglou 
Teaching Fellow. 

Dr Katirtzolou is a Teaching Fellow at UCL.
She has developed 
the Round Table 
model for teaching 
and learning
mathematics 
and specializes 
in teaching abstract
mathematics to
economists.

Dr Ed Segal 
Lecturer in Algebraic Geometry

Dr Segal is interested in the 
interactions between 
geometry, algebra and 
theoretical physics. More 
specifically, he works on 
derived categories of 
coherent sheaves and their 
various generalisations.
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In Memoriam: Susan Brown

The Department of Mathematics is sorry to 
announce that Susan Brown, Emeritus Professor 
of Mathematics, died on Thursday 10 August 
2017 at the age of 79.

Professor Susan Brown’s career at UCL spanned 
over 40 years during which time she established 
herself as one of the UK’s leading contributors to 
theoretical fluid mechanics. She made important 
and long-lasting contributions to viscous flow 
theory, separation, hypersonic boundary layers, 
vortex breakdown and hydrodynamic instability. 
It was her collaboration with Professor Keith 
Stewartson FRS which must surely rank as 
one of the 20th century’s most productive 
partnerships in fluid mechanics. Together 
they published 29 papers and pioneered early 
developments of ‘triple-deck’ theory, which, 
in turn, enabled resolution of long-standing 
questions in steady and unsteady trailing-edge 
flows, and addressed associated important 
aerodynamic applications. Another area for 
which Professor Brown was especially renowned 
was a series of discussions of critical layers, 
especially effects of viscosity and nonlinearity 
and applications to geophysical flows such as 
atmospheric jets. Professor Brown was a superb 
analyst and her work was characterised by clever 
and determined use of asymptotic methods and 
allied computations.

Susan North Brown was born 22 December 1937 
in Southampton. She was an undergraduate at 
St Hilda’s College, Oxford, where she obtained 
a first class degree in mathematics and a 
junior mathematical prize, in 1959. She then 
studied for 2 years for a DPhil in Oxford under 
the supervision of Professor G. Temple before 
moving to the University of Durham to complete 
her DPhil. It was here she started her remarkable 
and long-lasting collaboration with Stewartson, 
first through a temporary Lectureship in Durham, 
a Lectureship in Newcastle  and then, in 1964, 
her Lectureship at UCL, Readership in 1971 
and eventually as Professor from 1986. We 
believe that Professor Brown was the first female 
in the UK to be appointed to a Professorship 
in Mathematics, a source of pride for the 
department, but a date which seems all too 
recent from a gender equality point of view.

Professor Brown earned an international 
reputation for her research. In addition to 
Stewartson, Professor Brown’s collaborators 
included HK Cheng, Norman Riley, Frank Smith 
FRS and Sidney Leibovich. During her UCL 
career, she was a visiting researcher at several 
overseas institutions including Cornell, University 
of Southern California and she also spent time 
as a visiting consultant at the Royal Aircraft 
Establishment in Farnborough. She successfully 
supervised 6 PhD students.

OBITUARIES



43

In 2003 a meeting was held at UCL to honour her 65th birthday (along with Professor Michael O’Neill) 
with guest speakers including her former PhD student Professor Peter Daniels, and Norman Riley and 
Sidney Leibovich.

Professor Brown was also an outstanding teacher, inspiring to both students and staff, many of the 
latter being mentored by Susan. She was often assigned large first year classes in mathematics 
and engineering. She also contributed to the smooth running of the department, notably her efficient 
Chairing of the Mathematics Examination Board. Professor Brown had a fine sense of humour and 
was ever-present and ever-reliable; her loyalty will be treasured in the department.

Frank Smith, Professor of Mathematics remembers -

Memories of Susan are many. As a doctoral student I first met her in 1970 on a visit to the 
department. She recalled her first visit about five years earlier, when the back of the college on 
Gordon Street reminded her of a bomb site. It took many years to improve. She and Keith understood 
my research immediately, clearly knew the directions it should take, and helped enormously. She 
was already a star in a thriving department and she became extremely well known internationally. 
We met often in London as well as during research visits to the States. Once, in 1976 in Columbus 
Ohio, we played possibly the worst tennis match ever against Keith and Jean Stewartson in which the 
longest rally lasted only two shots, whereas the laughing and embarrassment lasted long. She loved 
crosswords. On a train journey back to London from a British Applied Mathematics Colloquium in the 
early 1980s she virtually completed the Times crossword, with me still trying to understand even the 
first few answers. When I joined the staff in 1984 she was most welcoming. We soon organised in 
the college an international symposium on interactive boundary layers, which was hard work, and an 
accompanying book, which was harder, and our collaboration began. This carried on until 2003 and 
was less intense than hers with Keith had been but she collaborated well with many others on some 
of the hardest problems of the times. In later years she lived with Derek Moore and enjoyed their 
companionship until serious illness took him away. Susan was a pleasure to work with and to be with. 
Her modesty would make her embarrassed by all these words about her. Susan, thank you.

OBITUARIES
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The J J Sylvester Scholarship Fund was set up 
in 1997, on the centenary of the death of J J 
Sylvester, one of the most gifted scholars of his 
generation. The Fund aims to award a scholarship 
to help support a gifted graduate mathematician.

You can make your gift to UCL online, by 
telephone or by post. Donations may be made by 
cheque, charity voucher or GiftAid. Any donation, 
large or small will be gratefully acknowledged 
by the College. If you are interested in knowing 
more about the Fund or other tax-efficient ways 
of supporting the Fund please do not hesitate to 
contact makeyourmark@ucl.ac.uk or on 
+44 (0)20 3108 3834. 

Giving Online: 
http://www.ucl.ac.uk/makeyourmark/how-to-give
Giving By Post: To make a gift by credit or debit 
card, or set up a direct debit (if you have a UK 
bank account) by post, please download our UK/
overseas gift form: 
https://www.ucl.ac.uk/makeyourmark/how-to-
give/give-accordion/post.pdf 
and return it to UCL Development & Alumni 

Relations Office, University College London, 
Gower Street, London, WC1E 6BT, UK. 
Giving over the phone: To make a gift over 
the phone, using a credit or debit card, please 
contact the Regular Giving team on 
+44 (0)20 3108 9127. 

Tax efficient giving for US and Canadian alumni 
and friends, please visit:
http://www.ucl.ac.uk/makeyourmark/how-to-give

Sylvester was one of the greatest 
mathematicians to be associated with UCL and 
it is hoped that, through contributions made 
to the Scholarship Fund, we shall be able to 
assist in progressing the education of other 
mathematicians so as to realise their full potential 
for the benefit of us all.

J J Sylvester Scholarship Fund

J J SYLVESTER SCHOLARSHIP

Alumni Careers Advice

The department is keen to welcome alumni to its careers events and fairs for our present students. 
This includes alumni who have gone on to do further study. 

If you are interested in this possibility, please contact Robb McDonald n.r.mcdonald@ucl.ac.uk

We would welcome news and contributions for the next newsletter which should be sent to:  

Professor Ted Johnson, The De Morgan Association, Department of Mathematics, 
University College London, Gower Street, London WC1E 6BT.  

Email:  editor_newsletter@math.ucl.ac.uk. 


