Linear functions
 Overview of unit
 CORNERSTONE MATHS

Investigation	Key Mathematical Ideas	Key Technology Experiences
Introduction Welcome to SandCircle Mobile Games (30 minutes)	\rightarrow Context of the unit is established: The mechanics and business of mobile phone game design are described, such as how to design components of a game and compute salary and savings. \rightarrow Motion can be represented on a graph of time versus distance. \rightarrow Idealised motion on a distance-time graph appears as a straight line (constant rate).	No technology needed.
Investigation 1 Yari, the Yellow School Bus (45 minutes)	\rightarrow Motion can be represented on a graph of time versus distance. \rightarrow Idealised motion on a distance-time graph appears as a straight line (constant rate).	Play and pause a video.
Investigation 2 Our First Mobile Phone Game (40 minutes)	\rightarrow Motion can be represented on a graph of time versus distance. \rightarrow Idealised motion on a distance-time graph appears as a straight line (constant rate).	Play and pause a simulation.
Investigation 3 Controlling Characters with Graphs (70 minutes)	\rightarrow Graphs are mathematical representations of relationships such as motion. \rightarrow Graphs of motion show characters' start position, speed (relative) and places and times where characters meet. \rightarrow For graphs of motion (that is, time versus distance), the steeper the line, the faster the motion. \rightarrow Speed can be determined from different parts of a graph and simulation.	Play and pause a simulation. - Edit the graph to change the speed. - Edit the graph to change the final position.

Investigation	Key Mathematical Ideas	Key Technology Experiences
Investigation 4 Controlling Characters with Equations (120 minutes)	\rightarrow Equations are a form of mathematical representation. Graphs and tables are other forms. \rightarrow Equations can be written based on tables or graphs. \rightarrow You can "translate" between graphs, tables and equations. \rightarrow Time, distance and speed are represented differently in these three representations. \rightarrow For equations of the form $y=m x$, in motion contexts, m is the speed of a moving object.	Play and pause a simulation. - Edit the graph to change the speed. - Edit the graph to change the final position. - Edit the graph to change the start position. [The table and equation windows are available to view.]
Investigation 5 One to Another (40 minutes)	\rightarrow You can "translate" between graphs, tables and algebraic expressions.	No technology needed.
Investigation 6 Better Games (90 minutes)	\rightarrow Introduction to non-proportional linear functions (not passing through the origin). \rightarrow Pupils explore two ways to derive the equations of non-proportional linear functions: using differences of position and time in a table; using the y -intercept and speed/gradient of a graph. \rightarrow For equations of the form $y=m x+c$, in motion contexts, c is typically the starting point and m is the speed of a moving object.	Play and pause a simulation. - Edit the graph to change the speed. - Edit the graph to change the final position. - Edit the graph to change the start position. - Edit the equation to change the speed and start position.
Investigation 7 Wendella's Journey: Moving at Different Speeds (80 minutes)	\rightarrow In a position-time graph, multi-segment graphs can represent characters moving at different speeds. \rightarrow Graphs tell a story. Stories can be represented in the form of graphs. In this activity, pupils will learn to write stories from graphs and make graphs for stories. \rightarrow "Flat" or horizontal lines represent standing still.	Play and pause a simulation. - Edit the graph to change the velocity.

Investigation	Key Mathematical Ideas	Key Technology Experiences
Investigation 8 Money Matters (55 minutes)	\rightarrow Multi-segment graphs show varying speeds in motion contexts. \rightarrow Multi-segment graphs can also be used in non-motion contexts to show rate of accumulation, for example. \rightarrow Graphs tell a story. Stories can be represented in the form of graphs. In this activity, pupils will learn to write stories from graphs and make graphs for stories. \rightarrow "Flat" lines represent standing still. \rightarrow Lines "slanting downward" represent moving backwards.	Play and pause a simulation.
Investigation 9 Mathematically Speaking: Graphs to Know (10 minutes)	\rightarrow Graphs of rates of change are used in various contexts. \rightarrow Quick graph sketching helps pupils to see general patterns.	No technology needed.
Investigation 10 Crab Velocity (65 minutes)	\rightarrow In position-time graphs, negative rates indicate backwards motion. \rightarrow Position can also be negative, with 0 indicating some defined point such as a start line or water level.	Play and pause a simulation.

Investigation	Key Mathematical Ideas	Key Technology Experiences
Investigation 11 Wolf and Red Riding Hood (80 minutes)	\rightarrow Finding the velocity of a character given some conditions. \rightarrow No matter how the characters move, if their motion graphs have the same endpoint, they meet at the same place at the same time. \rightarrow The average rate (speed or velocity) of a character travelling at different rates for different times is the single speed at which she can make the same trip in the same amount of time. \rightarrow A graph can be used to find the average rate (velocity) of a character moving at different rates (velocities): Draw a line from beginning point to ending point of the character's graph, and then determine its rate.	Play and pause a simulation.
Investigation 12 Problem Solving (25 minutes)	\rightarrow Apply ideas learned in the unit in similar and different settings.	No technology needed.
Investigation 13 Problems from the SandCircle Lunchroom (30 minutes)	\rightarrow Apply ideas learned in the unit in similar and different settings.	No technology needed.
Investigation 14 SandCircle Mobile Games: Going Full Time (15 minutes)	\rightarrow Pupils reflect on the unit as a whole, reflect on the mathematics, and note what they learned. \rightarrow You may want to give feedback to pupils in the form of a letter from the potential employer, stating: "You have been/not been successful in this application because..."	No technology needed.

