## Patterns and expressions Overview of unit

| Investigation | Key Mathematical Ideas | Key Technology Experiences |
| :---: | :---: | :---: |
| Introduction <br> Welcome to the English <br> Light Orchestra <br> (10 minutes) | $\rightarrow$ Establish the context for the unit. | No technology needed. |
| Investigation 1 <br> Playing with Patterns <br> (80 minutes) | $\rightarrow$ Figural patterns have repeating structures that can be described using mathematics. <br> $\rightarrow$ Pupils are helped to generalise by examining the structure of figural patterns. <br> $\rightarrow$ Pupils calculate the value of the number of lights for a given or 'fixed' numerical value and then make this into a variable by 'unlocking the box' containing the fixed value. | Drag 'lights' onto the Designer's Grid to build a 'block'. <br> Define a 'pattern'. <br> Create a numeric expression in the Expression Builder. Unlock the 'No' of blocks' to create a variable. <br> Build an 'expression for the 'total number of lights' in the pattern. Create Graph/Table snapshots. |
| Investigation 2 Some Lights are Always On <br> (55 minutes) | $\rightarrow$ An unlocked number, or variable, represents the figure number. A figure number is the index for the stage of the pattern displayed. <br> $\rightarrow$ An expression can have multiple terms using the same variable. <br> $\rightarrow$ A part of the pattern that does not repeat is represented by a constant; it is added or subtracted in the expression, and does not get multiplied by a variable. | As in Investigation 1 and <br> Having created two patterns of lights, 'link' the variables by giving them both the same name. |
| Investigation 3 <br> Different but the Same <br> (55 minutes) | $\rightarrow$ The total number of lights required to make one pattern can be represented by two different expressions, which are equivalent, for example: $3 n+4 n$ yields the same number of lights as 7 n , for any n . <br> $\rightarrow$ The structure of the pattern can be used to explain why two | As in Investigation 2 and <br> Having created two patterns of lights, 'link' the variables by giving them both the same name. <br> Transforming 'linked’ variables to adjust an |


| Investigation | Key Mathematical Ideas | Key Technology Experiences |
| :---: | :---: | :---: |
|  | expressions are equivalent. <br> $\rightarrow$ Tables and/or graphs can be used to demonstrate (but not prove) equivalency or non-equivalency. | algebraic model for more than one algebraic model for the same figural pattern. |
| Investigation 4 It's OK to Be Negative (65 minutes) | $\rightarrow$ The additive inverse function is a way of representing subtraction of terms in patterns. <br> $\rightarrow$ Equivalent expressions can be created using additive inverses. | Use the 'negative light' to represent switching a light off. |
| Collaborations 4.1 and 4.2 <br> (15 minutes) | $\rightarrow$ Equivalent expressions can be justified by colouring the same pattern in different ways. |  |
| Investigation 5 <br> Your Lighting Design <br> (55 minutes) | $\rightarrow$ Equivalent expressions (including negative terms) can be justified by colouring the same pattern in different ways. | Depending on students' ability, the technology skills developed in Investigations 1, 2, 3 and 4 will be sufficient. |
| Collaborations 5.1 and 5.2 <br> (15 minutes) | $\rightarrow$ Equivalent expressions (including negative terms) can be justified by colouring the same pattern in different ways. |  |

