Patterns and expressions Overview of unit

CORNERSTONE MATHS

Investigation	Key Mathematical Ideas	Key Technology Experiences
Introduction Welcome to the English Light Orchestra (10 minutes)	\rightarrow Establish the context for the unit.	No technology needed.
Investigation 1 Playing with Patterns (80 minutes)	 → Figural patterns have repeating structures that can be described using mathematics. → Pupils are helped to generalise by examining the structure of figural patterns. → Pupils calculate the value of the number of lights for a given or 'fixed' numerical value and then make this into a variable by 'unlocking the box' containing the fixed value. 	Drag 'lights' onto the Designer's Grid to build a 'block'. Define a 'pattern'. Create a numeric expression in the Expression Builder. Unlock the 'No' of blocks' to create a variable. Build an 'expression for the 'total number of lights' in the pattern. Create Graph/Table snapshots.
Investigation 2 Some Lights are Always On (55 minutes)	 → An unlocked number, or variable, represents the figure number. A figure number is the index for the stage of the pattern displayed. → An expression can have multiple terms using the same variable. → A part of the pattern that does not repeat is represented by a constant; it is added or subtracted in the expression, and does not get multiplied by a variable. 	As in Investigation 1 and Having created two patterns of lights, 'link' the variables by giving them both the same name.
Investigation 3 Different but the Same (55 minutes)	 → The total number of lights required to make one pattern can be represented by two different expressions, which are equivalent, for example: 3n + 4n yields the same number of lights as 7n, for any n. → The structure of the pattern can be used to explain why two 	As in Investigation 2 and Having created two patterns of lights, 'link' the variables by giving them both the same name. Transforming 'linked' variables to adjust an

Investigation	Key Mathematical Ideas	Key Technology Experiences
	expressions are equivalent. → Tables and/or graphs can be used to demonstrate (but not prove) equivalency or non-equivalency.	algebraic model for more than one algebraic model for the same figural pattern.
Investigation 4 It's OK to Be Negative (65 minutes)	 → The additive inverse function is a way of representing subtraction of terms in patterns. → Equivalent expressions can be created using additive inverses. 	Use the 'negative light' to represent switching a light off.
Collaborations 4.1 and 4.2 (15 minutes)	→ Equivalent expressions can be justified by colouring the same pattern in different ways.	
Investigation 5 Your Lighting Design (55 minutes)	→ Equivalent expressions (including negative terms) can be justified by colouring the same pattern in different ways.	Depending on students' ability, the technology skills developed in Investigations 1, 2, 3 and 4 will be sufficient.
Collaborations 5.1 and 5.2 (15 minutes)	→ Equivalent expressions (including negative terms) can be justified by colouring the same pattern in different ways.	