Jeffery Lab
Institute of Behavioural Neuroscience



When brain processes collaborate to form a representation of the outside world, the product is colloquially known as knowledge. My research interest has long been in how the brain “makes knowledge” from the raw materials of neural tissue plus sensory information, and my focus of study is how the brain constructs a map of its environment – the cognitive map – for use in navigation and memory. Central to this map is the hippocampus, and we investigate the functioning of neurons in the hippocampus and also in the brain areas that send information to it - particularly entorhinal cortex, subiculum and retrosplenial cortex.


In humans, the hippocampus seems to have an important role not only in spatial behaviour and navigation, but also in memory for life events. It is thought that perhaps our memory for events (episodic memory) is built upon a spatial framework. If this is true, then understanding the "map" in the hippocampus may help us understand episodic memory, and the things that go wrong with it in conditions like Alzheimer's disease.

My lab studies the activity of single neurons in the hippocampus and in those regions that project to it, in order to understand what environmental information the cells use to form their map of space. We study rats and mice, and our collaborators extend those findings into studies in humans. Our experimental setup is shown below, in which a rat explores (searching for food) while the activity of hippocampal neurons is monitored.

Recording setup for place cells

Experimental setup for recording spatially responsive neurons. The plot at the top right shows the final data form, in which the activity of a neuron (its action potentials) are shown plotted at the place where the animal was when the cell fired. This place cell has a "place field" in the North-East corner of the apparatus.

Below are shown typical recordings from each of the four main spatial cell types; a place cell, a head direction cell, a grid cell and a border cell.

Spatial cells